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We present a detailed analysis of a subharmonically seeded single-pass free-electron laser (FEL) utiliz-
ing two wiggler magnets separated by a dispersion section. To be specific, suppose the seed to be laser
light at 300 nm. A first wiggler is used to energy modulate the electron beam. This is followed by a
dispersion section to produce spatial bunching, and a second wiggler resonant to 100 nm. Upon passing
through the second wiggler, the prebunched electron beam first radiates coherently, and then this radia-
tion is exponentially amplified. Finally, a tapered section is used to extract additional power from the
electron beam. In this manner we can achieve pulses of duration =~ 10 psec with 1 mJ per pulse in 10™*
bandwidth, with continuously tunable wavelength in the range 100—300 nm. We present the analytical
tools we have employed for the preliminary estimate of the system performance and of the optimization
of the parameters. We describe our modification of the simulation code TDA to include harmonic gen-
eration and discuss its use in analyzing the subharmonically seeded FEL. The analytic and computer-
simulation calculations are in good agreement. We discuss in detail the physical process in the system
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and the optimization of parameters.

PACS number(s): 42.55.Tb

I. INTRODUCTION

The development of a high-power uv free-electron laser
(FEL) operating in the wavelength range from 300 to 100
nm or shorter could have a significant impact on experi-
mental studies of photoinduced processes in chemistry,
physics, and biology [1]. The design of such a device us-
ing an input seed laser and a FEL amplifier was recently
discussed [2]. Here we present an analysis of a subhar-
monically seeded single-pass FEL utilizing two wiggler
magnets separated by a dispersion section (see Fig. 1,
Scheme 2). To be specific, suppose the seed to be laser
light at 300 nm. A first wiggler is used to energy modu-
late the electron beam. This is followed by a dispersion
section to produce spatial bunching, and a second wiggler
resonant to 100 nm. Upon passing through the second
wiggler the prebunched electron beam first radiates
coherently, and then this radiation is exponentially
amplified. Finally, a tapered section is used to extract ad-
ditional power from the electron beam. In this manner
we can achieve pulses of duration =~10 psec with 1 mJ
per pulse in 10™* bandwidth, with continuously tunable
wavelength in the range 100-300 nm.

We assume an electron pulse of 250 MeV and length 15
ps from a linear accelerator with a laser-driven photo-
cathode rf gun. The electron beam has a peak current of
300 A, normalized emittance (rms) 8 mm mrad, local en-
ergy spread 0.1% full width at half maximum (FWHM),
and global energy spread 0.3%. This set of electron-
beam parameters (see Table I, column 3) has been real-
ized in the recent Los Alamos high brightness injector ex-
periment except that the beam energy was only 15 MeV
[3]. In Sec. II B we will explain the concept of the local
energy spread, and show that the assumed 0.1% local en-
ergy spread is a conservative estimate.

The FEL consists of an initial 2-m-long wiggler reso-
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nant to 300 nm, a dispersion section of length 20 cm,
2.8-kG magnetic field, and a second wiggler resonant to
100 nm of length 11 m. The interaction of the 300-nm
and 4.2-MW seed pulse with the electron beam produces
an energy modulation at 300 nm. This energy modula-
tion is converted into a spatial bunching with a strong
third-harmonic component at 100 nm in the dispersion
section. When the coherently bunched beam enters the
second wiggler magnet, there is a rapid coherent genera-
tion of 100-nm radiation within the first meter, and the
radiation has a characteristic quadratic dependence on
distance traversed in the wiggler. There is then a transi-
tion to exponential growth which continues until 7 m into
the wiggler where the 100-nm radiation approaches satu-
ration. At this point the tapering and large energy ex-
traction from the electron beam into the radiation begin.
The distinct three different stages in the second wiggler
(the quadratic “superradiance” growth, the exponential
growth, and the quadratic growth in the tapered section)
are shown clearly when the radiation power plotted
against the wiggler length in Fig. 2.

In this paper, we discuss the detailed analysis of the
physical processes in the different sections of this device,
the analytical and numerical calculation, and the parame-
ter optimization.

The idea of using two wigglers, with the second wiggler
resonant to one of the harmonics of the first, has been
proposed by Bonifacio et al. to generate uv radiation at
the several megawatt level [4]. In their approach, the
first wiggler is long enough to reach saturation and pro-
duce strong spatial bunching, which is rich in harmonics.
The second wiggler immediately follows the first, using
the bunched beam to generate coherent superradiation.
This radiation reaches saturation at a few megawatts at
about 2 m into the second wiggler. We introduce the fol-
lowing modifications.
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(i) We significantly shorten the first wiggler, and con-
trol the input laser power so that the maximum energy
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FIG. 1. Two seeded single-pass FEL schemes. (HG represents harmonic generation.)

modulation is about equal to the energy spread, but still transverse optical klystron [5].

far away from saturation.
(ii) We introduce a dispersion section between the two

TABLE 1. FEL parameters at 100 nm. The asterisk denotes second wiggler in harmonic generation cases.
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wigglers, and optimize the dispersion strength to generate
maximum harmonics in the spatial bunching as in a

(iii) We extend the second wiggler so that there is an
exponential growth after the initial superradiation. This

uv Harmonic Harmonic
seed generation generation

Input seed wavelength (nm) 100 300 300
Input seed power (MW) 0.0007 1.5 4.2
Electron beam energy ¥y 503 503 490
Current (A) 100 100 300
Normalized rms emittance (mm mrad) 6 6 8
FWHM local energy spread (%) 0.1 0.1 0.1
FWHM global energy detuning range (%) 0.18 0.2 0.25
Dispersion d6/dy 0.33 0.83
p in the exponential section® (X1073%) 1.29 1.29 1.53
Period of the first wiggler (cm) 1.75 2.8 3.5
Period of the second wiggler (cm) 1.75 2.2
Magnetic field of the first wiggler (T) 1.19 1.14 0.76
Magnetic field of the second wiggler (T) 1.19 0.75
Magnetic gap of the wiggler (mm) 4 4 6
Length of untapered section® (m) 11 8 7
Length of tapered section® (m) 10 12 4
Tapering* (%) 1.8 1.6 1.2
Output radiated power (MW) 160 100 155
Electron pulse length (psec) 6 6 10
Output radiation energy per pulse (mJ) 1 0.6 1.6
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FIG. 2. Radiation power vs distance in the second wiggler of
the 300-nm seeded FEL for LANL gun parameters.

is possible because of the proper control of the energy
modulation in the first wiggler. If the energy modulation
is too small, the harmonic component in the spatial
bunching after the dispersion section is too small even
when the dispersion strength is optimized. If the energy
modulation is too large, on the other hand, it behaves as
an equivalent energy spread in the second wiggler, and
saturation is reached too early, without achieving ex-
ponential growth after the superradiance section. In ad-
dition, the number of electrons trapped in the bucket in
the tapered section is reduced, and energy extraction
efficiency drops.

(iv) At the end of the exponential section, near but be-
fore saturation, we start tapering the magnetic field. This
allows a much larger energy extraction, which is neces-
sary to achieve the level of hundreds of megawatts at the
end of the tapered section.

Before we selected this subharmonically seeded single-
pass FEL, we considered other configurations, starting
from the oscillator configuration. In the case of an oscil-
lator, it is difficult to achieve output power of the same
level as the radiation power inside the cavity because
there is no Q switch in this wavelength range to carry out
a cavity dump. Hence the output can only be realized by
output coupling. Therefore, to achieve output power in
the level of hundreds of megawatt, the inside cavity radi-
ation power should be much higher, giving very stringent
requirements on the mirror damage threshold for the
cavity. To avoid this difficulty, we considered the master
oscillator power amplifier configuration [6]. The result of
our estimate was that the sum of the wiggler lengths in-
side and outside the cavity would be 17 m in order to
achieve the radiation power of 1 mJ within 3 ps, using a
set of electron-beam parameters based upon an earlier
Advanced Test Facility (ATF) gun design at Brookhaven
National Laboratory (BNL) (see Table I, column 1).

