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Four-wave mixing in plasmas using ponderomotive and thermal nonlinearities has been extensively
studied. Plasmas have received considerable attention since they become more efficient four-wave-
mixing and phase-conjugation media at longer wavelengths (far infrared, 10 pm, to radio wave,
10 m). In this paper, the prospect of using an jonization nonlinearity in weakly ionized plasmas for
degenerate four-wave mixing and phase conjugation is discussed. Like the thermal pressure nonlin-
earity, the ionization nonlinearity results from the heating of the plasma by the beat wave. However,
as the local temperature increases, more neutral species are ionized by electron-impact ionization to
form a beat-wave grating structure; instead of pushing the electrons into a grating structure (as with
the thermal and ponderomotive nonlinearities), the electron density grating is created directly by
jonization. Numerical estimates of the phase-conjugate reflectivity indicate reflectivities in the range
of 107*-10"2 are possible in a weakly ionized steady-state gas-discharge plasma. The reflectivity is
limited to this range due to the onset of an ionization instability (striations). Larger reflectivities
may be possible for pulsed plasma sources.
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I. INTRODUCTION

Recently, four-wave mixing (FWM) in plasmas using
ponderomotive and thermal nonlinearities has been ex-
tensively studied [1-8]. Plasmas have received consider-
able attention since they become more efficient four-wave
mixing and phase conjugation media at longer wave-
lengths (far infrared, 10 um to radio wave 10 m). Phase
conjugation (PC) may be simply defined as a process
which reflects an incident light wave in a time-reversed
manner [9, 10]. Four-wave mixing is one possible method
of phase conjugation. Although FWM, using various
nonlinear media, has many practical applications in the
visible to infrared region of the electromagnetic spec-
trum (e.g., dispersion compensation, cavity resonators,
and image processing), viable nonlinear media for FWM
at wavelengths longer than 10 um have not been fully
developed. (Artificial Kerr mediums (AKM) are another
possible long-wavelength (1 ¢cm) optical medium [11-14].
However, typical response times of AKM are slow (~ 60
sec).) The major contribution of this paper is the iden-
tification and study of a new FWM mechanism in plas-
mas, the ionization nonlinearity, which may be exploited
for long-wavelength FWM and phase-conjugation appli-
cations.

Physically, FWM in a plasma may be viewed as
Bragg scattering of an electromagnetic (EM) wave from
a plasma density modulation or grating. The low-
frequency density modulation (beat-wave grating) is
formed by the coupling (mixing) of two other electromag-
netic waves via some plasma nonlinearity. An EM wave
scatters from the density modulation grating to produce
a scattered fourth EM wave.

Using the ponderomotive force as the plasma nonlin-
earity which couples EM waves in the plasma, Steel and
Lam [1] first suggested collisionless plasmas as a viable
degenerate four-wave mixing (DFWM) and PC medium
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for the infrared to microwave wavelength regime. Several
authors [15, 5, 16, 17] have derived the four-wave mixing
plasma response utilizing a collisionless fluid or Vlasov
description of the plasma. Recent experiments [16] have
demonstrated FWM and resonant FWM in collisionless
plasmas.

For collisional plasmas, where the collisional absorp-
tion of the electromagnetic waves is small and the colli-
sional mean-free path is shorter than the nonlinear den-
sity grating scale length (beat-wave wavelength), Federici
and Mansfield [3, 4] have demonstrated that collisional
heating generates a thermal force which substantially en-
hances the phase conjugate reflectivity over the pondero-
motive value. DFWM and PC using thermal nonlinearity
has recently been demonstrated using 10.6-um light [6].

In this paper, the prospect of using a novel ioniza-
tion nonlinearity in weakly ionized plasmas for degener-
ate four-wave mixing and phase conjugation is discussed.
Like the thermal pressure nonlinearity [3, 4], the ioniza-
tion nonlinearity results from the heating of the plasma
by the beat wave. However, as the local temperature
increases, more neutral species are ionized by electron-
impact ionization to form a beat-wave grating structure;
instead of pushing the electrons into a grating structure
(as with the thermal and ponderomotive nonlinearities),
the electron density grating is created directly by ioniza-
tion.

For simplicity, our theory assumes that the dominant
ionization-recombination processes are electron-impact
ionization, three-body recombination, and recombina-
tion at the plasma boundary. Photoionization processes
are neglected. Certainly, there are plasma parameter
regimes (i.e., the ionospheric plasma, or high-density
laser produced plasmas) where other processes, such as
photoionization, might become important. The plasma
conditions considered in this paper are similar to those
found in steady-state gas-discharge plasmas {18, 19]. We
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focus on this parameter regime since steady-state dis-
charge plasmas can exhibit ionization instabilities or
“striations” whose mechanism is analogous to the ion-
ization nonlinearity of FWM. One would expect, there-
fore, that these plasmas would exhibit a strong ioniza-
tion nonlinearity. As will be discussed later in Sec. V,
steady-state discharges might not be the optimum plas-
mas for high phase-conjugate reflectivity in all parameter
regimes. However, these plasmas serve as an example of
the physics of the ionization nonlinearity.

The theory presented here applies to DFWM using
electromagnetic wavelengths ranging from 10 gm to 1 cm.
The corresponding electron density range is 10'3 to
1017 ¢cm~3 with typical electron temperatures of 1 eV.
The fraction of ionization typically falls in the 1-10%
range. Numerical estimates of the phase conjugate reflec-
tivity indicate reflectivities in the range of 10~*—10~2 are
possible in a weakly ionized steady-state gas-discharge
plasma. The reflectivity is limited to this range due to
the onset of an ionization instability (striations). Larger
reflectivities may be possible for pulsed plasma sources.

A. Simple derivation of x(®

In Secs. III and IV, a detailed derivation of the four-
wave-mixing plasma response, which utilizes an asymp-
totic expansion for the nonlinear polarizability, nonlinear
current density, and plasma fluid variables, in powers of
the electromagnetic electric field amplitude, is presented.
In this section, a simplified derivation of x(®) for ioniza-
tion nonlinearities is discussed.

The coupling of the electromagnetic waves in four-wave
mixing can be described via a nonlinear polarizability
of the medium. For plasmas, the nonlinear polariza-
tion may also be interpreted as a nonlinear current since
OP/8t ~ J. Generically, the nonlinear polarization of a
medium may be written as [9, 10]

P; = X.(})Ej + XﬁszjEk + Xf?z)czEjEkEl +-0 (D)

where summation over repeated indices is implied, F;
represents the ith electric-field component of the total
electromagnetic field (V - E = 0; no electrostatic wave),
and P represents the EM polarizability of the medium.
The order of the nonlinearity is determined by the factor
of electric-field amplitudes. This convention of counting
EM amplitudes is different from other conventions where
the order of the interaction is defined by the number of
normal modes, including electrostatic modes (eg., plasma
511 ) term of
Eq. (1) enters the linear dispersion relation. The Xff,)c
term represents second-order nonlinearities since it cou-

wave, sound waves), in the interaction. The x

ples two EM amplitudes. The xsz,)c term is nonzero only

in a material which lacks inversion symmetry [9], such
as a crystal with a preferred direction or a magnetized
plasma. The xg?,)d term represents the coupling of three
EM amplitudes.

