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Reduction of turbulent mixing at the ablation front of fusion targets
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The turbulent mixing generated at the surface of an inertial-confinement fusion target affected by the
Rayleigh-Taylor instability is studied with the use of a simple, nonlinear diffusion model. In order to
study the turbulent mixing at the ablation front, a reduced growth rate of the Rayleigh-Taylor instability
is used in the model. It is found that, compared with the classical layered Auids, turbulent mixing at the
ablation front is significantly suppressed because of the ablative stabilization effect. With the use of a
constant-acceleration model, we conclude that targets imploded with an in-Bight aspect ratio less than
about SO to 70 survive without suffering shell breakup as a result of the turbulent mixing.

PACS number{s): S2.SO.Jm, 47.20.—k, 47.2S.Jn

I. INTRODUCTION

Hydrodynamic stability is a key issue for achieving
inertial-confinement fusion within a realistic range of
driver energy. The Rayleigh-Taylor [1] and Richtmyer-
Meshokov [2] instabilities can potentially degrade the tar-
get performance compared to that predicted by a one-
dimensio~al simulation code. These instabilities can be
triggered by nonuniformity in the irradiated intensity or
by nonsphericity of the targets.

A variety of implosion experiments have been carried
out with gas-filled targets [3,4], cryogenic targets [5], or
deuterized polyethylene shell targets [6]. Results of these
experiments have been compared in detail with predic-
tions from one-dimensional quid codes. The neutron
yield, for example, differs by about a factor 2 to 10 for
the case of gas targets [4], the difFerence arising mainly
from the nonuniformity of the implosion dynamics.

Two-dimensional simulations have been carried out to
explain the above discrepancy [5,7]. For example, a level
of nonuniformity that produces a reduction of a factor 2
in neutron yield has been studied [7]. In that simulation,
a nonuniformity of the I =6 mode is assumed in laser ab-
sorption. It is reported that a a, , of 35% in absorption
nonuniformity is required. This level is too high. It is
difBcult to reduce the neutron yield by larger factors of
10 to 10 compared to a one-dimensional simulation if
only the nonuniformity of relatively longer wavelength
modes (I ~24) is included. It may be necessary to take
into account the role of the instability for relatively short-
er wavelength (e.g., I = 100—500). The instability growth
of these short wavelengths is difficult to simulate with
conventional two-dimensional implosion codes. Such
perturbations grow very rapidly, becoming nonlinear in a
short time, and mode coupling takes place. Through the
mode coupling, the source of the instability for longer
wavelengths is generated and the instability continues to
grow. Such an inverse-cascading process in the spectra of
turbulence may cause microscopic mixing of the contact
surface, even without any imposed nonuniformity of the
initial state.

In the present paper, we derive a simple, nonlinear
diffusion model to describe time development of the mix-

ing layer by use of the quasilinear theory. %e first apply
this model to explain the mixing of classical layered
fIuids. Then, we use the model to evaluate the turbulent
mixing near the ablation front accelerated by laser irradi-
ation. Our main purpose is to estimate the degree of
reduction in the growth of the mixing layer at the abla-
tion front ~here the ablative stabilization affects the
growth of the Rayleigh-Taylor instability.

In Sec. II, the scaling law of the turbulent mixing layer
obtained experimentally by Read [8] is briefiy described
and compared with an earlier theoretical study by
Belen kii and Fradkin [9]. The inverse-cascading phe-
nomena observed in the experiment are explained
theoretically by considering the bubble coalescence phe-
nomena. In Sec. III, we formulate a nonlinear diffusion
equation that describes the turbulent diffusion phenome-
na according to the framework of the quasilinear theory.
In a limiting case, we obtain the characteristic size and
amplitude of eddies that predominantly controls the tur-
bulent diffusion. The diffusion equation is solved for the
classical layered Quid and it is shown that a scaling law
similar to that by Read is obtained. Section IV is devoted
to an estimation of the turbulent mixing at the ablation
front accelerated by laser irradiation. The diffusion-type
equation formulated in Sec. III is applied and a self-
consistent growth rate, which includes the ablative stabil-
ization effect, is used to see how the development of the
turbulence is reduced. The Inain purpose of this paper is
to estimate how high an in-Qight aspect ratio is allowed
when we require no shell breakup as a result of the tur-
bulent mixing. This point is discussed by assuming a
constant-acceleration model. Finally, Sec. V is devoted
to a brief summary and conclusion.