The oscillator configuration requires an electron-beam
time structure with each macropulse comprised of a train
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of hundreds of micropulses. To satisfy the output fre-
quency stability requirement, which is critically impor-
tant for a user facility, this configuration requires very
high energy stability between micropulses. This lead us
to consider instead the seeded single-pass FEL as shown
in Fig. 1 (Scheme 1). Using harmonic generation from a
conventional laser by nonlinear media (e.g., gas cell), it is
possible to achieve continuously tunable uv radiation of a
few hundred watts with a pulse length of a few pi-
coseconds [2]. This seed is amplified in an exponential
growth section to near saturation before tapering. We
used an analytical tool developed recently to analyze this
process. The growth rate in the exponential section was
calculated in terms of a universal scaling gain function,
which incorporated the energy spread, emittance, the
focusing of the electron beam, and the diffraction and
guiding of the radiation [7]. The high speed of this
method made it particularly easy to optimize the parame-
ters for the wiggler and the electron beam. The estimate
on the start-up, the saturation, and the tapering are based
on a one-dimensional analysis. Our analytical estimate
using the ATF gun parameters and optimized wiggler pa-
rameters give the total wiggler length as 21 m to achieve
the 1-mJ radiation energy for a 3-ps pulse. This estimate
of the output power, even though only a crude one, was
later found to agree with numerical simulation within
about 30% using a code TDA provided by Tran and Wur-
tele [8].

The required wiggler length is comparable with that re-
quired for the oscillator configuration. However, the
seeded single-pass FEL has many advantages. The out-
put bandwidth is controlled by the input seed and is only
limited by the pulse length, and hence it is possible to
achieve a bandwidth of 107%. Similarly, the frequency
stability is also controlled by the seed, hence the
electron-beam energy stability only influences the output
intensity fluctuation, and the requirement on the energy
stability is largely relaxed. Another evident advantage is
that the mirror damage problem is eliminated. In addi-
tion, there is no need for a long train of micropulses; the
electron beam could be made of individual micropulses
with very high repetition rate, as can be achieved by a su-
perconducting linear accelerator. Thus it is possible to
achieve very good energy stability and high average
power.

Next, we proceeded to consider the possibility of using
a 300-nm seed instead of 100 nm, because it is much
easier to tune at this wavelength. This is the subharmoni-
cally seeded scheme illustrated in Fig. 1 (Scheme 2), men-
tioned earlier. For the ATF gun parameters, we opti-
mized both the 100-nm seeded and 300-nm subharmoni-
cally seeded cases. In Fig. 3, we plotted the radiation
power versus distance along the wiggler for both cases.
This plot shows that, at first, the subharmonically seeded
scheme gives much larger output power because of the
initial fast generation of coherent radiation. However,
since the energy modulation produces an effective energy
spread, its growth rate in the exponential section is lower,
and finally the power of the 100-nm seed scheme sur-
passes it.

The calculation was carried out by modifying the code
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FIG. 3. Radiation power vs distance for both 100- and 300-
nm seeds and ATF gun parameters.

TDA to include harmonic generation. The modification
has been checked by an analytical calculation, developed
for an one-dimensional model in the small energy spread
limit.

These simulation results have been reported in Paris
[2]. We obtained the new Los Alamos National Labora-
tory (LANL) gun parameters, based on which we opti-
mized our design parameters again. The results show
that since the new parameters have much higher current
and longer pulse, the radiation power for the subharmon-
ically seeded case reaches the required level before the
100-nm seeded scheme catches up. Therefore the subhar-
monically seeded single-pass FEL is far superior for the
new LANL gun parameters, requiring a much shorter
wiggler length to achieve 1-mJ output. In addition to
this, the subharmonically seeded approach provides the
possibility of obtaining output at wavelengths shorter
than 100 nm.

This paper is organized as follows. In Sec. II, we de-
scribe our modification of the simulation code TDA to in-
clude harmonic generation from a 300-nm seed. We then
compare it with the simulation for the 100-nm seed.
Next, in Sec. III, we describe an analytical one-
dimensional model for the subharmonically seeded
single-pass FEL in the small energy spread limit. This
has been used to check our modified version of Tran and
Wurtele’s TDA code. It also sheds some light, in a more
quantitative way, on why the energy modulation in the
first wiggler should be about equal to the energy spread.
Finally, in Sec. IV, we conclude with a description of our
parameter optimization for the new LANL gun parame-
ters.

II. NUMERICAL SIMULATION
AND THE SYSTEM PARAMETERS

A. The code TDA

Our calculation is carried out by modifying the simula-
tion code TDA, provided by Tran and Wurtele [8]. In this
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code, the electron motion is described three dimensional-
ly and the radiation field is assumed to be axially sym-
metric.

The longitudinal motion is governed by the following
equations for the Lorentz factor ¥y and the electron phase
0=(k,+k,)z—o,t:

dy _ _ k@I

sin(0+4,) , 2.1

dz
do ko 1+al+pl+pl+2a,a,[J]]cos(0+¢,)
dz BEASY) s 27/2 .

(2.2)

In these equations, the radiation field is characterized by
the wave number k;=27/A,=w,/c, the dimensionless
vector potential rms value a,=eA;/mc, and phase ¢,,
while the wiggler field is specified by the wave number
k,=2m /A, and dimensionless vector potential rms value
a,=eB,/(V2mck, ). For planar wiggler, the Bessel fac-
tor [JJ] is given by

2
w

2(1+a?)

2
w

21+a2)

a

[JJ]=J0 _Jl (2.3)

For helical wiggler [JJ/]=1. In Eq. (2.2), p, and p, are
the transverse momentum normalized by mec, averaged
over a wiggler period to cancel out the fast wiggle oscilla-
tions. They evolve according to

dp, 1 9 ,
=————a’, 2.4
dz 2y ox @w @4

dp, 1 9 ,
—=———a) , 2.5
dz 2y dy @w @3

where the wiggler field @, has a transverse profile

=0yl 1+ 1k (x*+y?)] 2.6)

because we assume our wiggler is a planar wiggler with
the pole faces shaped to produce equal focusing in both
horizontal and vertical planes [9]. The equations for the
averaged transverse position are

a'x Px
—_—= 2.7
dz vy’ @.7)
dy _ Py
dz ” . (2.8)

These single-particle equations of motion are coupled
to the Maxwell equations written in terms of the slowly
varying amplitude and phase and assuming a single fre-
quency and the paraxial approximation:

d 1
dz + 2ik

i¢
V2 |ae "

s

:I.eZo (471 Lo
ch 2kx N

N —if.
e J
X 3 8(x —xj)S(y—yj)aw(xj,yj)— ,
j=1 Vi

(2.9)
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where Z,=377 Q is the vacuum impedance. On the
right-hand side, each of the N simulation particles carries
the partial current I,/N. Since the code assumes axial
symmetry, a, and ¢, are functions of radius
r=(x%*+y?)!”? only. The TDA code uses the Runge-
Kutta method to solve these coupled equations and find
the particle position, momentum, and the radiation field,
step by step, in the z direction.

B. The system parameters

Before discussing our application of the code TDA and
its modification to introduce the harmonic generation, let
us first consider the electron beam and wiggler parame-
ters. When we compare the 100-nm seed and the 300-nm
seed configurations, we use as an example a set of param-
eters based on the ATF (at BNL) laser-driven photo-
cathode rf gun: I,=100 A, €,=6 mmmrad, and the
FWHM energy spread is 0.1%.