In this paper, we are interested in the FWM compo-
nents of the xg.sl)c, matrix. However, we note that ioniza-
tion nonlinearities may also play a role in other third-
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order nonlinearities such as self-focusing. As discussed
in Sec. III and shown in Ref. [4], the dominant FWM
components of x(®) may be calculated using the nonlin-
ear current density J3 = —en§v§{ (since OP/dt ~ J),
where v{ is the electron “quiver” velocity of an electron
in an electromagnetic field and n§ is the beat-wave elec-
tron density response analogous to the density grating of
Bragg scattering. The nonlinear current represents the
scattering of an EM wave from the Bragg grating to drive
the fourth EM wave.

The general phase-matching conditions for four-wave
mixing are

ky, +ks = ks +ky, wp+w, =wy+ws. (2)

These relations may be simply understood as conserva-
tion of momentum and energy in the wave interaction.
In the above expression, the forward pump, backward
pump, probe, and scattered wave are denoted by sub-
scripts f,b,p,s as in Fig. 1. (Occasionally, the subscript
¢ is used in place of s to identify the “scattered” wave
with the phase-conjugate wave.) In this paper, we con-
sider the pump beams to be of comparable intensity. For
unequal intensities, see Refs. [8, 20]. Moreover, we only
consider the weak-signal regime (phase-conjugate reflec-
tivity less than unity). All the electromagnetic frequen-
cies are positive; the direction of wave propagation is
given by the direction of the wave vector. For DFWM,
the frequency-phase-matching condition is satisfied since
all of the frequencies are identical. If the pump beams
were antiparallel, then k; + k; = 0, k, = —k;,, and a
phase conjugate signal of the probe would be produced.

Consider a simple heuristic estimate of the ionization
nonlinearity beat-wave electron density response for a
weakly ionized plasma which is close to Saha equilib-
rium. In the plasma, electron-impact ionization of neu-
tral atoms is assumed to nearly balance three-body re-
combination [21]. In this limit, the electron density has
the form n, ~ Ngexp(—Iy/Tp), where I is the ioniza-
tion potential of the neutral gas, T is the electron tem-
perature, and Io/To > 1. Using the beat wave of the
probe wave and one of the pump waves to locally heat
the plasma, the resultant density variation would be ap-
proximately

Nonlinear Medium
x®#0

Wb
—~7 7
wf
8
wp
ws
FIG.1. Degenerate four-wave-mixing geometry. The sub-

scripts f, b, p, s refer to the forward pump, backward pump,
probe, and signal wave, respectively.
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The normalized density fluctuations are much larger than
the temperature fluctuations due to the exponential tem-
perature dependance. For the thermal pressure nonlin-
earity (Refs. [4, 3]), the corresponding balance between
density and temperature is én./n. ~ —86T5/Tp (due to
the constant electron pressure P, = N.Tp). Conse-
quently, ionization nonlinearities are stronger than ther-
mal force nonlinearities by a factor of Io/Tp.

Returning to the estimation of the ionization beat-
wave amplitude, the temperature fluctuation amplitude
is limited by the dominant energy-loss process. For
typical situations discussed in this paper, electron ther-
mal conduction is the dominant energy-loss mechanism
so that the temperature fluctuation is determined from
QBw =~ k°V?2T, to be

§T.  Qsw _No
T. = NoTp Icek',z,m

where k€ is the electron thermal conduction, @Qpw is the
power deposited per unit volume in the plasma due to
the beat-wave heating, and k,,, is the beat-wave wave
number. The beat-wave heating has the form

QRBw ~ M No(Vei + Vea) vy vy

where v; (m) is the quiver velocity of an electron in
the probe (pump) electric field, m, is the electron mass,
Ny is the electron density, ve; (Veq) is the electron-ion
(electron—neutral-species) collision frequency. The beat-
wave amplitude is approximately

one  To Qsw _No
Ne - T() N()T() K,ek?nn'

As noted previously, this is a factor of Iy/Ty larger than
the thermal force nonlinearity.

The Bragg reflection coefficient may be approximated
as [22]

R:-I-"—z
I

27w

2
—c—x(3>E,E,, L?

_E;Ey (mén, No L\?
T E2 \2NoN.X )’

where I, (Ip) is the intensity of the scattered (probe)
wave, E; (b, p, s) is the magnitude of the forward pump
electric field, L is the interaction length of the FWM
process, w is the EM frequency, ¢ is the speed of light,
A is the EM wavelength, and N, is the critical density
at frequency w. The FWM x{® may be shown to be
approximately

ebn vs
X&)~ —— 1
wEEyE,
B. Analogy with semiconductors and striations

Semiconductors exhibit an analogous “ionization non-
linearity” for FWM [23]. In semiconductors, the coupled
pump and probe waves generate a large concentration of
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free carriers (electron-hole plasma) by optically inducing
transitions of electrons between the valance and conduc-
tion bands. For laser wavelengths near a semiconductor
band gap, the electron-hole plasma is generated by sin-
gle photon absorption [23-25]. For laser frequencies far
from a band-gap resonance, the electron-hole plasma is
generated by multiphoton absorption processes [26].

The major differences between ionization nonlinear-
ities in semiconductors and in plasmas are the physi-
cal mechanisms for the generation of the plasma and
the maintenance of the ionization balance. For long-
wavelength (infrared to centimeter waves) phase conju-
gation in plasmas, neutral species are predominantly ion-
ized by electron impact ionization rather than by photo-
ionization. In principle, ionization mechanisms other
than electron-impact may be important for plasmas. For
example, multiphoton or single photon photoionization
processes may become important if the EM field inten-
sity is strong enough or if the photon energy is compa-
rable to an ionization potential. This paper, however,
will focus plasmas in which electron-impact ionization,
three-body recombination, and wall recombination are
the dominant processes. It is assumed that the electron-
impact ionization rate is larger than the photoionization
rate (SN, > vpn).

The nonlinear mechanism which generates the ioniza-
tion grating for FWM is similar to the mechanism for ion-
ization instability-driven electron-density waves in gas-
discharge plasmas. These waves are also called striations
or ionization waves [19, 27, 18, 28, 29]. Striations exist
in discharge plasmas under various plasma and discharge
conditions [19]. The striations consist of layers of al-
ternating high and low electron density. Striations may
be either quasineutral [18] or space charge [19, 27, 28]
waves depending on the current, type of gas, gas pres-
sure, etc. Striations also may be produced in optical
discharges [30-32] (commonly called laser sparks). The
mechanism for “optical striations” is similar to the mech-
anism for discharge plasma striations. Not only are ion-
ization waves and striations in plasmas of interest since
their mechanism is similar to that of FWM, but they are
also of interest since the formation of striations may af-
fect the plasma equilibrium as discussed in Sec. V. In this
paper, we focus on the plasma parameter regime which
is typical for striations in gas discharges.

This paper is organized as follows: Section III de-
scribes the perturbative expansion which is used to cal-
culate the four-wave mixing in the plasma. Section II de-
scribes the equilibrium conditions and fundamental pa-
rameters. Section III derives and solves the beat-wave
equations for the electron density response. Estimated
phase-conjugate reflectivities for typical plasma param-
eters are present in Sec. IV. The stability of the equi-
librium plasma is discussed in Sec. V. Conclusions are
presented in Sec. VI.

