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Fluid hydrogen at high density: Pressure dissociation
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We develop a model for the Helmholtz free energy of fluid hydrogen at high density and high temper-
ature. This model aims at describing both pressure and temperature dissociation and ionization and
bears directly on equations of state of partially ionized plasmas, as encountered in astrophysical situa-
tions and high-pressure experiments. This paper focuses on a mixture of hydrogen atoms and molecules
and is devoted to the study of the phenomenon of pressure dissociation at finite temperatures. In the
present model, the strong interactions are described with realistic potentials and are computed with a
modified Weeks-Chandler-Andersen fluid perturbation theory that reproduces Monte Carlo simulations
to better than 3%%u~. Perturbations of the internal partition functions of H and H2 arising in the nonideal
fluid are treated self-consistently with a recently developed occupation probability formalism. Theoreti-
cal Hugoniot curves derived from our model are in excellent agreement with experimental data. Pres-
sure dissociation occurs over a narrow density range above 0.5 g/cm' and is remarkably temperature in-
sensitive. Molecules remain the dominant species even at high densities.

PACS number(s): 52.25.Jm, 64.30.+ t, 05.70.Ce, 65.50.+m

j.INTRODUCTION

The past decade has seen tremendous progress in our
understanding of dense matter physics, on both the ex-
perimental and theoretical fronts. Dynamic compression
experiments have revealed exciting new phenomena, such
as pressure dissociation in (N2) [1,2], an increase of con-
ductivity upon compression in an initially insulating ma-
terial (Oz) [3], and they have probed intermolecular po-
tentials down to separations as small as 1.5 A. In partic-
ular, experiments on hydrogen and deuterium have deter-
mined the H2-Hz interaction potential at high densities
[4]

Cryogenic samples of solid molecular hydrogen have
been compressed to pressures of about 2.5X10 atm, re-
vealing a phase transition in the molecular solid and evi-
dence for reduction of the band gap at the highest pres-
sure reached [5—7]. This last phenomenon holds the
promise of observing the much sought after metallic state
of hydrogen in the near future.

On the other hand, the recent discovery of global oscil-
lations in Jupiter [8] as well as the achievements of helio-
and astero-seismology [9,10] give us new information on
the interior structure of stars and giant planets, and con-
sequently on the properties of matter under extreme ther-
modynamic conditions. They offer a unique chance to
probe the accuracy of the theoretical models and stress
the need for improved equations of state (EOS), particu-
larly in the regime of partial ionization. Indeed, pressure
ionization, as well as molecular dissociation, represents a
thorny problem in modeling the properties of dense
matter. Important advances in statistical physics over
the last decade offer the opportunity for significant im-

provements in our comprehension of this poorly under-
stood phenomenon.

Most of the extensive theoretical work on hydrogen
has focused on the zero-temperature isotherm where it is
now widely recognized that ionization may be accom-
plished by dissociation of the molecular phase into a
monatomic metal or by closure of the conduction gap,
which leads to a conducting molecular state [11,12]. ~e
develop a free-energy model for fluid hydrogen which ad-
dresses the long-standing, difficu1t problems of pressure
dissociation and ionization.

The simplified phase diagram shown on Fig. 1 helps to
make a few essential points. In the low-density, low-
temperature region, the hydrogen fiuid is formed essen-
tially of neutral particles and consists of atoms and mole-
cules. Molecules dominate at low temperatures
(log&OT 5 3.5) [13] and they dissociate into atoms as the
temperature is raised. At still higher temperatures,
atoms ionize to form a low-density plasma of protons and
electrons. The solid curves delimiting these three regions
indicate a degree of dissociation (or ionization) of 50%%uo

and are based on the simple Saha equations for ionization
equilibrium. At densities above logI~= —2, atoms and
molecules interact strongly and form a nonideal fiuid.
Consequently, the Saha equations become inappropriate
at such high densities and it is not possible to estimate
the chemical equilibrium in this dense fiuid with simple
theories. The dotted line labeled r, = 1 indicates the den-
sity at which the nearest-neighbor separation between
electrons is equal to the Bohr radius, ao, a qualitative es-
timate of the location of pressure ionization. Above the
line r, =1, hydrogen is fully ionized. The dash-dotted
line on the left-hand side of the figure at log, ~= —0.2 is
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in turn in Secs. III—V. The model is summarized in Sec.
VI where we describe the computation of the chemical
equilibrium between H2 and H. Comparison with experi-
mental results and the analysis of the results will be done,
respectively, in Secs. VII and VIII and concluding re-
marks are in Sec. IX.