Let us discuss a little further the concept of local ener-
gy spread which determines the gain in our calculations.
During the passage through the whole wiggler (about
1000 wiggler periods) the slippage distance is only 0.1
mm, as compared with the bunch length of 2 mm for a
6-psec pulse. We call the energy spread within this slip-
page distance the local energy spread. Because the slip-
page distance is only 0.1 mm, which is much smaller than
the size of different parts of the accelerating structures in
the linac, there is no mechanism to increase the energy
spread within this distance except the quantum nature of
the synchrotron radiation, which is negligibly small for
electron beams in a linear accelerator. Since the energy
spread of the electron gun is about 20 keV, and we do not
expect this to be significantly increased in the linac, we
believe 0.1% is a conservative estimate for the local ener-
gy spread (at 250 MeV, 20-keV energy spread gives the
fractional energy spread 0.008%). The global energy
spread, including the energy chirp within an electron
bunch introduced by the wake field and the curvature of
the accelerating gradient in the linear accelerator, and
the fluctuation between bunches will be taken into ac-
count as a detuning, as will be discussed later. This set of
parameters is conservatively selected to have less current
than the ATF gun design current (160 A).

The total length of the wiggler is mainly determined by
the power gain length L (the length of the wiggler for
the radiation power to increase by a factor e). Therefore
the selection of the system parameters should start from
the gain length calculation. The analytical tool we
developed for the rapid gain calculation [7] is particularly
convenient in the optimization procedure. Our analysis
gives a universal scaling gain function for the exponential
growth regime. This method takes into account the ener-
gy spread, emittance, and focusing of the electron beam,
and the diffraction and optical guiding. The water-bag
transverse electron distribution we use in the calculation
is a model widely used in many simulation codes, includ-
ing TDA. For a detailed description of this model and the
solution for gain length, and the parameter optimization,
we refer to Ref. [7]. For a complete design report, other
transverse distributions (e.g., Gaussian distribution) or
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even a specific distribution calculated by a complete
simulation of the electron gun and the linear accelerator
should also be considered. Our simulation for the ex-
ponential growth section shows that the waterbag model
and the Gaussian model do not give significantly different
results. For simplicity, in this paper we concentrate on
the water-bag model, which is easy to check against
analytical solution.

The water-bag distribution has a uniform longitudinal
density, and a uniform distribution inside a four-
dimensional sphere in the four-dimensional transverse
phase space R=(x,y), R'"=dR/dz=(x',y’). The trans-
verse electron density has a parabolic profile within the
edge beam size R,. Outside R, the density is zero. The
electron beam’s energy distribution is Gaussian, with
average energy ¥ mc > and rms spread YoO-

The static wiggler magnetic field has period length A,
and wave number k,=27/A,. The resonant radiation
frequency w;=k,c of the FEL is determined by
k,=2y}k, /(1+a?), where a, =eB,, /(V'2k,mc) and B,
is the peak on axis magnetic field. We assume a planar
wiggler with parabolic pole faces providing equal natural
focusing on both vertical and horizontal plane with the
betatron wave number kz=a,k, /(V'2y) [9]. When the
electron beam is matched to the natural focusing, the
beam distribution remains invariant, and the edge beam
radius R, is related to the rms emittance € by

e=((x>)(x"2N2=({p)(y' )" *=kzR} /6 .

Our theory shows that the power gain length L can
be expressed in a scaled form. The scaled growth rate
1/(2k,LsD) is a function of the ratio of emittance over
wavelength k e, the scaled energy spread o /D, the scaled
focusing strength kg/(k,D), and the scaled detuning
(w—w,) /(0D ):

(2.10)

k O—®
kseviy b 1) E
D k,D° w/D

1

kLoD ©

) (2.11)

where D is the scaling parameter (a measure of transverse
current):
172

4eZ, a} I ]

mmc? 1+al vo

with [JJ ] defined by Eq. (2.3).

The function G can be calculated by solving two cou-
pled equations using Newton’s root finding routines. The
results have been checked against the simulation codes
FELEX [10] and FRED [11] for several cases, and yield
agreement to within 5%. For maximum gain, the detun-
ing can be chosen to be

(2.12)

00—
;D

kg
k,D

s

=-3

kg€, (2.13)

which we found to yield near-maximum gain.

Let us now consider the optimization. The required
radiation wavelength A, is specified as 100 nm, and we
are given the set of electron-beam parameters: the
current 1,=100 A, the normalized emittance €, =€y =6
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mm mrad, and the fractional FWHM energy spread
0.1%. If we select a wiggler period A, and an on-axis
magnetic field B, the wiggler parameter a,, would be
determined, and through the resonance condition the
electron-beam energy would also be determined. Follow-
ing this, the emittance €, the betatron wave number kg,
the scaling parameter D, and the optimum detuning can
all be calculated. Now all these parameters can be substi-
tuted into the gain function G to obtain the gain length
L.

For a given wiggler type, there is a relation between
the wiggler period A, and wiggler field B,,. For example,
we assume the wiggler to be of design with Nd-Fe-B mag-
net blocks and vanadium-Permendur pole tips. The mag-
netic field is related to g /A, (the gap-to-period ratio) by
Halbach’s relation [12] (g /A, =0.722)

B, =3.44 exp[ —5.00(g /A, )+ 1.54(g /A, )?] . (2.14)

Therefore once the gap g is fixed, we can consider the
gain length as a function of the wiggler period A,, and
minimize it using our rapid calculation method. When
we fix the wiggler gap at 4 mm, the gain length as a func-
tion of the wiggler period is plotted in Fig. 4, giving the
minimum gain length L;=1.1 m at A, =1.75 cm, with
electron-beam energy 250 MeV, edge beam radius 0.3
mm, the wiggler peak-on-axis field 1.19 T, and a,,=1.37.
This result is compared with numerical simulation in Fig.
5. The radiation power gain in logarithmic scale, as a
function of the wiggler distance, is shown as a straight
line. The slope of the straight line gives the gain length
1.1 m, in agreement with the analytical result. The
straight line intersects with the vertical axis at a point
determined by the coupling between the input laser beam
and the electron beam. This is because there is a lethargy
distance [13] before the radiation starts to grow exponen-
tially, as can be seen in Fig. 5.

Next, we consider the effect of the global energy
spread. If the global energy spread is within an electron
bunch, as induced by wake field or the curvature of the
accelerating field, its effect is that a part of the electron
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FIG. 4. Power gain length as a function of wiggler period for
ATF gun parameters.
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FEL with ATF gun parameters. This plot is used to calculate
the gain length from the simulation and to test with the analyti-
cal result.

bunch with energy outside a certain energy detuning
bandwidth would contribute little to the output. On the
other hand, if the energy spread is referred to the energy
fluctuation between bunches, and if the energy spread
within a bunch is smaller than the bandwidth, the effect
would be an intensity fluctuation from pulse to pulse.
The average electron-beam energy is selected to have the
maximum gain at the input laser frequency. If the
electron-beam energy deviates from this average energy,
the wavelength for the maximum gain would shift away
from the input laser frequency, corresponding to a detun-
ing reducing the gain. When the deviation is within
10.12%, the gain length varies between 1.1 and 1.4 m. If
we select 1.4 m as the gain length to design the system,
the energy detuning bandwidth would be 0.24%.

C. Direct amplification of the 100-nm seed

Let us first consider the case of the uv seed at 100 nm.
The FEL amplifier is comprised of a 21-m constant
period wiggler. The magnetic field is constant over the
first 11 m and the amplification in this section is exponen-
tial. The magnetic field is tapered quadratically over the
last 10 m,

z—11

Bw =BwO 10

1—q , (2.15)

with 7=0.018, yielding an approximately quadratic
power growth. A simple analytical estimate shows that
the quadratic tapering gives the optimized performance
for small energy extraction (less than a few percent of the
electron-beam energy). Our simulation tested many
different types of tapering, and confirmed this conclusion.
For simplicity, we will not elaborate on this.