II. EQUILIBRIUM CONDITIONS
AND STARTING EQUATIONS

Following the analogy of the ionization nonlinearity to
the ionization instabilities in striations, we choose plasma
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conditions and geometries which are typical for gas dis-
charges. Consider a FWM geometry as in Fig. 2 for a
partially ionized plasma. The boundaries denoted by the
hash marks may be physical boundaries, such as a wall,
or some other boundary, such as un-ionized gas. The
plasma is assumed to be infinite in the Z (or parallel)
direction. The plasma is cylindrically symmetric with a
radius a. A constant current Jy in the Z direction joule
heats the plasma. The pump beams are counter propa-
gating along the Z axis with the probe intersecting the
axis at angle #. Furthermore, the electromagnetic wave-
length X\ as well as the beat-wave wavelength are assumed
to be small compared to the physical dimensions of the
plasma (ka = 2wra/A > 1 and kpnna > 1). By virtue of
kmna > 1, we may further assume that the EM waves in-
teract near the center of the discharge, in a homogeneous
portion of the plasma. In this region of the plasma, con-
tributions of equilibrium radial gradients to the plasma
beat-wave equations may be neglected.

For simplicity, the electron-impact ionization rate
(SN,) is assumed to be large compared to the photoion-
ization rate (SNg >> vph) so that multiphoton ioniza-
tion may be ignored. The effects of radiative losses on
the ionization and energy balance are also ignored [4].
The dominant ionization and recombination mechanisms
are electron-impact ionization, three-body recombina-
tion, and wall recombination. This paper, therefore, only
considers plasmas which are in Saha balance (i.e., a range
of possible equilibrium electron densities for which radia-
tive recombination is small). We may estimate the den-
sity and temperature ranges for which the radiative re-
combination rate [33] a, N; ~ 2.7 x 10_13T:1/2Ne sec™?!
is negligible compared to the electron-impact ionization
rate SN, [Eq. (28)] and the three-body recombination
rate [34] SN2 ~ 8.75 x 10~23T;/? sec=! . The density
and temperature inequalities are

5 x 10'2(SN,)TH? > N, > 3.1 x 10'3T%. (3)
1
AN;
50tV (Nivi) =Gj,
3 dT;

"N""_J+Pjv‘vj=“V‘Qj+Qcollj+Qlaserj+J'

277 dt

where the subscript j refers to electrons, ions, or neu-
trals, and N;,v;, P;, and T are the fluid density, velocity,
pressure, and temperature, respectively. E,q;, Qiaser j,
Qcon j, J - E, and Gj are the electric field, heat flux, laser,
collisional, heat flux, laser, collisional, and joule heating
terms, and rate of plasma plasma production due to ion-
ization changes, respectively. The G term in the energy
equation accounts for the changes in fluid energy due
to ionization processes. The pressures are P; = N;Tj.
The external heating term represents heating by the laser
beams. In the equilibrium equations, this term represents
bulk heating of the plasma by the laser beams, while in
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FIG. 2. FWM and plasma geometry for FWM in partially
ionized plasma. .

In equilibrium, all of the species are assumed to have
the same temperature Tp. The equilibrium electron and
ion densities are equal (Ng) and much smaller than the
neutral atom density N,. A necessary condition for
No/N, < 1 is that the ionization energy for the neutral
species (Ip) be much larger than the plasma tempera-
ture (Iy/To > 1). As a further simplification, the role
of metastables in the ionization balance is ignored. Un-
doubtedly, there are many plasmas for which metastable
neutrals would play a significant role [18, 28]. However,
their potential roles in the ionization balance—such as in
stepwise ionization—are beyond the scope of this paper.

The model fluid continuity and energy equations for
the electrons’, ions’, and neutral species’ equilibria and
for their beat-wave responses are

(4)

E - G; I, (5)

the beat-wave equations, it represents the laser heating
on the beat-wave scale length. The ponderomotive term
is not included in the momentum equation since thermal
and ionization forces are expected to dominate in colli-
sional plasmas.

Following the analogy with gas discharges, a general-
ized Ohm’s Law [4] will be used to model the electron and
ion momenta. The fundamental assumptions are that the
collision frequencies are so large that the inertial terms in
the momentum equations may be neglected and that the
neutral velocity may be neglected compared to the elec-
tron velocity since momentum is transferred to the neu-
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trals only through collisions ( there are many more neu-
trals than electrons). The loss or gain in momentum as
plasma is created or destroyed is neglected as described in
Ref. [4]. As stated previously, it is assumed that the EM
waves interact in the center of the plasma where equilib-
rium radial gradients are weak and can be ignored. For-
mally, the radial gradients are neglected since kpna > 1.
The electron and ion momentum equations may be writ-
ten in the form [4]

_ V(N.T.)
Ve — ‘_be (E + CNe ) ) (6)
Vei + Vea V(Nsz) Ves V(NeTe)
Vi=b(E- - e )
: < Vea eN, Vea eN,

(7)

where b, = e/me(Vei + Vea) is the electron mobility,
bi = (e/mivia)[Vea/(Vei +Vea)] is the ion mobility, be > b;
by virtue of the mass ratio, and it is understood that
the equilibrium radial components of the velocities and
electric field have been eliminated ( interaction in spa-
tially homogenous region of plasma) and V now refers
to the gradients in the beat-wave (perturbed) quantities.
The collision frequency for momentum exchange between
electrons (ions) and neutrals is veq (¥ig). In the limit of
T; — 0 and vei/vea — 0, Egs. (6) and (7) reduce to the
Ohm’s law equations which describe axial striations in a
gas discharge [18].

The equilibrium equations are determined using
Egs. (4)—(7), and V(P + P; + P,) = 0 with §/8t — 0
(equilibrium plasma stationary in time). The electrons
and ions move together (ambipolar diffusion v§ = v ) in
the perpendicular direction (no perpendicular current).
By symmetry, all of the equilibrium densities, velocities,
etc., are independent of z.

For the purposes of this paper, the radial variations
in the equilibrium profiles may be included in both the
equilibrium and beat-wave equations using model terms.
This practice is commonly followed in the literature
on gas-discharge striations (See Ref. [18] and references
therein. More detailed calculations of the radial profiles
may be found in Refs. [35,18]). Since the purpose of this
paper is to study the basic physics of DFWM using ion-
ization nonlinearities, model radial loss terms will be em-
ployed wherever applicable. With these simplifications,
the equilibrium electron continuity equation becomes

VL(N§V§L) = Go = NGNS — (Ng)*B. (8)

The electron continuity equation illustrates that any
net production of plasma from electron-impact ioniza-
tion and three-body recombination is balanced by parti-
cle flow to the boundary where the plasma recombines.
There are two obvious limits of Eq. (8): When there is
a local ionization balance (also termed “volume recom-
bination” in the literature) electron-impact ionization
and three-body recombination nearly balance each other
(N.N,S ~ N2pB). In the opposite limit, which is typ-
ically assumed for gas discharges, the diffusion/wall re-
combination term dominates three-body recombination.
This paper will consider both regimes. However, as will
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be shown later, the wall-recombination plasma regime is
not conducive to high phase-conjugate reflectivities.

The parallel equilibrium Ohm’s law from Egs. (6) and
(7) is Jo = CN()(V,'() — Veo) = CNo(be + bi)Eg, The
equilibrium electron energy equation is

PV, Ve=-V1-qe+Jo-Eo+Q0 1aser +Q0 co —Glp.
9)

The joule and laser heating predominantly heat the elec-
trons, rather than the ions and neutrals, by virtue of the
mass ratio. As discussed previously, in the interest of
simplifying the analysis, we take the equilibrium equa-
tion to have the form

JoEo + Qo 1aser = NeH, (10)
where N.H is the phenomenological energy-loss rate to
the wall. In our model, the joule and laser heating are
balanced predominantly by the heat loss to the boundary
(which scales as D, NoTp/a? where D, = b,To/eNp is the
electron diffusion coefficient).