II. TURBULENT MIXING PHENOMENA

The experimental result by Read [8] indicates that,
even without any imposed initial perturbation, the con-
tact surface of layered Auids that are Rayleigh-Taylor un-
stable tends to mix with a mixing distance h (t) of the
form

h (t)=0.07a~gt
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where az is the Atwood number, g is the effective ac-
celeration, and t is the time. The experiment tested a
variety of fluids with different densities, leading to Eq. (1),
which is almost universally satis6ed within a negligible
deviation in a factor.

Such turbulent mixing has already been predicted by
Belen'kii and Fradkin [9]. They have modeled the tur-
bulent intermixing by the use of analogy with ordinary
molecular mixing theory. They derived a diffusion-type
equation for the density profile p(x, t}:

B B B

Bt Bx Bx

where D, is the turbulent diffusion coefticient and given
to be

FIG. 1. Schematic figure of the bubble-and-spike structure
seen in the nonlinear stage of the Rayleigh-Taylor instability.

with
' 1/2

1 Bp BP

p Bx Bx

(3)
in Fig. 2 as an idealized bubble, and assume that the bub-
ble rises at a constant velocity U. Experiments [12] and
model analysis [13] also show that a bubble rises with a
constant velocity. Assuming a stationary state in the
frame moving with the bubble and the incompressibility
condition in the gravitational 6eld g, we can use the Ber-
noulli theorem [14] for two-dimensional flow:

In Eq. (3), P is the pressure and e= 1 for
( Bp/Bx )(BP /Bx ) negative and @=0 for ( Bp!Bx)(BP /Bx )

positive. They introduced a path length l, and assumed
the relation

$, =C,A, (4)

where h is the width of the intermixing region and C& is a
constant. By solving Eq. (2), they obtained a relation

This relation predicts the gt dependence in Eq. (1).
However, the az dependence in Eq. (1) cannot be pre-
dicted exactly because they used a local approximation in
evaluating the growth rate y in Eq. (3).

A numerical simulation has been carried out by Young
[10] to explain the relation of Eq. (1). In his two-
dimensional simulation, relatively shorter wavelength
perturbations are imposed initially. It is seen that in the
course of time, bubbles coalesce and the mixing layer is
almost the size of the dominant bubbles. Such a
phenomenon is also seen in Read's experiments both in
two and three dimensions and the simulation resulted in a
good agreement with Eq. (1). The reason for bubble
coalescence, which is an alternative expression for the
inverse-cascading described previously, can be under-
stood as follows.

It is well known that the bubble-and-spike structure
appears in the nonlinear stage of the Rayleigh-Taylor in-
stability as shown schematically in Fig. 1. The penetra-
tion of the bubbles into the heavier Quid causes shell
breakup and burnthrough of foils in the laser-driven abla-
tive acceleration. The dynamics of bubbles was studied
by Davies and Taylor [11]. Following their method, we
study the rising velocity of a bubble which characterizes
the nonlinear dynamics of the Rayleigh-Taylor instabili-
ty.

Let us pick up one bubble from Fig. 1, which is shown

I'+ —'pq +pgx —Po, (6)

where q is the How velocity, I' the pressure, p the Quid

density, and x is the vertical axis with x=O at the vertex
of the bubble. In Eq. (6), Po is a constant equal to the
pressure at the vertex of the bubble, and Eq. (6) is
satis6ed by the fluids on the bubble surface.

In the case where the bubble is axially symmetric along
the x axis [three-dimensional (3D) bubble], the flow of the
heavier Quid near the bubble surface can be given by the
flow near the surface of a sphere in a stream [11]. Then,
the flow velocity on the surface is given to be [15]

q =
—,
' U sinO,

where 8 is the angle from the x axis (see Fig. 2}. The flow
velocity is equal to zero (q =0) at the stagnation point
O=O.