We optimized the position of the beginning of the ta-
pered section and the tapering coefficient 1 by individual-
ly varying these quantities to find the maximum output
power. The input seed pulse at 100 nm has a pulse length
of 6 psec and an energy of 4 nJ corresponding to a peak
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power of 700 W, in a bandwidth AA/A=10"% We as-
sume the laser beam is Gaussian, the beam waist is equal
to the electron-beam size, and coincides with it at the en-
trance of the wiggler. In the exponential section, the
power gain length is 1.1 m, and the amplified power after
11 m has reached 3.2 MW, which is near but before satu-
ration of the exponential process. In the 10-m tapered
section, the power is increased from the initial 3.2 MW to
an output value of 160 MW. The exponential growth in
the untapered section and the nearly quadratic growth in
the tapered section are shown in Fig. 3.

These results have been checked against an one-
dimensional estimate of saturation of the exponential sec-
tion and the output power of the tapered section (see Ap-
pendix B). Our estimate predicts the starting position of
tapering to be at 11.7 m, with saturation power of 3.2
MW, and the output power of 210 MW at the end of the
tapered section, in good agreement with the simulation,
considering the approximate nature of the estimate.

D. Modification of the code TDA
to include harmonic generation

Now let us consider the subharmonically seeded FEL
process. The 300-nm seed laser light interacts with the
electron beam in the first wiggler resonant to 300 nm, be-
ing amplified by a factor of about 1.4, and produces an
energy modulation in the electron beam with amplitude
about equal to the rms energy spread. The modulated
electron beam then passes through the dispersion section,
where the electron energy modulation is converted into a
spatial microbunching. With proper choice of the input
laser power and dispersion section parameters the spatial
density will have significant harmonic components. This
bunched beam, when traversing the second wiggler reso-
nant to 100 nm, produces coherent 100-nm radiation. It
experiences a rapid power growth within a few meters,
where it is comprised of many modes; some are exponen-
tially growing, and some are oscillating or decaying.
Then the fundamental guided mode dominates, and the
power grows exponentially until 8 m where it approaches
saturation and tapering starts. In the tapered section, a
significant portion of the electrons are trapped into buck-
ets and form microbunches spaced by 100 nm. These mi-
crobunches again radiate coherently, and the power
grows quadratically until the exit of the wiggler.

Now we discuss the modifications of the code TDA re-
quired to carry out the calculation of the harmonic gen-
eration. For the ATF gun parameters, the first wiggler is
2.5 m long and has a period A,;=2.8 cm and a peak
magnetic field B, ;=1.14 T. The second wiggler has a
period A,,=1.75 cm. Its field is B,,,=1.19 T over the
first 8 m and is tapered according to

2
1-0.016 | Z=8 J

B,=1.19 (2.16)

12

over the last 12 m. The parameters of the second wiggler
are the same as those used in the 100-nm seed case. The
first wiggler parameters have been selected to be resonant
to 300 nm and to yield approximately the same betatron
wavelength as the second wiggler, hence the electron-
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beam profile remains the same in both the wigglers.

The initial seed pulse at 300 nm has a power of 1.5
MW, and is focused to have a Rayleigh range of 24 cm,
with the beam waist located at 24 cm into the entrance of
the first wiggler. At the end of the first wiggler, the lon-
gitudinal phase space (6,y) distribution is shown in Fig.
6(a). The energy is modulated with the peak to peak
value of 2Ay /¥y =~1.6X 1073, about equal to the energy
spread. We modified the code TDA to output the electron
parameters x,),p,,p,,¥,0 for all the simulation particles
into a file to be processed by a simulation of the disper-
sion section.

In the dispersion section, the parameters x,y,p,,p,,¥
remain unchanged, but the longitudinal phases of
different particles change with the variation proportional
to their deviation from the average energy. We assume
the idealized dispersion section is divided into three sec-
tions with total length L, the field is [14]

L,
B()’ 0§Z<—4"
L, 3L,
B(z)= 1—B,, 7 z< 2 (2.17)
0 -—4—<Z<Ld

This configuration satisfies the condition that the first and
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FIG. 6. Phase-space (y,6) distribution at the end of the first
wiggler for the 300-nm seeded FEL. (a) is with ATF gun pa-
rameters, (b) is with LANL gun parameters.



44 GENERATION OF INTENSE uv RADIATIONBY . ..

second integrals over z of the magnetic field vanish so as
to have no transverse and angular displacements. How-
ever, the particles with the same longitudinal coordinate
z but different energy have different transit time in the
dispersion section. The difference of the transit time is

At=£Ay , (2.18)
dy
where Ay is the difference of the particle energy, and
2 B2L3
di__ e Toud (2.19)
dy mZc 3y3 48

This relation between transit time and energy converts
energy modulation into coherent bunching. Now we will
rewrite this time-energy relation as the phase-energy rela-
tion at the entrance of the second wiggler. The phase of
particle j at the end of the first wiggler z, is

0;=(ks tky)z;—wgt; , (2.20)
where #;; is the time of arrival. Correspondingly, at the

entrance z, of the second wiggler the phase is

b=k +ky)zy— ot - (2.21)

The arrival time 7, at the second wiggler z, is related to
tj; by

dt
th=tj+=—(v;=vo) Tt , (2.22)

dy
where ¢, is a constant dependent on the position of the
second wiggler. From (2.20)-(2.22) we obtain the phase-
energy relation in the second wiggler

a)s
¢j=__£ 9,+g—3(yj—yo)+eo (2.23)

Wy

We will not write down the specific expression for d6/dy
and 6,, but we point out that they are dependent on the
length and magnetic field of the dispersion section and
the positioning of the second wiggler, but independent of
the particle index j. The ratio n =w,/w, is equal to the
harmonic number 3 in our example. Our simulation
gives d0/dy =0.33 as the optimum. For our harmonic-
generation scheme the output power is independent of 6,
so we choose 6,=0.

After determining the parameter 0 at the end of the
dispersion section for all the particles, parameters
X,¥,Px ,py,y,() for all the particles are written into a file
as an input to the simulation of the process in the second
wiggler. The phase-space distribution is given in Fig.
7(a), showing the enhancement of the bunching intro-
duced by the dispersion section, compared to Fig. 6(a).
This enhancement, for the case with ATF gun parame-
ters, is not very significant, even though it is visible.
However, the corresponding figures [Figs. 6(b) and 7(b)],
for the LANL gun parameters (see Sec. IV), show a more
pronounced enhancement. We modified the code TDA so
that, for the second wiggler, these input particle parame-
ters are used as the initial condition (instead of the
water-bag model initial distribution used at the beginning
of the first wiggler). Since the 100-nm component of the
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FIG. 7. Phase-space distribution at the entrance of the
second wiggler is with (a) ATF gun parameters and (b) LANL
gun parameters.

radiation field is generated by coherent microbunching,
the initial field a, is taken as zero. Another modification
relates to the range of the phase 6. In the original code,
it is modular from — to 7, and when the particle in-
creases past 7, the code automatically subtracts 27 to
keep it within the range. For third-harmonic generation
the phase range for the second wiggler must increase by a
factor of 3, becoming —3 to 3, as easily seen from
(2.23). Physically this means that the electrons distribut-
ed in one 300-nm wavelength now occupy three harmonic
100-nm wavelengths. In the second wiggler, even though
the fundamental radiation wavelength is 100 nm, the
periodicity of the electron distribution is 300 nm.