The stability of the equilibrium is considered in Sec. V.
For a steady-state gas discharge, as will be discussed
later, stability considerations impose a maximum pump
wave intensity which therefore limit the attainable reflec-
tivities to the 10~* range. However, high reflectivities
may be possible in pulsed plasma sources.

The beat-wave response is determined by linearizing
[36] Egs. (4)—(7), and representing the beat-wave heat-
ing term as an external heating term. The perturbative
expansion of the fluid equations and resulting beat-wave
plasma response is considered in Sec. III.

III. PERTURBATIVE EXPANSION
AND BEAT-WAVE EQUATIONS

Following the procedure outlined in Refs. [4] and [3],
we calculate the coupling coefficient x(® and the phase-
conjugate reflectivity for the FWM interaction using a
perturbative expansion for the fluid variables in powers
of the electromagnetic field. By representing the pump,
probe, and conjugate EM waves as

E, = %[ E,, exp(ik, - r — iw,t)

+E}, exp(—ik}, - r + iw,t)],

where * denotes complex conjugate, it may be shown that
in an isotropic medium (e.g., an unmagnetized plasma)
the phenomenological form of the conjugate wave’s FWM
nonlinear polarizability is [10]

P. = x{)(E; -E})E; + XS (Ey - E})E;. (11)
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The x(® nonlinearity is calculated using perturbation
theory and expanding the polarizability Egs. (1) and
(11); or equivalently the current, in powers of the EM
electric field. The polarizability is related to the nonlin-
ear current by 0P /8t = J. The dominant contribution to
the nonlinear current may be shown to be J3 = —en§v¢
where n§ is the beat-wave electron density response and
v{ is the electron “quiver” velocity eE/mw in the EM
wave [4].

In order to calculate the nonlinear current, two sets
of fluid equations are required for the two distinct time
scales: the fast electromagnetic time scale which gives v§
and the slow beat-wave time scale which gives n§. The
velocity and density responses v{ and n$ are calculated by
perturbatively expanding the densities, velocities, elec-
tric field, etc. of the plasma fluid equations in powers of
the EM electric field. All first-order terms oscillate on
the EM time scale while the second-order terms evolve
on the slow time scale:

E;, = [E1n exp(ikn - r — iwnt) + Ef,, exp(—ik}, - r + iwnt)],

where k,, =k, + iaﬁ,“,a is the absorption coefficient
in Eq. (14), wy, is the wave frequency (positive definite),
k, is the wave vector (choosing k defines the direction
of propagation), and n refers to the forward pump, back-
ward pump, or the probe wave. The effective collision fre-
quency [37] and adsorption coefficient are approximately

(4]

w2 l/hf w2 -1/2
— _pe pe
Ty (1 - '::z‘) ’ (1)
Vei + Vea
vhy = == (15)
4/2mNoe*In A
Vei =~ (16)

3y/me(Te)3/2

where v, is the electron-neutral collision frequency as
defined in Sec. IV. In the above equations, T, is in
units of ergs and In A is the Coulomb logarithm [38].
Furthermore, the frequency and wave vector of each of
the electromagnetic waves satisfies the dispersion relation
wi =wl, + ki

A simple linearization of fluid equations [4, 3] governing
the EM oscillations for the electrons yields

1 . .
vi= -§vfn exp(tkp - X — dwnt) + c.c. (17)
J
on$ 7] o]
C;‘*’ +VE, - Vng+ NoV - v = (51%@ +—a—1—%T§ +
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N = No + ny(kn,wp) + n2(kmn, wmn),
V =0+ Vi(kn,wn) + Va(kmn,wmn),
E =0+ Ey(kn,wn) + E2(kmn,wmn),
T =To + Ti(kn,wn) + To(kmn,wmn),

where wWmp = wm — Wn, kmn = km — k, are the
beat-wave frequency and wave number, respectively.
In the expansion, kmnAdi,kmnAmsp, and ve/w, (or
equivalently A, v;e /Amspc) are assumed to be small where
Adi, Amygp, and v,; are the ion Debye length, electron
mean-free-path, and electron-ion collision frequency, re-
spectively. The parameter v,;/wn, < 1 implies that the
collisional damping of the EM waves is weak. E; is
the imposed laser beam electric field and F5 is the self-
consistent plasma electric field determined by ambipolar
constraints. The zeroth-order density and temperature
are assumed constant. The probe, pump, and signal elec-
tric fields are approximated as plane waves

(12)

(13)

e _ —ZCEln
Vin =
Mewn

(18)

where v{,, is the well-known quiver velocity of an electron
in an EM field.

The low-frequency, second-order electron density beat-
wave response n§ is calculated from the linearization of
Egs. (4)—(7). However, the equations for the beat-wave
response of the plasma are significantly simplified by us-
ing phenomenological radial loss terms in the continuity
and energy equations as well as exploiting 1/(kmna) < 1
where a is the radius of the plasma. (One scenario which
is being ignored here is FWM in a waveguide. In a wave-
guide, the electromagnetic wavelength is comparable to
the waveguide dimension.)

The radial loss term is particularly useful in the conti-
nuity equation [Eq.(4)]:

on
ot
#= SN, — BN} — D,/a?,

NQE-:

£+ V- (neve), (19)

(20)

where D, = 2b;7o/e Ny is the ambipolar diffusion coeffi-
cient. The function Z models the three dominant ioniza-
tion/recombination mechanisms: electron-impact ioniza-
tion, three-body recombination, and wall recombination
(radial diffusion). The equilibrium condition is Z = 0

[Eq. (8)]. Linearizing Eq. (19) yields
0z =
mng) No = ZZN(), (21)
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where we have dropped terms involving gradients of
equilibrium quantities, such as v§ - V Ny, since they are
small by 1/kmna < 1 compared to the retained terms.

The relative effect of the neutral particle fluctuations
may be seen by summing all of the momentum equations:

0=V(P.+ Pi + P,). (22)

Since the total pressure is constant and N,/Np > 1, the
plasma pressure P, + P; rests against the neutrals. The
linearized form of Eq. (22) is

0 = 2n5To + No(T5 + T3) + NaTs + niTo. (23)
One expects n§/Ny > T§ /Ty due to ionization nonlin-
earities and T§XTiRT¢. Equation (23) indicates that
(No/Ng)(n§/No) ~ —n§ /N, which implies

n

No®

™M <
N,
Consequently, the fluctuations in the neutral density in
Eq. (21) may be neglected by virtue of No/N, < 1.