FIG. 2. Schematic figure of a bubble rising in the heavier
Quid with the radius of R. This can model the penetration of
bubbles into the heavier Auids in the nonlinear stage of the
Rayleigh-Taylor instability shown in Fig. 1.
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On the other hand, for the fluids in the bubble Eq. (6)
reduces to

P —Po =p)gx,
where p& is the density of the lighter Quid. In deriving
Eq. (8), we have assumed q =0 in the moving frame.
Equation (6) for the heavier fluid leads to

'0 —I =-'P2q'+ p~x

where pz is the density of the heavier Quid. Since the
pressures should balance on the surface, Eqs. (8) and (9)
yield

1/2
P2 pi

By the use of the relation that the flow velocity of Eq. (7)
should be equal to that of Eq. (10) in the vicinity of the
vertex, we can obtain the rising velocity U in the form

of Quid motion. Since the rate of the release is propor-
tional to the rise velocity of bubbles, the bubbles tend to
coalesce with each other and increase their rise velocities.
In other words, the bubble coalescence due to bubble-
bubble collision corresponds to the inverse cascading due
to mode-mode coupling because the size of bubble R is
roughly proportional to the wavelength of the Rayleigh-
Taylor mode X. In this meaning, the inverse cascading
might be observed in the turbulent mixing layer.

It is also useful to repeat the same thing done above for
the case of the two-dimensions. It is observed in Read's
experiment that the mixing layer grows slightly slower in
the 2D geometry than in the 3D geometry. However, he
found no qualitative difference and instead of Eq. (1) he
obtained

h (t)=0.06a „gt' .

If the bubble in Fig. 2 is two-dimensional in the planar
geometry (uniform in the z direction), then the flow veloc-
ity on the surface is given in the form [15]

I /2 q =2U sin8 . (14)

U 2
3

P2

where V is the volume of the bubble. On the other hand,
the drag force is due to the obstruction against the
heavier fluid Qow and is equal to the change of the
momentum of the heavier Quid per unit time by the bub-
ble obstruction; therefore the drag force F&

Ed p2U S (13)

where S is the area of the bubble seen by the heavier Quid
Qow. It is reasonable to assume the relation V ~R and
S ~R . By the use of the relation that Eq. (12) should
balance Eq. (13), we can obtain Eq. (11) again except for
the numerical coefficient.

The turbulence in the mixing region driven by the
Rayleigh-Taylor instability has a different feature com-
pared to the uniform turbulence driven, for example, in
the Couette Qow. The buoyancy of the bubble plays an
essential role in the time evolution of the turbulence spec-
tra. The Rayleigh-Taylor instability is the process by
which the excess potential energy is released as energies

where R is the radius of the bubble. To obtain Eq. (11),
we have used the approximation near the vertex of the
spherical bubble, x = (1—cos8)R = ( —8 /2)R and
sin8=8. Equation (11) indicates that larger bubbles rise
faster. It is noted that in the limit of p2&)p&, Eq. (11)
reduces to the Davies-Taylor formula [11j.

It is useful to derive Eq. (11)by an intuitive way for un-
derstanding the physics behind it. In the frame moving
with the bubble, the three forces acting on the bubble
should balance; the first one is the buoyancy, the second
one is the gravitational force, and the third one is the
drag force due to the heavier Quid Qow. The combined
force of the first and the second forces (call it the effective
buoyancy, 8) is

(12)

Equation (10) is also applicable in this case and we obtain
I /2

1 P2 Pi
U =— gR.

P2
(15)

Within the present model, the difference between 3D and
2D is just the difference in the numerical coefficients of
Eqs. (11) and (15), and bubbles rise slightly slower in 2D
than in 3D. This fact might explain the slower growth of
the mixing layer -in 2D observed in the Read s experi-
ment.

It should be noted that the bubble coalescence (inverse
cascade) may take place in both 2D and 3D and there
may be no qualitative difference between 2D and 3D as
far as the Rayleigh-Taylor instability is concerned. In
this regard, the phenomenon is very different from the
uniform turbulence where the inverse cascade occurs
only in 2D and the normal cascade occurs in 3D because
of the stretching of the vortex lines until the vortex ener-

gy is dissipated by viscosity or some other dissipation
mechanism. When we see bubbles generated by the
Rayleigh-Taylor instability, the Kelvin-Helmholtz insta-
bility and the stretching of the vortex generate smaller
size vortices and the cascade process may be dominant
there. However, the total energy of the vortices in the
mixing layer continues to increase because of the excess
gravitational energy. Therefore it is not unreasonable to
assume that most of the vortex energy is associated with
bubbles getting bigger due to the bubble coalescence as
described above.