For the calculation in the second wiggler, we neglect
the higher harmonics of 100 nm: 33, 20 nm, etc., because
the growth rate is smaller due to the more stringent re-
quirement on the emittance-wavelength ratio and
different detuning of maximum gain as given by (2.13).
After the exponential growth section in the second
wiggler, they are all dominated by the fundamental guid-
ed mode at 100 nm. In the tapered section, the micro-
bunching on the 100-nm scale becomes significant. In
Fig. 8, we plot the phase-space distribution at the begin-
ning of the tapered section, near saturation of the ex-
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FIG. 8. Phase-space distribution at the beginning of the ta-
pered section.

ponential growth, and we see that the periodicity is still
300 nm, but 100-nm bunching is clearly visible. We also
plotted one of the separatrices to show that a significant
portion of the particles has been trapped in the bucket. It
is rich in harmonics, and there will be coherent spontane-
ous harmonic radiation. But we expect the intensity of
higher harmonics to be much lower than at 100 nm, and
should be easily reduced by spatial filtering using the fact
that in the output these higher harmonics have smaller
angular divergence than the fundamental. We do not ex-
pect the existence of these harmonics to influence the ac-
curacy of our calculation of the 100-nm output power.

In Fig. 3, we plot the radiation power versus the dis-
tance in the second wiggler. As we pointed out in the In-
troduction, the process can be seen to be distinctly divid-
ed into three stages: the coherent harmonic generation
with quadratic growth, the exponential growth, and the
energy extraction in the tapered section with quadratic
growth again. On the same figure, we also plot the power
of the 100-nm seed FEL as a comparison. In the first 2
m, while its coherent bunching is generating a rapid
quadratic growth, the 100-nm seeded FEL is still in
lethargy. But after 2 m, when it is in exponential regime,
the slope in the case of harmonic generation is smaller
than the other because there is an effective energy spread
introduced by the energy modulation in the first wiggler.
As a result, the harmonically generated power grows
slower, and at about 18 m, it is passed by the 100-nm
seeded FEL. Finally, at the end of the wiggler, the har-
monically generated power is less. We will show that
when we use the LANL new gun parameters, we are
working in the regime similar to the situation in Fig. 3 at
about 11 m. For the LANL gun parameters, the subhar-
monically (100-nm) seeded FEL is superior to the case of
a 100-nm seeded FEL.

E. Optimization of the parameters

The parameters used in the examples have been opti-
mized. The wiggler period and electron-beam energy
have been selected based on the analytical calculation as
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explained in Sec. IIB. We now elaborate a little further
on the optimization of the input laser power, the disper-
sion strength, the starting position of the tapering, and
the percent of tapering of the wiggler field.

The input 300-nm laser power and the optimum disper-
sion section strength d0/dy are closely related. For
fixed laser power, the energy modulation at the exit of the
second wiggler is fixed, and there is an optimum disper-
sion strength for best microbunching and maximum har-
monic components. When the input laser power in-
creases and the energy modulation increases, the corre-
sponding harmonic components also increase. Hence in-
creasing the input laser power enhances the harmonic
generation in the first 2 m, but the exponential growth
rate after the first 2 m drops because of the larger
effective energy spread resulting from the increased
modulation. Therefore, when we calculate the 100-nm
radiation power at 5 m into the second wiggler, for a set
of input laser powers and corresponding optimum disper-
sion strengths, we find there is an optimum input laser
power. For the example based on the ATF gun parame-
ters, the laser power is found to be 1.5 MW with a disper-
sion strength of d6/dy=0.33. With these parameters,
the energy modulation (peak to peak) at the end of the
first wiggler is 2Ay /y =1.6X 1073, comparable to energy
spread (FWHM) 0.1%.

Next the starting position of the tapering of the second
wiggler is varied to maximize the output power for both
the 100- and 300-nm seeded cases. If the tapering is
started too early, the radiation power is too low so the
trapping efficiency into the separatrix is low. But if the
tapering is started too late, the exponential growth satu-
rates and eventually the radiation power drops before the
tapering starts, so the output power is reduced. There-
fore there is an optimum position. In Fig. 9, for the 100-
nm seeded case we plot the output versus the starting po-
sition of the tapering, with 1.8% tapering at 21 m.

Finally, the percent of tapering 7 is also varied to find
maximum output for both the 100- and 300-nm seeded
FEL. Larger tapering gives larger energy extraction
from the trapped electrons, but more electrons are de-
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FIG. 9. Output power vs the starting position of the taper-
ing, with 1.8% tapering at 21 m for the 100-nm seed FEL.
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FIG. 10. Phase-space distribution at the end of the tapered
section.

trapped, so that even though at the end of the wiggler the
bucket has a lower resonant energy, the number of parti-
cles in the bucket is small. There is a tradeoff between
these two trends. For the ATF parameters, for the 100-
nm seeded case, we find the optimum is the starting posi-
tion at 11 m with a 1.75% tapering at the end of the
wiggler. In Fig. 10 we plot the output vs 1 with the
tapering starting position fixed at 11 m. The phase space
distribution of electrons and one of the buckets at the end
of the tapered section is shown in Fig. 11. This shows
that with the optimized parameters, a significant portion
of the electrons have leaked out from the bucket at the
end. The optimized results for both cases are listed in
Table I (columns 1 and 2).

III. ONE-DIMENSIONAL ANALYTICAL MODEL

To check the simulation, we developed several analyti-
cal models. As explained before, the simulation for the
exponential regime has been checked against our analyti-
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FIG. 11. Oufput power vs ) with the tapering starting posi-
tion fixed at 11 m for the 100-nm seeded FEL.
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cal result with good agreement. This not only tested the
code, but also checked our selection of calculated param-
eters such as the number of simulation particles, the lon-
gitudinal step size, the transverse mesh size, etc. The ta-
pered section has been checked with a crude one-
dimensional estimate, giving a correct prediction of the
length of the exponential section and tapered section to
achieve the required power (see Appendix B and Sec.
IIC). An accurate analytical calculation is difficult. To
test the simulation of the harmonic generation and the
following exponential growth for small initial energy
spread, the one-dimensional problem can be solved
analytically. By increasing the electron-beam size and re-
ducing the energy spread until the growth rate ap-
proaches the solvable one-dimensional limit, we have
checked our modified version of the TDA against the
analytical solution. The full test of the exponential sec-
tion, the one-dimensional test of our modified TDA calcu-
lation of harmonic generation, and the one-dimensional
estimate of the tapered section, provide a reliable check
of the whole simulation process, and a convenient way to
estimate the performance before the simulation.

We can solve the problem in the small energy spread
limit because in this case only a very small energy modu-
lation is enough to create strong microbunching in the
dispersion section. Then, after the first two gain lengths
of coherent harmonic generation in the second wiggler,
the effective energy spread due to the modulation can be
neglected, and the exponential growth rate is the same as
without energy spread. The criterion to determine
whether the energy spread is small is to compare it with
the Pierce parameter p [13,15], defined by

(2pyo)=e2Zonoal[JJ 1*/2mck] , (3.1

where n, is the electron density. In one-dimensional
theory, when energy spread is very small, and the detun-
ing is zero, the power exponential growth is proportional
to exp(V'3pk, z). For both the 100- and 300-nm seed ex-
amples, the Pierce parameter in the exponential section is
p=1.29X 1073, comparable to the energy spread. When
the energy modulation is comparable or larger than p, the
analytical calculation is difficult because the effective en-
ergy spread due to the energy modulation has a rather
complicated distribution. As can be seen in Fig. 7(a), the
period of the modulation is 300 nm, so in the second
wiggler it covers three 100-nm periods, each of which has
different energy distribution and remains different at the
end of the second wiggler (Figs. 8 and 11).

Now let us give the one-dimensional analytical descrip-
tion of this process. First we describe the microbunching
process for a beam with a Gaussian energy distribution,
and then we proceed to the harmonic radiation genera-
tion and the exponential growth for the case with small
energy spread.