II. GENERAL CONSIDERATIONS
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FIG. 1. Simplified {p,T) phase diagram for hydrogen. A few
physical regimes are identified: above the line I = 1, the plasma
is strongly coupled, and electrons are degenerate above the line
c+=kT. Protons are classical below the line A=a. The dash-
dotted line near log&~=0 is the theoretical melting curve of H2
(Ref. [4]). Adapted from Fig. 2 of Ref. 67.

the theoretical melting curve for H2 [4]. Two important
issues pertaining to the plasma are the degree of electron
degeneracy s~/kT (sF is the Fermi energy of the electron
gas) and the strength of the Coulomb coupling between
the charged particles I =e /akT (a is the average inter-
proton spacing). Protons remain classical over most of
this diagram except above the line A=a (A denotes the
de Broglie wavelength of the protons) where quantum
effects become important. Above the line I = 1, nonideal
Coulomb effects play an important role. At I =178, the
classical one-component plasma freezes into a solid lat-
tice. However, since hydrogen is a very light element,
quantum effects may inhibit this transition.

We have developed a unified free-energy model for hy-
drogen by first considering two limits in the phase dia-
gram, namely, a domain of 1ow densities and tempera-
tures, where only neutral species are found (H and Hz),
and a high-temperature and/or high-density domain,
where ionization takes place. This paper describes the
former model and focuses on the phenomenon of pressure
dissociation; we will discuss the problem of pressure and
temperature ionization in a future companion paper. We
have not extended our calculations in the domain where
solid metallic hydrogen may exist. The structure of the
paper is as follows. In the next section, we discuss briefly
the so-called physical and chemical pictures and give an
overview of our free-energy model for the H-H2 mixture.
Each contribution to this free-energy model is discussed

A. Chemical picture and the factorization
of the internal partition function

Equation-of-state models can be divided into two broad
categories. In the physical picture, [14,15] only "funda-
mental" particles are considered (electrons and nuclei),
which interact through Coulomb potentials. In principle,
one would like to solve the Schrodinger equation for the
system with quantum-statistical many-body theory, ob-
taining a spectrum of bound electronic states, forming
"atoms" and "molecules" with density-dependent eigen-
values, together with free electronic states. This ap-
proach is appealing since it corresponds to our intuitive
conception of the actual behavior of matter and is also
formally exact. In regimes where bound states occur, the
physical picture involves the Planck-Larkin formalism,
which arises from a high-temperature expansion of the
Coulomb interactions. This approach has been applied to
partially ionized plasmas up to I = I, where I is the plas-
ma coupling parameter [14]. Even though the physical
picture probably offers the most rigorous treatment, the
calculation of an EOS for the study of pressure ionization
with these theories is a formidably complex problem and
to our knowledge, it has not been applied at the lower
temperatures relevant to this phenomenon.

On the other hand, the chemical picture [16—19] as-
sumes that bound configurations, like atoms and mole-
cules, retain a definite "identity, " and interact through
pair potentials. This approach has a serious drawback.
At densities corresponding to pressure ionization, the
electrons in bound configurations become delocalized,
bound species lose their identity, and pair potentials be-
come meaningless [20]. Both descriptions give the same
excellent results at low density or at high temperature
[21], where interparticle correlations are small and in the
fully ionized regime, where the distinction becomes ir-
relevant. In view of the practical limitations of the physi-
cal picture, the chemical picture emerges as the simpler
practica1 alternative.

Within the framework of the chemical picture, our
EOS model is based on the free-energy minimization
technique [16]. The approach is particularly simple.
Given a mathematical model for the Helmholtz free ener-
gy of the system as a function of total volume, tempera-
ture, and particle numbers, Ii ( V, T, [N; ] ), the chemical
equilibrium of the mixture is obtained by minimizing I' at
axed V and T, subject to the stoichiometric constraints
imposed by the chemical reactions taking place in the
system. Contrary to expansion techniques, contributions
with strongly nonlinear dependence on density or temper-
ature can be included with no additional effort. This
method, which ensures thermodynamic consistency, be-
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comes truly useful when the partition function of the sys-
tem is assumed to be factorizable into kinetic, internal,
and configuration contributions.

B. Free-energy model

Hydrogen molecules and atoms are the dominant
species at low temperatures (log, oT ~4) and low densities
(log&~SO), as shown in Fig. 1, and we consider a free-
energy model for a binary mixture of H and H2. Because
all particles are very nearly classical in this regime, we
can factorize the partition function and treat the small
quantum effects with a semiclassical approximation. If
we make the additional assumption that the internal lev-
els of atoms and molecules are only weakly affected by
the presence of nearby particles (this point is developed in
Sec. IV), the Helmholtz free energy separates into ideal,
configurational, internal, and quantum contributions
[16,18]:

The first term on the right-hand side represents the pure-
ly translational degrees of freedom of the atoms and mol-
ecules, which follow a Maxwell-Boltzmann distribution
of velocities. The last three contributions are discussed
separately in the following sections.