In the limit of an approximate Saha balance, SN, ~
BNZ and 7, has the form

€
~ T2 e a
Z9 = =521 + ngze + Ny 2,,
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4“4
_ STyNZ @
t = No 6To [F(To)], (25)
Ze N,
—-2— = za'jv—; = S()Na, (26)

where (No)?/N, = So/Bo = F(Tp) is the Saha equa-
tion[21, 39] and SN, is the electron impact ionization
rate given by[33]

-5 1/2
S(T.)Nq = Ny L0 (Te/T) ™2

a exp(—Io/T.) sec™!
13./2(6 + T./1Io) )

(27)

where Iy and T, are in units of eV and N, is in units of

cm™3. In the opposite limit where wall recombination
dominates three-body recombination (SN, = D,/a?),
the RHS of Eq. (24) has the form
oS
2 = N“a_:l” (28)
1 8D,
%= =% BN (29)
1 8D,
Zaqa = S - ;7 'a_Ara-. (30)

Linearization of the momentum Egs. (6) and

To @) () yield
|
oV VTé b,
= —b, <E2+ °Nn2+ 62) anN ns, (31)
)

. e(Vei + Vea) (Vg VTS eve [(Vng VTS )] 0b;
i _p e _ B2 e 32
va=b [E2 ToVea ( No Ty ToVea Ng Ts °3N nz ( )

where we have ignored 9b; /0T, terms since n§/No >
T$/To. The ambipolar electric field E5 (recall that the
beat wave is assumed to be quasineutral) arises due to
the different mobilities of the electrons and ions. In order
to maintain a divergence free current density, V -J = 0,
an ambipolar field is generated which drags the ions with
the electrons. The ambipolar electric field is calculated
from the constraint )
V. Jy=0=eNoV - (vh — vE) + e(vh — v¢) - Vn§,

(33)

]

where the gradients of equilibrium quantities have been
ignored by virtue of 1/kmna < 1. For finite beat-wave
wave numbers kp,, # 0, Eq. (33) may be written as

0 = eNo(vy — v§) + en§(vg — v§). (34)

Substituting v§ = —b.Eg and v} = b;E¢, the ambipolar
field may be calculated using Egs. (34), (32), and (31) to
be

e
— Ex(be +b)_[(b +be)Eo + Eo (b +b) - T(Q—”‘”—+i’fﬂ>v+9ﬂv}ﬁ
e ca e No
TO(Vei + Vea) 2 TO Vei Tze
Lol tvea) G T3 To (y =z
’ €Veq To + e M eq To (35)
Substituting Eq. (35) into Eq. (31), the velocity perturbation becomes
b;To 2Ve; + v, ng b7y Vei Ts  b,To Tk
€= b Ey — — 1 et | =2 229 [ 142 2 _ 20y 2
vz [ emo e ( + Vea Ny e + Vea To e VTO’ (36)
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where b, > b; has been used.

Combining the continuity Eq. (21) and (36) and noting
that neutral fluctuations are small by No/N, < 1, yields
the diffusionlike equation for continuity

oné n$ T3
6t2 —D;(l—{—cl)vzj—v-za — D,‘(1+62)V2Tz = z,Tze—{-zen;,

(37)

where D; = b;Ty/eNg ~ D,/2 is the ion-diffusion coef-
ficient (half of the ambipolar diffusion coefficient), ¢; =
(2Vei + Vea)/”ea, and C2 = [Hi(l’et' +Vea) + Vei]/yea [Ht to
be defined by Eq. (41)]. As is expected, in the absence
of any ionization source in Eq. (37), density fluctuations
decay on the time scale of the ambipolar diffusion rate.

Fourier analyzing Eq. (37) yields the plasma den-
sity fluctuations due to temperature fluctuations (with
8/0t — 0 for DFWM limit)

ny _ T3 [Tom — Dik2,, (14 ¢2)]

No  To [—Nozn + Dik2,,(1 + c1)]
In the limit that the ambipolar diffusion rate is much
larger than the ionization rates k2,,D; > TyZ;, Nozn,
Eq. (38) reduces to the thermal force limit N§/Noy =

—T¢/To. In order to achieve significant ionization beat
wave, we require

(38)

k‘,znnD,‘ L Tozy ~ -{QSNG.
To
Also note from Eq. (38) that while the peaks of max-
imum density and temperature fluctuations are out of
phase in the thermal force limit, the peaks coincide in
the ionization force limit.

One may identify three different ionization balance
regimes of Eq. (38) depending on the equilibrium ion-
ization balance and the rate of plasma production by
electron-impact ionization. As just mentioned, when
the diffusion rate through a beat-wave is fast compared
to the ionization rate, Eq. (38) reduces to the thermal
force limit. In the limit of approximate Saha balance,
NoN,S ~ N§B and Toz: ~ SNaIo/To and Noz, ~ SN,
so that Eq. (38) has the form

n§ _ T5 [SNaIo/To — Dik2,,(1+ c2)]
No ~ To [2SNa + DikZ,(1+c1)]

If the rate of ambipolar diffusion is much smaller than
the ionization rate (D;k2,, < SN,), then the beat wave
is dominated by the ionization nonlinearity and n§/Ny ~
(T5/To)(Io/Tp). The relation

D;k2,, < SN, (39)

determines the minimum beat-wave wavelength which
sustains an approximate Saha balance for the beat wave.
In terms of a single-particle picture, Eq. (39) requires the
ionization rate to be large compared to the rate at which
neutral species diffuse through a beat-wave wavelength.
In this regime, the neutral species diffuse slowly enough
to sample the impressed temperature perturbation.

When the electron-impact ionization is balanced by
wall recombination, Eq. (38) has the form
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n5 _ T [(Io/To)Da/a® — Dak7,)
No - To (Da/02 + Dak?nn)

~B(L 1 ) T
- T() To kz_”]az

with 1/k%,.a? < 1. Clearly when wall recombination
becomes important, the strength of the ionization nonlin-
earity is greatly reduced. Consequently, all of the exam-
ples presented in Sec. IV will focus on the Saha ionization
balance limit.

In this paper, only the DFWM 9/8t — 0 beat-wave
response is considered. For a completely ionized plasma,
the sound wave frequency is the typical DFWM response
time [4, 3, 1]. However, when ionization nonlinearities
dominate, the DFWM response time of the beat-wave
response is determined by the electron-impact ionization
rate SN, as shown by inspection of the plasma continuity

€
on$

ot

No3q = + NoV - v§ + Vg - Vn§

and

TS
3o = Tf) SNy — 2n5SoN, + n5SoNo,

where NoV - v§ + Vi, - Vn§ scales as the ambipolar dif-
fusion rate. Physically, this means that the ionization
nonlinearity can only respond as fast as the ionization
rate. Approximate response times are listed for the given
examples.

As with the continuity equation, the perturbation to
the radial loss terms may be neglected in the beat-wave
energy equations since they are smaller than the retained
terms by factors of 1/kmna < 1. The energy equations
may be further simplified by noting that the temperature
fluctuations 7% and T3 are no larger than 75. Therefore,
we define the parameters

T$ = H,T¢, (40)

TS = H;T¢ (41)

with H,, H; constant and 0 < H,, H; ~ 1. For the pur-
poses of this paper, the exact values of H, and H; are
unimportant. In the limit that the energy transfer to the
ions and neutral species is small compared to the rate at
which the electrons themselves transport the heat, then
H, = H; = 0. In the other limit that the energy is ef-
ficiently transferred to the other species, H; ~ H; ~ 1.
Summing the energy equations yields

0=Qsw + K?tvaZe + Jo-Es — NoZolg — T()NSV . V;
(42)
where k! = k¢ + H;k' + Hyk® is the total thermal con-

duction of the plasma and Qpw represents the beat-wave
heating term. The beat-wave heating term,
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Qew = 0.51m No(Vei + Vea) exp(ikmp - T — twmat) Z Vi - Vin +c.c.,

m,n

includes electron-atom collisions. The sum in the beat-
wave heating term follows the notation of Refs. [3, 4].
The first two terms on the right-hand side (RHS) in the
electron energy Eq. (42) combine to yield the familiar
thermal force for DFWM in plasmas. The NpZ; terms
in the energy equations account for the loss or gain of
energy in plasma production. To a good approximation,
radiation losses may be neglected in the energy equations
[4].