Suppose that before entering the first wiggler, the elec-
tron distribution is Gaussian in energy and uniform in
phase 6

1 —8v%/202

(5 _— N .
fO 7) \/27T(7,’,e 3 2)
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where 8y =y —v,. At the end of the first wiggler, there
is an energy modulation Ay sinf. Then the distribution
function at the entrance to the dispersion section is

fo(8y —Ay sinf) . (3.3)

After passing through the dispersion section with disper-
sion strength d6/dy, the electrons of phase 6 will have a
new phase 60+8yd6/dy +0,, as described in Sec. II D.
Hence the distribution function becomes

fly,0)=f, |8y —Ay sin

de
0= 2, 87~ (3.4)

The integration of this distribution over energy yields
the phase distribution, and the Fourier expansion of this
function gives the harmonic components of the density
modulation converted from the energy modulation [5],

2

_ < 2 2| 40
ff(y,e)dy—1+2n§1exp —in2o2 ar
xXJ, —nAy% cosn(6—0,) .

(3.5)

In this expansion, only the third-harmonic component
contributes significantly to the 100-nm coherent radiation
because the second wiggler is resonant to this wave-
length. The other components can be neglected either
because they are not resonant (e.g., the fundamental) or
produce radiation with much lower intensity and lower
growth rate, dominated by the 100-nm radiation, as ex-
plained in Sec. IID. Therefore we can consider that
there is only the 100-nm density modulation at the en-
trance of the second wiggler. It is easy to see that its am-
plitude can also be expressed as twice the value

[<e ™|, which is called the bunching factor:

L [7 cosn(6—0,)d6 [ fy,0)dy

T —

:2|<e~in9j>|
? do
Ay——1,
n ‘}/dy

de

dy (3.6)

=2exp *%nzai J,

where the harmonic number » =3 in our example, corre-
sponding to 100 nm.

The Bessel function factor represents the microbunch-
ing. In its argument, the factor Ayd6/dy is the phase
shift due to the energy modulation in the dispersion sec-
tion. If this factor is much smaller than 1, the micro-
bunching would be reduced proportional to its nth
power. Hence d6/dy must be comparable to 1/Ay.
The first exponential factor shows that the energy spread
erases the microbunching when 0,d0/dy=~o,/Ay>1,
hence the energy modulation must be larger than or equal
to the energy spread in order to have large harmonic
components.

Therefore, if the energy spread is comparable to the
Pierce parameter p, as is the case for our examples, the
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energy distribution should be even larger. However, this
in turn will reduce the growth rate in the second wiggler,
so the optimized value of energy modulation should be
comparable to the energy spread. Optimization utilizing
computer simulation has confirmed this, as explained in
Sec. ITE.

Now we consider the FEL process in the second
wiggler. In the linear regime, the FEL problem can be
formulated as solving the initial value problem for the
coupled Vlasov-Maxwell equations, and a detailed discus-
sion can be found, for example, in Ref. [15]. The initial
conditions include the input radiation-field strength and
the electron distribution at the entrance to the second
wiggler. Since we are discussing the harmonic-generation
process, we take the input 100-nm power to be zero. If
we assume the energy spread is much smaller than p,
then the energy modulation can be selected to be compa-
rable to the energy spread, but still much smaller than p
[13], so that the equations can be linearized. Therefore
we can solve this problem by assuming zero energy
spread and a density modulation

2
4o

dy

nAV%

2exp | —in’ol J, (3.7

In the following, we present the results of this calcula-
tion, leaving a brief description of the derivation to Ap-
pendix A. To compare with the simulation, it is con-
venient to write the solution in the two asymptotic limits:
pk, <<1 and pk,z >>1. They correspond to the superra-
diance and the exponential growth regimes, respectively.
The dimensionless vector potential for the radiation field,
as a function of distance z, is

4 A,pk,z (pk,z <<1)

“ %Aoe‘/3pk“’z (pk,z >>1) 8
where
2
2k, (pyo)exp | —in’ol -Z—e J, nAyidig
40= kyay [T ]
(3.9)

In the first superradiance regime, the field grows linear-
ly with z, so the power grows quadratically. This is be-
cause the electron distribution has not changed very
much in the short distance, and we can approximate this
process as many rigid microbunches, spaced by integral
number of wavelengths, radiating coherently. After
about one or two gain lengths (pk,z > 1), the energy
modulation of the electrons induced by the 100-nm radia-
tion becomes important, hence we can no longer consider
the microbunches as rigid, and the growth becomes ex-
ponential.

The results of Eq. (3.8) have been used to test our
modification of the TDA code to include harmonic genera-
tion. To test the code, we simulated a situation close to
one-dimensional approximation. We started from the set
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of parameters used for the 300-nm seeded FEL based on
the ATF gun design, as given in Secs. II B and II D, but
increased the current and beam cross section proportion-
ally by a factor of 16 so that the current density remained
the same as before, but the radiation beam size was
sufficiently large to justify neglecting the diffraction.
Next, we set the emittance to zero and the fractional en-
ergy spread o, /Yy =3X 1073 so that it was much smaller
than the Pierce parameter p. Then, to maintain a parallel
beam with a finite but longitudinally invariant electron-
beam profile for zero emittance, we set the transverse
wiggler field to be constant transversely, so that there was
no focusing effect. The input 300-nm laser beam was as-
sumed to have very large beam waist and Rayleigh range
so that it could be taken as a plane wave. Under these
circumstances, the electron-beam energy was taken to be
v =502.63, the wiggler period 1.75 cm with a,=1.37,
and the Pierce parameter p=1‘29><1073. We adjusted
the input laser power such that the energy modulation
Ay =0.016 at the end of the first wiggler was comparable
to the energy spread o0,=0.015, but Ay/y
=3.2X 107 % <<p, thus the effective energy spread due to
this energy modulation in the second wiggler could be ig-
nored. The dispersion section strength was chosen to be
d0/dy=30, giving the maximum phase shift
3Ayd8/dy=1.44, and the phase shift due to energy
spread 30 ,d0/dy =1.35. Thus the bunching factor

2

J3(3Ayd6/dy )exp 307,% =0.022 .

1
2

With all these provisions, we obtained good agreement
with the analytical result Eq. (3.8). In Fig. 12, we plot
the logarithm of the on-axis radiation field a, (divided by
the constant A,) versus the scaled wiggler distance pk,z,
and the one-dimensional (1D) result of Eq. (3.8). In this
plot, the superradiance regime is represented by a loga-
rithmic curve and the exponential growth section by a
straight line.
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FIG. 12. One-dimensional calculation checked with simula-
tion.
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IV. A DESIGN EXAMPLE

Now let us consider a design example based on the
LANL gun parameters. As explained in the Introduc-
tion, we assume an electron pulse length 15 psec from a
linear accelerator with a laser driven photocathode rf
gun. The electron beam has a peak current of 300 A,
normalized emittance (rms) 8 mmmrad, local energy
spread 0.1% FWHM, and global energy spread 0.3% (see
Table I, column 3). As discussed in Sec. IIB, the as-
sumption of 0.1% local energy spread is a conservative
estimate. Because the current is higher and the pulse
length is longer than what has been discussed in Sec. II B,
the wiggler length required to achieve 1-mJ pulse energy
becomes much shorter, and we can consider relaxing the
requirements on the wigglers. We assume the wiggler is
of a SmCos permanent magnet type rather than Nd-Fe-B
because it has less temperature dependence and better
resistance to radiation damage. The on-axis magnetic
field with a 92% contingency factor, is given by
Halbach’s relation [12]

B, =0.92(3.16)exp[ —5.47(g /A, )+ 1.8(g /A, )%] .
4.1)

To reduce the effect of the wake field in the vacuum
chamber the wiggler gap is increased from 4 to 6 mm.