IIIo THE CONFIGURATION FREE ENERGY' Eg~~f

The configuration free energy arises from the forces be-
tween particles, described with interaction potentials. In
the regime where hydrogen atoms and molecules exist in
a Quid state, they behave as classical particles. It is thus
appropriate to describe these interactions with classical
theories, even though the interaction potentials may im-
plicitly have a quantum-mechanical origin.

A. Interaction potentials

The interaction potentials are central to the concept of
the chemical picture and to the computation of the
configuration free energy. We have evaluated the
configuration term in the context of pairwise additive po-
tentials, which tremendously simplifies the calculation.
At high densities, this approximation becomes incorrect
and we must consider X-body interactions with density-
dependent potentials, based on dificult quantum-
mechanical simulations. Fortunately, this problem can
be partly circumvented by using experimentally deter-
mined effective pair potentials which include many-body
effects implicitly.

1. The Hz-Hz potential

Numerous experiments on molecular hydrogen and
deuterium have probed this interaction potential over a
wide range of pressures and temperatures. The Young
and Ross potential [4] reproduces a wide variety of exper-
imental results. It is based on an analysis of the latest
shock-compression experiments performed on Quid hy-
drogen and deuterium [22—24]. The Young and Ross po-
tential is fitted to experimental data using an equation of

state based on Auid perturbation theory, assuming a
spherically symmetric pair potential. The resulting

is especially suitable for our purposes, since shock
2 2

compression achieves high-temperature and high-
pressure final states (T=7000 K, P=0. 8 Mbar), typical
of the very regime we want to study. It also reproduces
the pressure isotherms of low-temperature static
compression experiments [25,26]. By construction, the
many-body effects present at the highest pressures
reached by the experiments are implicitly included in this
effective pair potential The. latter is about 40% softer
than the ab initio PH H potential, clearly demonstrating

2 2

the importance of many-body effects at high pressures.
Recently, static compression experiments at room tem-

perature have indicated that the Young and Ross poten-
tial may be too stiff'to describe the static results [7]. The
resulting effective potential, which was not available at
the time we completed our work, is about 10—15 % softer
than the Young and Ross potential. While this does not
necessarily imply that the Young and Ross potential is
inappropriate at higher temperatures, we have repeated a
small subset of calculations with this new potential which
are presented in Sec. VIII.

The H2 molecule has axial, rather than spherical sym-
metry, and it is justified to ask whether the use of a spher-
ically symmetric potential is appropriate. The answer
hinges on the rotational properties of the molecule, since
the anisotropic potential of a free rotator can be averaged
over angles to take advantage of the simplicity of spheri-
cal symmetry. The anisotropic ab initio PH H departs

2 2

from spherical symmetry by about 8% [27]. In the zero-
temperature molecular solid, this leads to hindered rota-
tion, with the rotational degrees of freedom "freezing" at
a pressure of 0.375 Mbar [28]. Monte Carlo simulations
[29] indicate that the rotation temperature rises from its
free-molecule value of 85 to 1257 K at a density of 0.5
g/cm and that as the density increases, molecules stop
rotating freely and oscillate around their equilibrium
orientation in the crystal before complete orientationa1
ordering occurs. Quantum Monte Carlo (MC) simula-
tions indicate that the pressure required for rotational
freezing is around 1 Mbar [30]. Recently roton modes
have been observed up to pressures of 1.62 Mbar, an indi-
cation that rotation is not completely hindered at these
pressures [31]. On the other hand, it appears that if hy-
drogen becomes a rotationally ordered solid, band over-
lap occurs, causing metallization [32]. If this argument is
correct, H2 apparently does not form a rotationally or-
dered solid up to the highest pressures currently achieved
in the laboratory (=2.5 Mbar).

Clearly, the issue of the rotational state of H2 mole-
cules in the solid phase is still controversial. On the oth-
er hand, we are interested in the fIuid phase, at finite tem-
perature, where the thermal energy of the molecules is
likely to be larger than the rotational barrier [4].

In addition, because the PH H potential was fitted to
2 2

experimental data by assuming that the molecules were
free rotors in the Auid phase, any effects of hindered rota-
tion and potential asymmetry present in the data are im-
plicitly included in the effective potential. Considering
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the lack of experimental evidence for hindered rotation,
we consider that the use of this spherically symmetric
effective potential is justified, at least in the domain ex-
plored so far by experiments on Quid molecular hydro-
gen.