The resultant DFWM beat-wave
Egs. (38), (42), (35), and (36) is

ng _ Qsw ¥

response from

44
No N[)To Q, ( )
[T()Zt - D,k,znn(l + Cz)]
¥ = , 45
= Nozn + DikZ, (1 + c1)] (45)
&= k,?,mltt + IoToZt + ikan()
- NQ To CN()
I JoE() No abe + bi
+ [""Z" t NoTo ( b, 0N, )
tkJo
-2 eNo —k’,zn,,Di(l-*-Cl)], (46)

where éBw is the fourier component 0.51m,No(ve; +
Vea) }:m,n vé,, - vix and B, = Nodb./ONgb.. This ex-
pression may be simplified by noting that JoEo/NoTp
scales as k°/Npa? from the equilibrium Eq. (10). Con-
sequently, this term may be neglected by virtue of
1/kmna < 1. In addition, we neglect the ik, Jo/eNg
terms compared to the k2, k!/Ny term. Noting that
Jo/eNog ~ b.Ey = eD.Ey/Ty and the thermal conductiv-
ity term may be approximated by the electron diffusion
to the wall k! ~ k® ~ D, /Ny, neglecting the ik,.nJo/eNo
term is equivalent to

ek
kmnTO

<1

This inequality is typically true for electric gas dis-
charges. For typical values of [40,19] Ey ~ 10 V/cm,
a~1cm, To~ 2 eV, we estimate (eEga/Tp)(1/kmna) =~
5/kmna < 1.

In addition, the other terms in ® are also usually small
compared to the thermal conduction term, so that the
beat-wave response has the form

ns _Qew _No [Tom = Dikfn(l4ea)l (00
No - NoTo k K:t [ Noz, + D; mn(l +c )]

QBW No Io
NoTo k2, fc'T

(SNa > Dik},) (48)
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(43)

—

as was anticipated using the simple derivation in the In-
troduction.

IV. ESTIMATION OF PHASE
CONJUGATE REFLECTIVITY

Using argon and cesium plasmas as examples, phase-
conjugate reflectivities for the ionization nonlinearity are
estimated. As is a usual practice for estimating nonlin-
earities, we choose laser intensities which result in re-
flectivities just below unity. The results in this section
may be scaled to smaller pump powers by noting that the
reflectivity scales as the square of the pump intensity.

Using the electron beat-wave response calculated in
this paper, the reflectivity is estimated using [9, 10]

K2 tanz(lceL)e_z"L

= , 49

| tan(k. L)+ | & | |? (49)

Ke = (K2e—2aL _ 02)1/2’ (50)
27I'wb 3)

= E;E 1

o X Er B (51)

as discussed in Refs. [4, 3], where ng is the linear index of
refraction and L is the interaction length. The nonlinear
susceptibility is calculated from 0P3/0t = J3 ~ —en§v$
and Eq. (11). The various charged particle-neutral colli-
sion frequencies are estimated using the elastic scattering
cross-section data listed in Table I. The collision frequen-
cies are approximated as

vj1 = v Nioji,

where v;; is the thermal velocity of the jth species (with
the appropriate reduced mass), N; is the density of the
target species, and o is the cross section. The thermal
conductivities are estimated from [41]

No’l}2
ke = 3.9——te
Vei + C3Vea
. N()’U2-
K= 39—
Vii + C4V4q

Ngv?
’ca 3 a”ta

Vai + Vaa

Using the general form for the electron density beat
wave Eqs. (44)-(46) with J, = 0, and Egs. (49)-(51),
the expected reflectivity may be calculated for various
plasma parameters. For the high gas pressure consid-
ered in the following examples, there is an approximate
Saha jonization balance so that SN, ~ BNZ. For a given
equilibrium temperature, there are a range of equilibrium
electron densities which satisfy the approximate ioniza-
tion balance. Consequently, for simplicity, the equilib-
rium temperature and neutral gas densities are held con-
stant and the phase-conjugate reflectivity is plotted as a
function of electron density.
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TABLE 1. Experimental elastic scattering cross sections.
107!¢ cm? 1eV 4eV 1071% cm? 0.3 eV 1eV
Oc Ar 2* 5.6 Oe Cs 340° 280
Oart Ar 40 35 Ocot Cs 4500° 3000
Tar Ar 14 14 ocs cs 450° 300°

2Data for Argon cross sections from Ref. [45], pp. 27 and 41.

®Data for oe cs from Ref. [46], p. 6.

°Data for oc,+ s from Ref. [39], p. 109 (includes charge exchange).

dEstimated (geometric).
°Estimated to be comparable to 0. cs.

Figure 3 shows the expected reflectivity using CO,
lasers in a weakly ionized cesium plasma. The solid curve
represents the expected reflectivity for a completely ion-
ized plasma at the same electron density and temperature
(N, = 0). The lower dashed curve is calculated assuming
that only the thermal conduction and collision frequen-
cies of the plasma are modified by the neutral species
(no ionization). The upper dashed curve represents the
expected reflectivity due to the ionization nonlinearity in
a weakly ionized plasma (N, = 5 x 107 ¢cm™3). The
enhancement of the reflectivity from a weakly ionized
plasma compared to a completely ionized plasma demon-
strates that ionization nonlinearities are stronger than
thermal pressure nonlinearities. The DFWM response
time, as determined by the electron-impact ionization
rate, is 1/SN, ~ 0.2 nsec.

Other gases may be used for the plasma. Figure 4
illustrates expected reflectivities for a weakly ionized ar-
gon plasma. The equilibrium temperature for the argon
plasma is 4 eV so that the ionization rate, which scales

1 T T TTTTIT T T TTTTTT T T TTTITTH

107 —

_‘

S
S
I

REFLECTIVITY
]
w
I

I

10~ B
10°
10-67 Cond A Lol
10'° 10 10”7 10°®
ELECTRON DENSITY (cm?)
FIG. 3. Reflectivity for ionization nonlinearity in cesium

plasma at 10.6 pm. Interaction lengthis 5 cm; Te = 1eV; I =
400 kW /cm?; interaction angle is 5° (ksp grating). The solid
curve is the expected reflectivity for N, = 0. The long-dashed
curve represents the reflectivity assuming that the only effect
of the neutral species is to modify the collision frequencies
(no ionization). The upper short-dashed curve represents the
expected reflectivity for ionization nonlinearity (N. = 5 X
10'7 cm™3).

as exp(lo/To), is approximately the same for the argon
and cesium plasmas. (DFWM response time 1/SN, ~
0.2 nsec.)