The first step of design is to optimize the wiggler
period by minimizing the gain length for the exponential
section of the second wiggler. Using the analytical
method, as discussed in Sec. II B, we find the optimized
parameters: wiggler period A,,=2.2 cm, with maximum
on-axis magnetic field B,,=0.75 T and a,,=1.09,
electron-beam energy y =490, edge beam size R;,=0.47
mm, and the power gain length L;=1.07 m at 100 nm.
Next, the period and magnetic field of the first wiggler
(the modulator) are chosen to be resonant to 300 nm, and
with approximately the same betatron wavelength. The
result gives a wiggler period of A,;=3.5 cm with
B,;=0.76 Tand a,,,=1.77.

After selecting the wiggler parameters, we optimize the
input 300-nm laser power and the dispersion strength by
finding the maximum radiation power at a few gain
lengths into the second wiggler, in the exponential re-
gime. We assume the first wiggler is 2 m long, then we
find optimized laser power to be 4.2 MW, with an opti-
mized dispersion strength d6/dy=0.83. For a disper-
sion section of total length of 20 cm, this corresponds to a
magnetic field of 2.8 kG. This set of parameters gives an
energy modulation Ay /y =1.43X 1073 at the end of the
first wiggler. This is comparable to the FWHM energy
spread 0.1% and the Pierce parameter p=1.53X10°.
Because this is equivalent to an energy spread, the power
gain length is increased slightly to 1.37 m, as compared
with the gain length 1.07 m for electron beam without en-
ergy modulation.

Next, based on a one-dimensional estimate, we choose
the length of the second wiggler to be 11 m. Then utiliz-
ing the modified TDA code we vary the starting position
of tapering and the percent of tapering at the end of the
wiggler individually, until we find the maximum output
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FIG. 13. Output power as a function of energy detuning for
the 300-nm seeded FEL with LANL gun parameters.

power. The result is to start tapering at 7 m and to taper
1.2% at the end of the wiggler, with an output power of
155 MW. For a pulse width of 10 psec, this produces
1.55 mJ per pulse. The radiation power versus distance
in the second wiggler is plotted in Fig. 2.

Finally, we consider the effect of the global energy
spread. Assuming that the average electron energy devi-
ates from the optimum value y;,=490, but all the other
parameters remain fixed, we calculate the output power
as a function of this energy detuning. The result is plot-
ted in Fig. 13, with a FWHM width of about 0.25% de-
tuning range. Thus, if the energy fluctuation from bunch
to bunch is within 0.25%, the output power would fluctu-
ate between 75 and 155 MW from pulse to pulse. If the
energy is stabilized to better than 0.25%, but the energy
variation within one bunch is still 0.25%, then the inten-
sity fluctuation between pulses would be reduced, and the
energy per pulse would be stabilized around a certain
average value between 0.75 and 1.55 mJ for a pulse length
of 10 psec. The FWHM energy detuning range for this
example and the two previous samples for the ATF gun
parameters are listed in Table 1.

We have given a description of the principles and cal-
culation of a subharmonically seeded single-pass uv FEL.
However, there are still many questions to be addressed
before a more detailed design can be carried out. The re-
quirement on the tolerances of the wiggler errors is under
study. Using a one-dimensional analytical method [16],
we have studied the gain reduction due to longitudinal
phase shift caused by wiggler field amplitude error. The
analysis shows that in the exponential regime, the rms
random phase shift per wiggler period times the square
root of the number of period within one gain length
determines whether this effect is important. Therefore,
when gain length is small, the tolerances on the ampli-
tude error of the wiggler field are relaxed. It also shows
that the effects caused by the transverse steering of
wiggler error are more critical than the amplitude error.
However, steering error can be corrected by trim dipole
magnets. Detailed numerical simulation of both longitu-
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dinal and transverse effects due to wiggler errors is in
progress. A quantitative calculation of the higher har-
monics in the second wiggler, which coexist with the fun-
damental wavelength (100 nm), should be carried out in
the future to justify our neglect of them.

In the exponential section, the fundamental mode
gradually dominates other modes, so that before tapering
the radiation has evolved into single mode, and the beam
profile becomes constant (optical guiding). However, in
the tapered section, the growth rate becomes smaller, so
diffraction starts to increase the radiation beam size.
How this influences the transverse coherence of the out-
put radiation is a question worth further study. Other
questions to be addressed include: a more detailed simu-
lation of the dispersion section, analysis of the correction
magnets to eliminate steering errors, and an analysis of
the effect of wake fields in the vacuum chamber.
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APPENDIX A: ONE-DIMENSIONAL
ANALYTICAL ANALYSIS
OF SUBHARMONICALLY SEEDED HIGH-GAIN FEL

For a detailed formulation of high-gain FEL theory,
we refer to one of our earlier papers [15]. With slight
modifications to consider a planar wiggler, instead of hel-
ical wiggler, we will use the formulation in Ref. [15] to
derive the formulas for our one-dimensional analysis of
the subharmonically seeded FEL. We start from the
Vlasov-Maxwell equations. Let E(z,z) be the slowly
varying envelope function of the electric field:

6 =3XE cos(k,z—aw,t) (A1)

where X is the unit vector. The electron distribution
function is also expressed by the slowly varying envelope

flr,0)=F(r,9,7)eY+c.c. , (A2)

where 7=k, z, and ¥=(k,+k, )z —w,t corresponding to
the ¢; defined by Eq. (2.21). For simplicity, we neglect
the subscript “2” for the wave numbers and the frequen-
cy in these formulas, which refers to the second wiggler.

Equations (7.2) and (7.3) of the Ref. [15], the Vlasov-
Maxwell equations, can be written as



S

98,3 |n_ dy
+a¢ED,fyF (A3)
3 Y~ %Yo | 3 1 9fo
—4+2—— | —+i| |F=D,———E, (A4
or Yo |0¥ 2y oy
where
n ec"aw
D1=%“[JJ] : (AS5)
D,=— 2w [JJ 6
2= 2V amek 1, (A6)

with u, the vacuum magnetic permeability. The initial
electron distribution function f,, as explained in Ref.
[15], is assumed to be monoenergetic and uniform
fo=08(y —v,). The constants D, and D, are related to
the Pierce parameter p by

(2p)*=2D,D, /v} . (A7)

Because we are considering the one-dimensional problem,
the transverse Laplacian in Egs. (7.2) and (7.3) of Ref.
[15] is dropped.

We introduce the Fourier transform over 3

E(rg)=[" dye E(r,y), (A8)
Fryig)= [ dype Fry,7) (A9)
and the Laplace transform over 7,
E(Q,q)= [ "dre'VE(rq), (A10)
F(Y;Q,q):fowdrem’F’(T,Y;q), (A11)

where Im{) is positive and large enough to guarantee
convergence of the integral over 7. Applying the
Fourier-Laplace transform to Egs. (A3) and (A4) yields

(—iﬂ+iq)E_=D1fdy~71/—F+E(7'=0), (A12)
— _ a _ _
—io+i2Y " (149) |F=D, L P E L F(r=0) .
Yo vy 9y
(A13)

We assume the initial value of the radiation field E =0,
and the initial energy-density modulation is mono-
chromatic, with the wavelength resonant to the second
wiggler, i.e., we take the detuning of the coherently gen-
erated radiation ¢ =06w/w=0, hence all the Fourier-
transformed functions E and F are proportional to 8(g).
If the energy modulation is much smaller than the Pierce
parameter p, then we can show that in Eq. (A13), Q is the
same order of magnitude as p, and the energy deviation
term (Y —v,) /¥ is much smaller than the other term, so
it can be neglected. Now Eq. (A13) is used to solve for F
and substituted into Eq. (A12) to solve for E. The solu-
tion for E is then inverse Laplace transformed to calcu-
late the Fourier transform E at position 7:

E(ng)=[""" a0

— o +is

TiMEQ,q) , (A14)
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where s is a sufficiently large positive number such that
the integration path is above all the singular points of
E(Q,q). The integral can be carried out around the poles
in the complex Q plane. Using the fact that f, is a §
function and the initial value of F has very small energy
modulation around y,, these poles are found to be the
three roots of the well-known cubic equation for the
high-gain FEL:

Q*—q0*—(2p)*=0. (A15)

Then all the integrals involved in this solution can be
carried out yielding

Dl 3 *iﬂ.j‘r _
E(r,q)="7— [dyFr=0,9), (Al6)
370 j=1 j
and the inverse Fourier transform yields the field
D —10 T
E(T)—— 2 [ dy F(r=0) . (A17)
Yo f=1 J

Since the detuning g is zero, and the Fourier coefficients
are all proportional to 8(q),E is independent of ¥, and
Q;=2pexp[j(i2m/3)], j=1,3, are the roots of the cubic
equations Eq. (A15) with ¢ =0. Examining Eq. (A2), we
can write

[dy F=[dy fe~=(e"""), (A18)
where
¢j=(ksz+kw2)z“a)sztj (A19)

is the phase of the particle j at the entrance of the second
wiggler with ¢ ; the time of arrival, and the angular brack-
et is an average over one period of the phase. Now let 6;
be the phase referenced to the first wiggler, but also at the
entrance of the second wiggler, with the same z and L,

6, =k +ky)z—out; , (A20)
we have
¥ =—20,+0,=n0;+0, , (A21)
sl

where 0, is independent of the index j. Therefore we
have

’fdyF‘=|(e_w’)|
=l<e—in6j)|

a6
dy

2.2

nay

do l
=exp

Ayd

(A22)

which is the bunching factor in Eq. (3.6). Thus we ob-
tained the field as a function of the wiggler distance
T=pk,z:
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2
D, do
|E(T)|=——exp | —in20? |-
370 T dy
de 3 e—iﬂjr
xJ, [nay 221l s (A23)
g dy i=1 Q;

Finally, it is useful to calculate the asymptotic limits in
the exponential growth regime pk,z >>1 and the super-
radiance regime pk,z <<1. We use the relation

kS
D,|E|=—"a,[J] ]a, (A24)

kw
to convert the electric-field strength E to the rms dimen-

sionless vector potential a;, and use 7=k z to derive the
results Eq. (3.8) and (3.9).

APPENDIX B: ANALYTICAL ESTIMATE
OF SATURATION AND THE OUTPUT POWER
OF THE TAPERED SECTION

To estimate starting position of the tapered section, we
need to estimate the saturation of the exponential
growth. It is well known that in the small-gain regime,
the longitudinal equations of motion of the electrons Eq.
(2.1) and (2.2) are the pendulum equations with a pendu-
lum frequency

kS asaw
k, 2

Q=2 1, (B1)

w

if we use the variable k,z as “‘time.” In the small-gain re-
gime, a; is nearly a constant, and so is {2, hence the elec-
trons follow approximately the pendulum equations, and
rotate in the buckets with frequency ;. However, in the
exponential regime, a,, and ), increase exponentially, be-
fore the electrons rotate a significant angle in the bucket,
and bucket height has increased so much that the rota-
tion in the bucket is negligible. If we use Im(u) to
represent the growth rate, and the radiation field a; is
proportional to exp( —ipk,z), then the condition for ex-
ponential growth is QO <<Im(u). It is easy to recognize
that Im(u) is related to the power gain length L, by
Im(u)=1/(2k,Ly). When ( increases to be compara-
ble to Im(u), the electrons start to rotate significantly in
the bucket and the growth rate starts to decrease and
reach saturation. The position of saturation is not a pre-
cisely defined position and we define the saturation condi-
tion to be when the ratio 1}, /Im(p )=« reaches a certain
number of an order of magnitude of 1.

To estimate the radiation power, we relate it to the
synchrotron rotation frequency ,. The energy loss of
the electron beam is converted to the radiation energy. It
is proportional to a2, and hence proportional to Q¢. Us-
ing energy conservation we find the average fractional en-
ergy loss:

<y—70>= o5
Yo (4p)?

where p is the Pierce parameter defined by (3.1). In one-
dimensional theory, for zero initial energy spread, near

’ (B2)
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saturation the fractional energy loss is empirically found
to be equal to p [13]. To generalize this, we define the
saturation condition as

Q,=aIm(u)=v88/3Im(u)~1.6 Im(u) . (B3)

For the one-dimensional case with zero energy spread we
have Im(u)=V'3p [13]; inserting this into (B3), we can
verify that the fractional energy loss is equal to p.

Now, as an example, we estimate the saturation power
for the 100-nm seeded FEL (see Sec. II C). Whether our
system can be described by one-dimensional theory is
determined by a quantity @ =2pV/ 2k, k, R, [15], which
is a scaled electron-beam size and is related to the ratio of
Rayleigh range of a radiation beam with waist equal to
the electron-beam size, over the gain length calculated by
1D theory. In our example, @ ~3.5 is moderately larger
than 1, and 1D theory provides a reasonably good esti-
mate. Using Lg=1.1 m and p=1.29X10" 7%, we find
Im(u)=~0.98p. Then (B3) yields Q;=1.6p and (B2) yields
the fractional energy loss 0.1p. Hence the saturation
power is estimated from the electron-beam power P,:

P,.=0.1pP,=0.1X(1.29X1073) X250 MV

X100 A=3.2 MW . (B4)

The wiggler length required to reach saturation is then
obtained from the following formula, derived for one-
dimensional approximation:

pP=1p. ez/LG

— 94 input (BS)
When L is accurate, this formula is a good approxima-
tion if the input laser focusing is optimized. Substituting
Pipt =700 W and P=P, ~3.2 MW into (BS5), we
find the exponential growth section length is
L=10.6L;~=11.7m.

Next, let us estimate the output power of the tapered
section. Using the 1D formula Eq. (4.31) of the Ref. [17],
given by Kroll, Morton, and Rosenbluth, assuming the
resonance phase ¥, to be constant and the energy extrac-
tion is only a very small fraction of the electron beam, we
derived approximately
2

(ftrap [JJ ]Sinl/’r )2

Z, 2

out 277_

Nw )\'S PE

_€
2
Ry

mc

(B6)

where N, is the number of periods of the tapered section,
and fy,, is the fraction of the number of electrons
trapped in the bucket. In our example, the Rayleigh
range of a Gaussian radiation beam with waist equal to
the electron-beam radius R;=0.3 mm is k,R2/2=2.8
m. If the tapered section is 10 m long, as an estimate we
can ignore the diffraction and use the 1D formula. As-
suming 50% trapping, and siny, =0.5, we have

2

NyA P [JT] B7)

~1.4x10" 1
R,

p

out

where the electron-beam power P, is in units of watts.
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For a 10-m tapered section with A, =1.75 cm, N, =571,
and using the parameters given in Sec. II B, R;=0.3 mm,
P,=250 MV X100 A=25 GW, and A=10"" m, we ob-
tained [JJ]=0.81 and P_,, =210 MW.

In summary, using analytic estimate, we have found
that the wiggler should have an 11.7-m exponential
growth section and a 10-m tapered section for the 100-nm
seeded FEL. Using ATF gun parameters, the estimated
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saturation power is 3.2 MW, and the estimated output
power is 210 MW. This is to be compared with the simu-
lation for a 21-m wiggler, the optimized tapering starting
position is at 11 m, with saturation at 3.2 MW and the
output power 160 MW. Considering the rough nature of
the analytic estimate, agreement of the output power is
good. Analytic estimates are very useful in considering
preliminary FEL designs.
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