2. The H-H potential

Unfortunately, no similar experimental result exists for
the PH H and the PH H potentials. The Schrodinger equa-

2

tion for an ensemble of four particles, two electrons in the
field of two axed protons, has been solved, using a large
basis of wave functions [33]. Both cases where the elec-
trons are in the single state S =0 ('X bonding orbital,
leading to the formation of an H2 molecule) or the anti-
bonding S = 1 X triplet state have been considered in the
range 1~ r ~ 10 a.u. Because of the large differences be-
tween the singlet- and triplet-state potential surfaces, the
spin dependence of the H-H interaction must be taken
into account. Moreover, the 'X bonding potential would
allow H atoms to form H2 molecules. Thus, we could
only describe the system with the physical picture which
is restrained to low densities and high temperatures. We
avoid the complexity of the problem by using a semiclas-
sical formalism for averaging spin-dependent interactions
[34]. In this approach, the quantum-mechanical elec-
tronic spin degrees of freedom are mapped onto classical
spin degrees of freedom. For hydrogen atoms, in particu-
lar, the spin averaged pair interaction potential becomes
the weighted average of the singlet and triplet potential
functions:

The resulting potential does not have any bound states;
the minimum of the attractive well is at r =6.2 a.u. and
is 20.2 K deep. As a consequence, two atoms interacting
with this spin averaged potential will not bind to form a
molecule. We stress that in a consistent model based on
the chemical picture it is a requirement for interaction
atoms to retain their identities since H2 molecules are al-
ready included in the model.

It is convenient to develop analytic fits to tabular po-
tentials. At the high temperatures we are considering,
the softness of the repulsive part of the potential must be
carefully treated. We have adopted a "generalized"
Morse potential of the form

p(r)=E[ye

—(1+y) ' + Ae "'" " '] (2)

Note that we recover the Morse potential when A =0,
y= 1 and si =s2. All parameters in Eq. (2) are fitted to
tabulated values for P(r).

3. The H-H2 potential

The H-H2 potential is derived from the potential sur-
faces of the H3 system [35]. They are given in terms of
expressions to evaluate the total energy of three H

"atoms" in any configuration, based on a calculation
similar to the one described above for H-H. To obtain a
spherically symmetric H-Hz pair potential, we have fixed
two atoms at the equilibrium distance between the nuclei
of a H2 molecule and performed an angular average of
the potential of the third atom and the "molecule" for
various separations. After this work was completed, we
became aware of more accurate methods to obtain angu-
lar averages of nonspherical potentials [36] indicating
that a simple angular averaged potential is about 35%
too large in the repulsive region. In our model, the
angle-averaging procedure affects only the H-H2 poten-
tial, which enters as one of the three contributions to
F„„&and whose weight peaks at 50% of molecular disso-
ciation only. Given the large uncertainty of the real be-
havior of the H-H2 potential at high density, we assume
that this imprecision in our calculations does not bear
heavily on our results concerning pressure dissociation
and pressure ionization. The effect of uncertainties in the
potentials is estimated and discussed in Sec. VIII C.

We use the fitting formulae of Porter and Karplus [35]
to compute PH H in the range 1 r 4.6 a.u. These au-

2

thors warn that their Eqs. (18a) and (18b) give inaccurate
results for r ~3 a.u. This inaccuracy is rather serious,
and we have therefore used the results of Kolos and Wol-
niewicz [33], (which these equations are meant to approx-
imate) instead. We find that this makes a substantial
difference for r ~2. 5 a.u. [37] Porter and Karplus [35]
did not study the attractive part of the potential. We can
get some guidance here from the use of so called mixing
rules [38]," developed to evaluate the parameters of the
mixed interaction potential from those of the pure corn-
ponents. Experimental studies of a variety of molecular
mixtures have demonstrated their validity. For the at-
tractive well, we have

EV
=

Elt BJJ

which gives cH H =25.5 K and rH H =6.35 a.u.
2 2

The fitted coefficients for PHH and PH H are given in
2

Table I, and all three potentials used in the actual EOS
calculation are shown on Fig. 2. The final fits agree with
the tabulated values to better than 10%.

Clearly, little faith can be put on these potentials at
very small separations. The ab initio potentials were
computed for r ~ 1.0 a.u. ; inside that value, the analytic
fits are convenient extrapolations at best. The same can
be said of the effective H2-Hz potential which is known
experimentally down to about 2.8 a.u. When the separa-
tion between particles (or protons) becomes of the order
of 1 a.u. , the electronic wave functions are so distorted
from their isolated forms that it is impossible to talk
about "atoms" and "molecules" anymore. This is the re-
gime where the chemical picture fails.