It is useful to study at what point the linear Rayleigh-
Taylor instability enters into the nonlinear phase de-
scribed above. When a 2D sinusoidal perturbation of the
contact surface x (y, t) is growing as x (y, t) =g cos( ky),
where /=goer and go is an initial amplitude, the radius
of curvature at the vertex of the perturbation is calculat-
ed to be R, =(gk ) '. The vertex rises in the linear
phase at the velocity u =yg. However, the velocity u
cannot exceed the rising velocity U of Eq. (15) with R re-
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placed by R„because the nonlinear drag force of Eq. (13)
which is proportional to u appears to be dominant and
prohibits further exponential growth. The boundary be-
tween the linear and nonlinear regimes can be roughly es-
timated by the relation

u=U.

P contact
2 ~+ surface

j' ~ I'

X
)l

That is,

p2+p&kg=0. 63
p2

1/3 (P)y

This indicates that the Rayleigh-Taylor instability enters
into the nonlinear phase when the amplitude grows up to
kg'= 1. For the case pz &)p&, kg=0. 63 and /=0. 1A,. At
this amplitude, the radius of curvature is R, =A, /4. In
the case of 3D with k» =k, =&2k, Eq. (11) is applicable.
Since R, =(gk» ) ' in this case, we obtain

kg=0. 96 (16')
p2

It is clear that the Rayleigh-Taylor instability in 3D
enters into the nonlinear phase with larger amplitude
than that in 2D for the same value of k. This tendency
coincides with the numerical results shown in Ref. [16],
although the geometry of Ref. [16] is different from the
plane geometry.

Recently, Emery [17] has carried out a simulation and
shown the inverse-cascading phenomena due to the
Rayleigh-Taylor instability at the ablation front ac-
celerated by laser irradiation. He reported a reduced
growth of the mixed layer compared to that of the non-
ablative surface. Haan [18] has dealt with multimode
Rayleigh- Taylor growth and proposed a model for
evaluating the time development of the mixing layer. In
his model, all modes are assumed to grow independently
and mode coupling is not explicitly taken into account.
Each mode grows exponentially in the linear phase and
grows very slowly in a nonlinear saturation phase. Be-
cause of the slow growth in the nonlinear phase, longer
wavelength modes with higher saturation amplitude be-
come predominant in time. As a result, the wave number
corresponding to the peak in the multimode spectra tends
to decrease and an inverse cascading is observed as a re-
sult. The result by Read is also explained by Haan's
model.

In order to model the turbulent mixing qualitatively, a
multiffow model [10] or a turbulent viscosity model [19]
has also been used. However, applying these models to
turbulent mixing at the ablation front being accelerated
by laser light is not straightforward. Therefore we intro-
duce a simple model that can explain Eq. (1) and apply it
to the turbulent mixing at the ablation front.

FIG. 3. (a} Schematic figure of the deformation of the contact
surface that is unstable to the Rayleigh-Taylor instability. The
quantity g is the e6'ective acceleration. (b) The density profile
averaged over the y direction, where 2h is the thickness of the
mixing layer.

tion. The equation of continuity averaged over the y
direction reduces to

— po(x, t)+ (p&u, )» =0,a
Bt Bx

(17)

where ( )» means the average in the y direction and
p=po+p& and po=(p)». The density perturbation p& is
given by the linearized equation of continuity:

pl= 4& po ~ (18)

a~p'= ax ax p' '

(19)

The nonlinear diffusion coeKcient can be rewritten with
spectral density

leak

l, where g= I eke'"»dk:

D=
~

f" dkrkl4I'. (20)

Here, I. is the size for sampling in the y direction and k is
the wave number in the y direction. Note that the
diffusion coe%cient is proportional to the linear growth
rate yk of the perturbations.