Similar curves may be obtained for EM wavelengths of
119 pym (Fig. 5 DFWM response time 1/SN, ~ 5 nsec ).
Note that the thermal force reflectivity scales as N§ in
the 10.6 ym and 119 um figures, while the ionization force
reflectivity scales as NZ. The N¢ scaling is a consequence
of the electron-neutral collisions determining the electron
mean free path. This scaling may be easily seen from the
electron density beat-wave response

ﬁ — _UZSC 1+ NOVei _ NO(Vei + Vea) _&) )
N() vtze k,znpfce kgnpK,t To

The three terms in the large parentheses represent the
ponderomotive, thermal, and ionization forces, respec-
tively. When the neutral density is low, v, < v,
k' — k° and the ionization nonlinearity term reduces
to

n;zNo

v Novei o NgXSNg (I
vi, ket To s To )’

and the reflectivity scales as (n§)? ~ N§. However, when

1 T T T TTTI T T TTTIT T T TTTTTH
PN B
,
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1015
ELECTRON DENSITY (Cm'a)
FIG. 4. Reflectivity for ionization nonlinearity in argon

plasma at 10.6 pum. Interaction length is 5 cm; T, = 4 eV,
I = 6 MW /cm?; interaction angle is 2° (ks, grating); Na =
10'® cm™3. Same notation for the different curves as in Fig. 3.
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FIG. 5. Reflectivity for ionization nonlinearity in cesium
plasma at 119 um. Interaction length is 5 cm; T. = 1 eV;

= 60 kW/cm?, interaction angle is 15° (ky, grating); Na =
2 % 10'® cm™3. Same notation for the different curves as in
Fig. 3.

Veq > Ve;, the electron mean free path is determined by
the electron-neutral collisions and the nonlinearity scales
as approximately

2 2
v Vea ‘_I_D_

NoA* / Io
5~ No—- ~— = ].
M= 0 ke VB T To (To

Since the neutral species, rather than a large ion density,
maintain the plasma in a collisional regime, the reflec-
tivity scales like (n$)? ~ NZ2. Consequently, ionization
nonlinearities may dominate ponderomotive nonlineari-
ties for low electron densities (corresponding to long EM
wavelengths). Moreover, small interaction angles are not

1 T

R

lIHHl I IIIHHI T [

REFLECTIVITY

10°® L1l Lol L
10'2 10" 10" 10'°
ELECTRON DENSITY (cm™®)
FIG. 6. Reflectivity for ionization nonlinearity in cesium

plasma at 1 mm. Interaction length is 50 cm; T. = 1 eV;
I = 64 kW/cm?; interaction angle is 0° (kop grating only);
N, =10 cm™3. Same notation for the different curves as in
Fig. 3.
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FIG. 7. Reflectivity for ionization nonlinearity in cesium

plasma at 1 cm. Interaction length is 100 cm; 7. = 1 eV;
I =1 kW/cm?; interaction angle is 0 ° (kp grating only);
N, = 101¢ cm‘s). Same notation for the different curves as
in Fig. 3.

required for one of the beat waves to be in a collisional
regime; even the small scale grating can be in the colli-
sional regime due to electron-neutral collisions.
Estimated reflectivities for 1 mm and 1 cm waves are
illustrated in Figs. 6 and 7 (1/SN, =~ 10 nsec). The solid
curves in these figures (no neutral species) scale as N¢
since the 100% ionized plasma is dominated by pondero-
motive nonlinearities for collinear interaction (8 = 0 kj,
grating only). As with Figs. 6 and 7, the electron-neutral
collisions determine the electron mean free path.

V. STABILITY OF EQUILIBRIUM

As discussed in Refs. [4, 19, 18, 28], weakly ionized
gas-discharge plasmas naturally tend to break into stri-
ations due to an ionization instability. Likewise, laser
driven optical striations are also unstable as described
in Refs. [30-32] due to a similar ionization instability.
Therefore, in order to ascertain the suitability of weakly
ionization plasmas for four-wave mixing and phase con-
Jjugation, a stability analysis of the equilibrium plasma is
necessary.

The purpose of this section is to examine the tendency
of the plasma to break into striations in the axial direc-
tion and to estimate the joule and laser heating power
thresholds for the instability. A threshold laser heat-
ing rate implies a maximum permissible pump power
before the equilibrium plasma becomes unstable. Does
this maximum pump power limit the attainable phase-
conjugate reflectivity using ionization nonlinearities?

References [18, 31, 28] provide a detailed discussion of
the plasma stability for electric discharge plasmas. We
use the same equations as Ref. [18] to illustrate the effect
of the stability on the FWM process by estimating the
threshold laser intensity for the onset of striation and the
corresponding maximum phase-conjugate reflectivity at
that threshold intensity. The equations used in this paper



4 FOUR-WAVE MIXING AND PHASE CONJUGATIONIN....

are somewhat simplified from those of Ref. [18] since the
role of metastable atoms (stepwise ionization) is ignored
in this paper. Since metastables play a major role in the
stability of gas discharges, the model stability equations
shown below are inherently stable in the absence of the
laser heating. Neglecting the role of metastables is not a
very restrictive condition, however, since there are some
gases, such as alkali plasmas (recall that most of the ex-
amples in Sec. IV were cesium plasmas), which do not
have metastable states [18].

The model equations are

on,
ot

+ V(n.V,) = n.z, (52)

[%) *
57 (3neTe) + VETNVE) = =3 - E + Quaser — e H,

(53)
V, = bE, (54)
Vn,
V= —b, (E + T, n" + (- gwn) , (55)
e

Vne
n

[

V; = "%nbe (E + Te + (7)* - %)VTC) ) (56)

V.-J=V[eN(V,-V,.)]=0, (57)
where 7 and 7* are determined by the dependence of the
electron mean free path on the velocity and the form
of the velocity distribution function. For a Maxwellian
distribution, n = 2 and n* = 3 [42]. The Qjaser term in
the energy equation represents the laser heating of the
plasma. As discussed in Sec. III, we have included the
radial losses in the continuity and energy equations in the
form of a model radial loss term. The RHS of Eq. (52)
follows the same notation as Eq. (21). The radial energy-
loss term n. H scales as the electron thermal conduction
time to the walls (N.H ~ k°Ty/a? ~ NoTyD./a?).

The geometry of the cylindrically symmetric equilib-
rium plasma is depicted in Fig. 8. The plasma is assumed

kb EoToz b
dH/OTy + n(n* —n)Dk2 — 7 °

Wy ~

(for ka ~ 1),

JoEo[2 + Nod(be + b;)/b.0Nol/NoTo + Qo(1 — @n)/NoTo
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plasma.

Geometry for stability analysis of weakly ionized

to be initially uniform in the parallel direction. Since all
of the radial motion has been included in the Z and n . H
terms, the gradients and time derivative refer to the for-
mation of striations in the axial direction. The parallel
equilibrium solution (8/8t = 0) of Egs. (52)—(57) is the
same as described in Sec. II:

=0, (58)
Veo = -—beEo, (59)
Vio = biEo, (60)

J= eNo(be + b,‘)Eo. (61)

The equilibrium energy balance may be approximated as
JoEo + Qo = NoH. (62)

Following the analysis of Sec.III and Ref. [18], the per-
turbed Egs. (52)-(57) may be Fourier transformed in the
parallel direction and in time [exp(iwt — ikz)]. The re-
sulting density and temperature perturbations equations,
which include laser heating are a generalization of Ne-
dospasov’s equations [18]. Combining the perturbation
equations with w ~ D,k? <« kJo/eNy and equating real
and imaginary parts yields [4] the real and imaginary
frequencies w = w, — 7.