This lack of knowledge of the very-short-range poten-
tial is of little consequence at the temperatures and densi-
ties relevant for the H-H2 binary mixture, because parti-
cles do not approach each other closely enough to be sub-
jected to the innermost part of the potential.
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TABLE I. Coefficients for i))H H and PH H [Eq. (2)]. order, we obtain the so-called "high-temperature approx-
imation" (HTA) [40] to the free energy:

r
s, (A ')

s, (A )
r' (A)

6(A )

H-H

20.2
0.4615
1.6367
1.2041
3.2809
0

B. Fluid perturbation theory

H-H2

25.5
0.6

1.4740
1.4740
3.3603

1.851 X 10
8.2392

+2
('Qi )o= fP,(r)g(r)d'r, (3)

where X is the number of particles, V the volume of the
system, g(r) is the pair correlation function of the refer-
ence system, and the potential P is separated in reference
and perturbation parts: P(r) =P„gr)+Pi(r).

F„„t=Fo+('9, )o .

Here Fo is the free energy of the reference system and
the second term (HTA) is given by

To compute the configuration free energy associated
with the three interacting potentials described above, we
used the well-known fIuid perturbation theory, applied
extensively to the study of the thermodynamic properties
of liquids near melting [39]. Among all existing perturba-
tion schemes, we elected to use the expansion Weeks-
Chandler-Andersen (WCA) expansion [40], whose su-
periority has been assessed in numerous applications by
comparison with experimental data and computer simu-
lations [39,41]. Truncating the expansion after the first

I I I

i

I I I

i

I

I. Choice ofa reference potential

The evaluation of the expansion, up to and including
the HTA term, requires the knowledge of the free energy
of the reference system and of its pair correlation
function(s). The only reference system appropriate to de-
scribe molecular Auids and for which analytic expressions
for the free energy as well as for the pair correlation func-
tions exist is the hard-sphere Quid [42—44].

2. Modification of the WCA theory

The configuration free energy of two-component Auid
perturbation theory can be written as

A

tg0

20

I I I I I I I I I

2
r (A)

coIlf Hs + y f Hs( )pyperi(
i,j =1

Xd r+FHo, (4)

where p= I lkT, x; =N, /N is the number concentration
of species i, FHs is the hard-sphere free energy of a binary
system [42] and the second term on the right-hand side is
the HTA contribution.

The last term, FHO represents all the higher-order
terms of the expansion, that are difficult to evaluate and
which can be approximated at low density by the
random-phase approximation (RPA). For reasons de-
tailed below we have dropped this term.

The hard-sphere radii entering the calculation of FHs
and FHTA are determined by the WCA criterion which
reads, for a two-component system:

2

x;x,I, =0 i,j =1,2,
i j =1

where I, is given by [41]"

40 I I I I I I I I I I I I I I t

3 4 5 6

FIG. 2. H2-H„H2-H, and H-H interaction potentials used in
the EOS calculation (defined by Eq. (2) with coefficients given in
Table I and Eqs. (I)—{5) of Ref. [4]). H2-Hi, long dashes; Hz-H,
short dashes; H-H, solid line, (a) repulsive cores on a logarith-
mic scale. (b) Long-range attractive part on a linear scale.

I, = f y; (r)exp[ PP,'; (r)]dr-
+ g;. r exp —",. r —1 dr. 6

tj

Here the functions y, (r) are defined by y","(r)
=gj(r)exp[pp, (r)], whereas A, denotes the break point
for the separation of the interaction potential P; (r) into
reference and perturbation parts, and o.; stands for the
corresponding hard-sphere diameter. Equation (6) does
not, in general, have a unique solution for [o.», o,z, o.

I2,2
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thus leading to poor predictions of the pair correlation
functions of the ffuid [45]. On the other hand, the set of
three coupled equations

I11=0, (7a)

I22 =0, (7b)

(7c)

does have a unique solution. The three hard-sphere di-
ameters cr; en. tering Eq. (7) are related by the additive
condition for the hard-sphere system:

~12 (~11+~22)

We first solve Eqs. (7a) and (7b) simultaneously for cr11
and o.22. The approximation proposed by Grundke and
Henderson [44] is used for the functions y; (r) for
r (o, , while the functions g; (r) are computed in the
Percus-Yevick approximation [46] with the Verlet and
Weis correction [47] which brings the Percus-Yevick
g;~. (r) to within =2% of the computer simulations re-
sults.