In solving Eq. (19), we assume that the turbulence
spectra has a strong peak near the wave number ko and,
therefore,

where we have assumed the Quid motion is incompressi-
ble. In Eqs. (17) and (18), the velocity perturbation of
Qow in the x direction, u„, is related to the displacement
in the x direction, g by u„=dgldt( =—g).

Inserting Eq. (18) in Eq. (17), we obtain an equation for
po that is of the diffusion type:

D=rklhl lk=k, . (21)
III. NONLINEAR DIFFUSION MODEL

Consider the situation where two Quids with different
densities are present in a gravitational field. The contact
surface tends to be unstable, as seen in Fig. 3. The figure
also shows the density structure averaged in the y direc-

The analysis in Ref. [20] supports this assumption. In-
serting the classical growth rate rk=(a~kg)' in Eq.
(19) and assuming that gk o- h, where h is the mixing dis-
tance and k ~ h ', we obtain an important relation from
sim. pie dimensional analysis:
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h =(Dt)'"=a„gt' . (22)

Equation (22) agrees with Eq. (1) except for the dimen-
sionless factor 0.07. Note that the derivation of Eq. (22)
suggests that the mixing distance is proportional to the
square of the growth rate of the Rayleigh-Taylor (RT) in-
stability

h~y& . (23)

k =b/h .
(24)

Then, for the classical growth rate y=(a„kg)', Eq.
(19) reduces to

Equation (19) together with the diffusion coefficient of
Eq. (21) agrees with Eq. (2), if we assume the relation

~ gko ~

=1, and y ko
=y in Eq. (3). This agreement results

although we started from a different standing point. The
dimensional analysis provides the same results as Eqs. (5)
and (22) except for the a„dependence in Eq. (22). This
is because the local approximation is used for the growth
rate in Eq. (3). Note that Equation (20) is more general
and useful if we simultaneously solve the multimode spec-
tra such as discussed in Ref. [18].

The factor 0.07 of Eq. (1) can be derived by solving Eq.
(19) numerically. We introduce numerical constants a
and b defined by

6g(p2 p] )h 2 (p2+p~ )a~ bg~'h ' (29)

In order to obtain the potential energy, the left-hand side
of Eq. (29), we assumed the density structure of Eq. (27).

By requiring that Eq. (28) is equal to Eq. (1) and using
Eq. (29), we can obtain the unknown parameters a and b
as

a =0.33,
b =3.0 .

(30)

This means the wavelength and amplitude of the eddies
are A, =2h and kg= 1, respectively. It is useful to note
that the dominant mode is always around the marginal
point between linear and nonlinear phases where Eq. (16')
is approximately satisfied.

In addition, following the method described by Mikaelian
[20], we use the energy-conservation relation to balance
the released potential energy with the kinetic energy of
the eddies:

0 h hf pigx dx+ f p2gx dx —f po(x)gx dx—h 0 . —h

h=f —,'po(u')dx .

This reduces to the relation

~
po=

~
[h(t)]

~ po
8 '8 3/Q 8

where

r=(a„gb)'~ a t .

In solving Eq. (25), we start with the initial profile

p), x 40

(25)
IV. REDUCED TURBULENT MIXING

IN ABLATIVE TARGET ACCELERATION

In intertial-confinement fusion, acceleration of a spher-
ical shell target should be stable enough to realize central
convergence. Suppose that a target of initial radius Ro
with the thickness ARo is accelerated halfway to the
center within the acceleration time t„. If the accelera-
tion is almost constant, we can assume a simple relation

Po p z)0 (26)
gtg Ro (31)

and h (t) is calculated at each time by best fitting the den-
sity profile to the profile used in Ref. [20]

pi (x & —h)

po= —,'(pi+p, )+ ,'(p, p, )x/h (——h —&x &h)

p2 (h &x) .

(27)

h (t)=1.9r' . (28)

The density profile is correctly determined if the non-
linear diffusion coefBcient, which is the product of the
growth rate and local density of the turbulence, is explic-
itly given. In Ref. [9], the local approximation to the
growth rate is used to give an explicit form of the
diffusion coefFicient. However, nonlocal effects are an
essential property in the Rayleigh-Taylor mode structure.
Although nonlocal effects are important to determine the
density profile of the mixed layer, it is out of the scope of
the present paper. Therefore we simply assume the den-
sity profile of Eq. (27).