(63)

(64)

v~ =Dk + Nozp, — 2T

where ¥ > 0 corresponds to instability and

No 8Qo
Qn= Do, > 0, (65)
_ To 0Qo
Qt = QO 6To < 0) (66)

OH /0Ty + n(n* — n) Dek? ’

where Q,, and Q; are numbers of order unity and Qo =~
meNo(Ve; +uea)vgsc. In the analysis, the equilibrium con-
dition JoEo+ Qo = NoH and b, > b; has been used. The
frequency of the striation, Eq. (63) is not affected by the
laser heating (as expected since optical striations are in-
herently stationary) and therefore reduces to the same
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expression as in Ref. [18]. In the limit of no laser heat-
ing (Qo = 0) and z, = 0 (wall recombination dominates
three-body recombination), the damping rate Eq. (64)
reduces to the Nedospasov result for damped striations
(metastables neglected).

Returning to Eq. (64) for the growth rate, let us ex-
amine the Jy = 0 limit of optical striations. In this limit,
the k£ = 0 modes are unstable if @, > 1 and

?ﬂ]anol _ HI < Qo
0Ty Toz ~ T? NoTo

11— Qnl

Therefore, in the absence of the Joule heating, the plasma
is more susceptible to striations. We further note that if
the N.H term in the energy Eq. (53) were independent of
electron density and z, = 0, as assumed in Ref. [30], the
plasma would always be unstable, independent of equilib-
rium conditions. This instability behavior in the Jo = 0,
and £ = 0 limit confirms a similar analysis of optical
striations by Nastoyashchii [30].
By examination of Eq. (64) we require

JoEo H Qo
NoTo — To =~ NoTp
for stability of the equilibrium plasma for all wavelengths
in the presence of laser heating. The threshold laser
power is then
Qo _H K®
N()To thres— TO Noazl

(67)

The equilibrium laser heating rate Qo/NoTo must be
small compared to the thermal diffusion rate to the wall
in order for the plasma equilibrium to be stable. As long
as the EM waves do not disturb the equilibrium, the
plasma should be suitable for wave mixing. Substituting
Eq. (67) into the expression for the beat-wave amplitude
Eq. (48), and using the small signal reflectivity limit

R~ (5L 2
=~ \NoAN.

the maximum reflectivity is estimated to be

L\’L 1 [(Linn\?N?
Rmax = T ) I: k2. a2 N2
0 1 kZ,a al N2

where L is the interaction length, A is the EM wavelength,
N, is the critical density, and 1/k2,,a®> < 1. In order
to maximize the reflectivity, one requires a plasma with
Iy/To > 1, electron densities close to the critical density,
beat-wave wavelengths long compared to the EM wave-
length, and long interaction lengths compared to the ra-
dial extent of the plasma (e.g., a long cylindrical plasma
with L > a). The maximum reflectivity tends to de-
crease with increasing radial extent of the plasma since
the thermal relaxation rate H /Ty becomes much longer in
large radius plasmas resulting in a lower intensity thresh-
old for the onset of striations.

Does the laser intensity threshold for the onset of stria-
tions limit the attainable phase-conjugate reflectivities in
the gas-discharge plasmas cited in Sec. IV? As an exam-
ple, consider the plasma parameters of Fig. 6 with Ny =
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101* em™3, T. = 1 eV, I = 64 kW/cm? for 1 mm waves.
We estimate the heating of the pump beams as Q¢ ~
0.5 (Vei + Vea) NovZ. =~ 4 x 10 erg/sec cm®. From the
stability analysis in this section, we estimate the required
equilibrium electric field as JoEo = ebe NoEZ =~ Q. For
the parameters of Fig. 6, Ey ~ 38 V/cm which is about
an order of magnitude above typical gas-discharge elec-
tric fields of 1-10 V/cm. The radius of the discharge is
estimated from JoEo ~ k°T./a? ~ 3.2D.NoTo/a? to be
a =~ 0.025 cm which is a factor of 10 smaller than typical
values of 1-10 mm. Since the heating by the pump beams
implies equilibrium electric fields which are about an or-
der of magnitude too large and plasma radiuses which
are too small, we may surmise that reflectivities close to
unity as in Fig. 6 are not possible for typical gas-discharge
parameters.

What are typical expected reflectivities for gas dis-
charge plasmas? For typical values of @ ~ 0.25 cm and
Ey ~ 4 V/cm, we estimate Qo ~ 2.1 x 10® erg/sec cm®
and Ip ~ 340 W/cm?. Compared to Fig. 6, this intensity
implies an expected reflectivity of 5x 1073, Although the
reflectivity is not very large, this reflectivity level should
be experimentally observable. For example, phase conju-
gate reflectivities of 10™% — 10~2 have been observed in
plasmas (Ref. [6]).

Although large reflectivities are not expected in
steady-state gas discharges, large reflectivities might be
possible using pulsed plasma sources (as with Ref. [6]).
With pulsed plasma sources, the issue of laser heating
perturbing the plasma equilibrium and driving striations
may not be a concern since striations are typically low
frequency (10 kHz to dc) instabilities. A detailed analy-
sis of a pulsed plasma source is beyond the scope of this
paper.

As a final comment, even if the heating of the plasma
by the pump beams does not excite striations, the equi-
librium temperatures and densities could still be modified
by the heating. Four-wave mixing is still possible under
these conditions. However, the reflectivity will no longer
scale as I? since the equilibrium temperature and density
are functions of the pump beam intensity. An example
of this effect for semiconductors is discussed in Ref. [26].
Below a threshold pump intensity, where the beat wave
is generated by ionization forces, the reflectivity scales as
I2. Above the threshold intensity, the bulk (equilibrium)
density of electron-hole pairs is significantly changed. In
this regime, the reflectivity scales as 71!, A similar effect
has also been observed in plasmas. In experiments with
DFWM in collisional plasmas [6], the reflectivity does not
scale as I? due to a suspected heating of the plasma by
the pump beams.

VI. CONCLUSION

In summary, this paper has identified and studied the
ionization nonlinearity as a new nonlinearity for DFWM
in weakly ionized plasmas. (Although we have focused
exclusively on DFWM, ionization nonlinearities may also
play a role in other third order nonlinearities such as self-
focusing.) Degenerate four-wave mixing using ionization
nonlinearities may yield significant phase conjugate re-
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flectivities depending on plasma conditions. In this pa-
per, we focused on plasma parameters which are typical
for steady-state gas-discharge plasmas.

More specifically, our results show that plasmas which
are close to Saha ionization balance (N,S ~ N$f3) have
a stronger nonlinearity than plasmas in which the ioniza-
tion balance is determined by diffusion or wall recombi-
nation. For equilibrium plasmas which are close to Saha
equilibrium, the ionization nonlinearity may be stronger
than either the thermal or ponderomotive nonlinearities
due to strong electron-neutral collisions. Estimates of the
phase-conjugate reflectivity indicate that gains <1 are
possible in weakly ionized plasmas. However, the sta-
bility condition of the equilibrium plasma may impose
a laser intensity threshold for instability and thus limit
the attainable phase conjugate reflectivities to ~ 10~ in
steady-state plasma discharges. Higher reflectivities may
be possible with pulsed plasma sources.

Plasma parameter regimes other than the steady-state
gas discharge should exhibit analogous ionization nonlin-
earities. For example, multiphoton ionization processes
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might become important for sufficiently strong EM field
intensities. In this regime, the ionization nonlinearity
may be similar to the ionization nonlinearities in semi-
conductors [26]. As another example, there has been re-
cent interest in the prospect of FWM and phase conju-
gation in the ionospheric plasma [43, 8]. In the upper
lonosphere (D and FE regions) where the weakly ionized
plasma is collision dominated, photoionization as well as
other ionization or recombination mechanisms may play
a role in an analogous ionization nonlinearity.
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