Even though the WCA form of hard-sphere perturba-
tion theory is quite successful in studies of cryogenic
molecular ffuids, where kT=E (E is the depth of the po-
tential minimum [Fig. 2(b)] ), it suffers from several
difficulties in the high-temperature, high-density regime
in which we are interested. First, the use of a hard-
sphere Auid to approximate the reference potential can-
not be justified a priori at temperatures so high that the
softness of the repulsive potential becomes noticeable
(k T /e ) 10). This constitutes a serious conceptual prob-
lem in the application of hard-sphere perturbation
theory. Second, at densities near the hard-sphere melting
transition, the WCA criterion overestimates the hard-
sphere diameter and leads to a metastable reference sys-
tem. This prompted Kang et al. [48] to suggest a
different potential separation which reduces to the WCA
case at low enough densities. This scheme was further
modified for binary mixtures and the validity of this
latter method and of the application of quid perturbation
theory at high pressure and high temperature has been
assessed by comparison with MC calculations [49]. The
internal energy and pressure obtained with this modified
WCA theory agree with the MC results within less than
3%%uo in most cases, a factor of 4—10 improvement over the
WCA results, even at high temperature (T = 10000 K)
and at high densities (p= 1 g/cm ) where WCA gives very
poor or even unphysical results.

As mentioned in Sec. IIIB2, we have dropped the
RPA term in writing Eq. (4). The RPA constitutes an ap-
proximation to the higher-order terms which is useful
when the perturbation is weak and the density is low. If
these conditions are not met, the RPA term diverges, a
situation usually associated with a phase transition in
simple systems (the so-called "RPA catastrophe"). With
the potential separations we have considered, the condi-
tions of validity of the RPA are violated at densities well
below those where a RPA catastrophe could be associat-
ed with any expected critical phenomenon. Since we find
that Eq. (4) gives a good description of the thermodynam-
ics of our binary mixture when using appropriate potential

The contributions of the bound states of atomic and
molecular hydrogen are given by

2

F,„,= —kT g X, lnZ;

2= —kT g X, lngg; e
i=1 a

where o. runs over all bound states of species i, and g;
and c; are the multiplicity and the eigenenergy of state
a, respectively. In the case of isolated atoms, Eq. (9)
leads to a divergent partition function Z, , as the sum
over cz involves an infinite number of terms which in-
creases monotonically for large o. This difficulty is usual-
ly alleviated by recalling that no particle is truly isolated
and that interactions with other particles provide a form
of cutoff in the sum over states, introducing a density
dependence in Z;. This section is devoted to the effect of
neighboring particles on the internal partition function of
bound species, which is a key problem when treating
pressure ionization. In the context of the H-H2 model, it
is interesting to inquire whether particle interactions in-
duce pressure dissociation of the molecules prior to pres-
sure ionization.

(9)

A. The occupation probability formalism

The close relationship between the density dependence
of the partition function and the interparticle interactions
has not always been appreciated in previous work, some-
times resulting in gross statistical-mechanical incon-
sistencies in the free-energy model. Recently, Hummer
and Mihalas [17] (hereafter, HM) have developed an oc
cupation probability formalism which formally guarantees
statistical-mechanical consistency between the descrip-
tion of interactions and the internal partition function
(IPF) in the model for the free energy.

Consider a one-component system with a nonideal free

separations, we conclude that the higher-order terms of
the perturbation expansion are small and that the rela-
tively large RPA term is a very poor approximation of
these terms and must therefore be ignored.

In this section we have pointed out that it is possible to
use Quid perturbation theory based on a hard-sphere
reference system and the HTA approximation to com-
pute the thermodynamics of a high-temperature binary
mixture with good accuracy, provided that particular
care is taken in choosing the separation of the interaction
potentials into reference and perturbation parts. Com-
parison with MC simulations shows that our scheme
gives a good description of the configuration term for a
mixture of hydrogen atoms and molecules over the full
range of temperatures and densities of interest. We stress
that the hard-sphere diameters o.

;~ which characterize the
interactions in the H-H2 mixture are determined thermo-
dynamically by application of the WCA criterion. As a
consequence, the cr;J are temperature and density depen-
dent, leading to an implicit dependence of the
configuration energy on p and T.