Solving Eq. (25) numerically, we obtain the relation

where g is the acceleration. In general, the target is ini-
tially compressed by shock waves and the thickness of the
target is usually smaller than AR0. We assume that the
in-Right thickness is given as AR;„& and is almost con-
stant in time. In order to avoid shell breakup as a result
of turbulent mixing during the acceleration time, the
mixing distance at t = t„, h ( t„), is required to be less
than the in-Qight shell thickness, namely,

h(t„) & bR,„, . (32)

If the Rayleigh-Taylor instability in the acceleration
phase were classical and the mixing distance were given
by Eq. (1), then Eq. (33) reduces to the relation

In the design of inertial-confinement fusion (ICF) targets,
the in-Aight aspect ratio A;„&, which is here defined by
2;„t=Ro/b, R;„t, is used as a measure for stability. Equa-
tion (22) is equivalently replaced by the following require-
ment for the in-Aight aspect ratio:

Ro
inf
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3;„~&14 . (34)

In obtaining Eq. (34), we used Eq. (31) and assumed
a„=l. The in-fiight aspect ratio that satisfies Eq. (34) is
much lower than those expected in usual target design for
high gains [21,22]. In general, the hydrodynamic
e5ciency decreases with the decrease of the in-Aight as-
pect ratio. In addition, the required laser intensity in-
creases and an unwelcome nonlinear effect appears to be
important in the laser-plasma interaction process [21]. In
fact, however, the Rayleigh-Taylor instability at the abla-
tion front is not that of usual layer Quids, but a significant
reduction in the growth rate of the instability has been re-
ported by many authors by the way of eigenvalue analysis
in self-consistent structure [23,24], two-dimensional
simulations with improved numerical schemes [25—29],
or model analysis [30—32]. It is, therefore, necessary to
see how this stabilization effect reduces the growth of the
turbulent mixing layer.

If the growth rate is reduced by a factor e on average
compared with the classical (kg)', Eq. (34) can be
modified as

14
A;„~&

h — x=h, =x,
Ro Ro

'
t~

(39)

Eq. (19) with Eqs. (21) and (24) can be reduced to the
form:

8
~

Po
~ D~ Po~

where

(40)

f 2/3 gl/2 j for A )1 — — b

as l
D =ab'"a2X

b
—1/2

sh for h&
4

(41)

and

growing mode initially. Note that the spherical wave
number corresponding to k, / =Rok, is given to be

[aA;„tl(2Pf )] =0.05A;„t for P=3.5 and f =—,'.
That is, l =2000, SOO, and 12S for A;„&=200, 100, and
SO, respectively.

By employing a normalization

In obtaining Eq. (35), we used Eq. (23). Therefore, for the
value of @=0.3, the criterion is improved to A;„~&1SO
and it becomes relatively easy to design high-gain targets.
For more consistent evaluation we use the self-consistent
growth rate [23]

y =a&kg —Pkvo, (36)

where a =0.9 and P=3 to 4. In Eq. (36), vo is the mass
ablation velocity and given to be vo=m/p„where m is
the mass ablation rate and p, is the peak density at the
ablation front. Note that Eq. (36) has become widely ac-
cepted as a result of accord among two-dimensional
simulations [33—35]. In using Eq. (36), we need to evalu-
ate the ablation velocity vo. For this purpose, we assume
the following relation:

Pf
In solving Eq. (40), we assume a and b are given by Eq.
(30), although it is not clear at the present time that Eq.
(30) is applicable to the turbulence at the ablation front.

For a given value of s, Eq. (40) can be solved numeri-
cally. In Fig. 4, the time development of the distance of
the mixing layer is shown for the cases of in-Bight aspect
ratio equal to 200, 100, and 70, where in evaluating s, we
assumed p=3.5 and f= ', . In Fig. 4, t—he dash-dotted line

is for the classical growth rate (kg)'/ instead of Eq. (36).
By comparison, we see that the development of the rnix-

ing layer is drastically reduced for relatively lower in-
flight aspect ratio.