IV. BOUND STATES AND THE INTERNAL
FREE ENERGY, I";„,
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F=F;s Nk T—lnZ +f—g N
CX a

where Z is a modified partition function

(10)

Z =g N~g~e
a

and the occupation probability co of state a is defined by

a
co =exp —P

The fractional population of state a will be given by

N /N=cog E /Z. (12)

The occupation probability measures the probability that
a state identical to a level of an isolated atom can actually
exist in the midst of perturbations by neighboring parti-
cles. It expresses the reduction in phase space available
to the state. It is computed self-consistently with the
nonideal term; that is, the effect working inside bound
particles is consistent with the outside interactions. The
last term on the right-hand side of Eq. (10) has often been
ignored in previous work, but it is required to ensure
statistical-mechanical consistency. Note, in particular,
that iff is linear in N, the last two terms of Eq. (10) can-
cel and the nonideal term has been entirely absorbed in
the occupation probability, u . In this case, the total free
energy is no longer explicitly dependent on the popula-
tion of each excited level (N ) and the internal free ener-

gy reads

F;„,= —kT g N~ lnZ;

2

kT g N~ ln g—co; g; e (13)

This formalism off'ers a number of advantages over
work which relies on ad hoc cutoff procedures for the
IPF, or even on more sophisticated models where an at-
tempt is made to provide qualitative consistency between
the perturbed internal states and the nature of the in-
teractions (for example, using hard-sphere interaction
and the confined atom model for the internal states). In
particular, for any reasonable form of interaction f, the
co decrease fast enough with a to ensure convergence of
the partition function as the strength of the interaction
increases. By construction, the co are smooth, monoton-
ic, and continuous functions of p and T, causing states to
disappear gradually from the partition function sum.
This preserves the continuity of the free energy and its
derivatives, avoiding the discontinuities that appear in
models in which states are lost in discrete steps. Due to
the probabilistic interpretation of the occupation proba-

energy f which depends on the population of each bound
state, N . Its free energy is

F=F;q N—kT lnZ+ f,
where N =g N and Z =g g exp( f3e—). This free
energy can be rewritten as [17,50,51]

bility, it is a simple matter to account for a number of in-
dependent interactions. This formalism provides a physi-
cally plausible description of pressure dissociation and
ionization.

Physically, we expect that as the density is raised, not
only do states disappear from the IPF, but also their
eigenenergy must shift towards the continuum of un-
bound states. The occupation probability formalism does
not involve such level shifts. Instead, it uses the eigenval-
ues of the isolated particle, simplifying tremendously the
task of evaluating the IPF. Is this a reasonable descrip-
tion of the internal structure of bound species interacting
with their neighbors? The equation of state is not sensi-
tive enough to the details of the internal structure of
bound species to provide a good diagnostic of various
choices for the co and the energy eigenvalues of the
states. On the other hand„spectroscopic experiments
probe the internal levels directly. Here, we depart tem-
porarily from our H-H2 model to discuss spectroscopic
experiments on plasmas. This is not directly relevant to
the "neutral model" but it illustrates the point clearly.

In these experiments, one observes the emission line
spectrum of a relatively dense plasma. Nonideal effects,
screening eff'ects in the plasma, and the Stark efFect
broaden and shift the lines and introduce asymmetries
into the line profiles. The pressure shifts observed experi-
mentally for hydrogen and hydrogenic ions are very small
[52,53] even at electronic densities as large as
N, /V=10 ' cm [54]: typically, M, /A, ~3X10 . Such
small shifts are entirely negligible in an EOS calculation.

In support of the HM formalism, a direct comparison
with measurements of the emissivity of a T =1.1 X 10 K
hydrogen plasma at electronic densities up to N, =10'
cm 3 [52] is possible. The simulation of the emissivity
based on the occupation probability formalism agrees
beautifully with the experimental result [55]. It is of
course possible that the agreement will deteriorate when
similar experiments are performed with denser plasmas.

It must be pointed out that a substantial dependence of
the internal structure on the interparticle interactions
effectively precludes the factorization of the configuration
and internal contributions from the total partition func-
tion, requiring instead that the two be computed in a
self-consistent manner. In view of the experimental evi-
dence and of the lack of a reliable theory to compute the
energy level shifts —which must occur at very high
densities —self-consistently with the interactions, the use
of unperturbed energy levels in the occupation probabili-
ty formalism is justified at low densities (say, log, ~ ~ —2)
and seems reasonable at higher densities.

There is evidence that the heuristic occupation proba-
bility formalism, with its assumptions and slight incon-
sistencies which arise in practical applications, does pro-
vide a quantitatively correct EOS. Oscillation spectra of
solar models computed with an EOS based on this for-
malism show a much improved agreement with the ob-
served frequencies than had been obtained previously [9].
Also, a comparison of equations of state for a hydrogen
and helium mixture under conditions found in the solar
interior based on (1) the chemical picture and the occupa-
tion probability formalism and (2) an entirely indepen-
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dent method based on the physical picture, shows a near-
ly perfect agreement in the second derivatives of the free
energy [21], which are notoriously sensitive on details of
the model.