In Fig. 5, the distance of the mixing layer at t =t~ is

vota =fAR;„t, (37)

where f is a fraction of the ablated mass to the initial
mass of the target and is less than unity. Using Eqs. (31)
and (37) and neglecting the effect of spherical geometry,
Eq. (36) can be reduced to the form

1
y = a+kRo PkRo t„

0.0'7

QO5—

This indicates that for a given f, the target design with
reduced in-Aight aspect ratio enhances the ablative stabil-
ization effect.

Equation (38) is used in solving Eq. (19) together with
the diffusion coeKcient of Eq. (21). In solving Eq. (19),
we use Eq. (24) for gk and assume that the dominant
wave number k is given as the minirnurn of b/h and k
where k is the wave number at which the growth rate in
Eq. (38) has the maximum. This assumption is reason-
able because the mode with k =k is the predominant

0
0 1.0

FIG. 4. Time development of the mixing layer h at the abla-
tion front of accelerated targets with different in-Bight aspect
ratio. A;„z is the in-Bight aspect ratio and the dash-dotted line
represents the case in which the classical growth rate y =(kg)'
is used.
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O. I

0.07

I i i ) i I I I

&Rjnf/R~ ( = 1/Ajr)f)

h/Ro (classical)

line. It is found from this figure that the requirement for
avoiding shell break up, which is defined by Eq. (32), re
stricts the target design to an in-Aight aspect ratio less
than about 70. A;„f & 50 may be required to take account
of a safety factor.

V. SUMMARY AND CONCLUSION

Q05

50 100 200

I & t & r [

5 10

Ajp f ( = Rg+Rjri f)

t l I i J
20 50

FIG. 5. The growth distance of the mixing layer as a function
of the parameter s or the in-flight aspect ratio A;„f. The solid
line is the case estimated with the self-consistent growth rate of
the Rayleigh-Taylor instability, while the dash-dotted line is the
case with the classical growth rate y=(kg)' . The dashed
curve represents the thickness of the shell in flight. The figure
indicates that an implosion with 3;„f(50 to 70 can survive
without suffering shell breakup.

shown with the solid line as a function of the parameter s.
For comparison, the mixing distance for the classical
growth rate given in Eq. (I) is plotted by the dash-dotted
line for the assumed value of az =1. It is clearly seen
that a decrease of s, which corresponds to the increase of
the ablative stabilization, leads to a drastic reduction in
the growth of the turbulent mixing layer at the ablation
front. For given values of P and f, the horizontal axis is
replaced by the in-Bight aspect ratio. The value of the
in-fiight aspect ratio for the case with p=3.5 and f =—', is
shown in the figure. The choice of f =—', is appropriate
from a point of keeping the hydrodynamic efticiency high
enough. A simple rocket model [36] yields that the hy-
drodynamic efficiency is only a function of f and it has a
maximum at about f=0.8. In the figure, the in-flight
thickness of the target is also plotted with the dashed

We have introduced a simple, nonlinear diffusion equa-
tion describing the turbulent mixing phenomena. The
equation, which is based on the quasilinear theory, ex-
plains the scaling law obtained experimentally by Read
[8]. In the limit of narrow turbulence spectra, the
diffusion equation has the same form as that obtained
with the analogy to molecular diffusion equation. The
nonlinear diffusion equation shows that the thickness of
the turbulent mixing layer is proportional to the square
of the growth rate of the Rayleigh-Taylor instability. Us-
ing this equation, we studied how ablative stabilization
reduces the growth of turbulent mixing in the ablation
front region.

Within a simple estimate for a constant-acceleration
model, we have evaluated the condition under which
shell breakup does not take place as a result of turbulent
mixing. This condition requires an in-Bight aspect ratio
less than I4, if we use the classical growth rate
y=(kg)'~ . It is found, however, that ablative stabiliza-
tion relaxes this condition and targets imploded with an
in-Right aspect ratio less than about 50 to 70 survive
without suffering shell breakup as a result of turbulent
mixing.

In the present paper, we did not take account of feed-
back to the growth rate from the density modification by
diffusion. There should be some reduction in the growth
of the instability due to the resultant diffused structure of
the density. In addition, such diffusion possibly increases
the effective ablation velocity because mass diffusion Aux
is additional to the one-dimensional mass ablation Aux.
This may enhance the ablative stabilization effect, conse-
quently relaxing the restriction on the target design.
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