We have elected not to use the so-called Planck-Larkin
(PL) partition function which has been einployed in both
the physical and chemical pictures for equations of state
of partially ionized plasmas. The PL function arises nat-
urally in the physical picture as a cancellation between
scattering states and highly excited states in the two-body
interaction term (second coefficient in the viral expan-
sion). Application of the PL partition function leads to a
nicely convergent sum in Eq. (9). When applied to F;„, in
a model based on the chemical picture and the factoriza-
tion of the partition function [Eq. (1)], the PL partition
function can be formally interpreted as an occupation
probability [55]. However, the resulting level occupa-
tions fail to reproduce the experimental emissivity data of
Ref. [52], as demonstrated in Ref. [55]. As a conse-
quence, it would be incorrect to use the PL partition
function in the context of our free-energy model. We
stress that this does not preclude applying the PL parti-
tion function in the physical picture [56].

How do we actually compute the occupation probabili-
ties for the mixture of hydrogen atoms and molecules?
To simplify the notation, consider a one-component sys-
tem. Exploiting the nature of interatomic potentials, HM
use an excluded-volume interaction to represent the
strong repulsive cores, which represent the main features
of these potentials. Their configuration free energy is
[17]

F„„t= gN N. (o +o )3,conf 12y a a a a (14}

where o. is the hard-sphere diameter corresponding to
state a. Equation (14) can be compared to our expression
for F„„t given by Eq. (4). Remember that the
configuration term must depend on the level populations
(N ) to provide dissolution of states described by the oc-
cupation probability. As we shall see below, Eq. (14)
represents the lowest-order approximation (first order in
packing fraction) to the hard-sphere fluid free energy
entering Eq. (4). At the relatively low densities to which
Hummer and Mihalas [17] limit their study (p~ 10
gcm ), this is a reasonable choice for F„„t. It has the
advantage of being easily linearized by invoking a low ex-
citation approximation (see below). This issue is impor-
tant since in practice, this formalism is useful only when

E„„&is linear in the level populations, leading to cancel-
lation of the last two terms in Eq. (10). Otherwise, the to-
tal free energy retains an explicit dependence on the X,
and the free-energy minimization must be performed
with respect to the populations of all levels of all species.
Solving the chemical equilibrium of such a large number
of species would be computationally prohibitive.

Our choice of F„„&aims at describing the nonideal
physics of the dense Quid and is accordingly a much more
complicated function of density than Eq. (14). It exhibits
strongly nonlinear behavior, except at very low densities.
It must also be realized that the interaction potentials de-

(4—3y, )i}= g N, Nj(cr;+cr )
ij =1

where y, is defined in Ref. [42].
The configuration free energy given by Eq. (4) accounts

only for interactions between particles in their ground
state. To obtain occupation probabilities for excited
states and the desired density-dependent cutoff in the sum
over states in the IPF, we modify F„„&,but only in the
term of the hard sphere -free energy (FHs) which is linear
in g. The remaining, nonlinear, terms in F„„&are evalu-
ated as if all particles were in their ground states. The
nonideal free energy now reads

mkT + 3
Fconf 12' X Nial a'(gaia aj a' }

Ii,j,a, a
(15a)

NkT(4 3y—, )i}— (15b)

+FHs (15c)

+ gN;N fg; (r)PP~ "(r)der .
1

I,j
(15d)

Expressions for FHs, yi, and il are given in Ref. [42]. La-
tin indices (i,j ) represent the different species of the mix-
ture while greek indices (a, a ) label their internal levels.
The last three terms on the right-hand side depend only
on N;, the total population of species i, summed over all
internal states. They can only affect the relative popula-
tions of the species (in chemical equilibrium), not the
internal partition functions. The second term [Eq. (15b)]
is introduced to avoid double counting of the term linear
in rj between Eqs. (15a}and (15c). The cancellation is not
exact, since it assigns ground-state diameters to all parti-
cles.

The N; dependence of F„„t is still quadratic [Eq.
(15a)]. We linearize this term by invoking a low-
excitation approximation [17], in which a particle in a
given state (i,a) interacts with neighbors which are as-
sumed to be all in their ground states (a'= 1). In this ap-
proximation, the first term on the right-hand side of Eq.
(15) becomes

scribed in Sec. IIIA apply to atoms and molecules in
their ground state. Data on excited atomic or molecular
potentials of the nature required for our calculation is
virtually nonexistent. As a consequence, it is not possible
to include the HTA term in the calculation of the occu-
pation probability. It is possible, however, to relate our
F„„&to the HM formalism by modifying it slightly and
introducing an additional approximation. In essence, we
use the same expression for the occupation probability as
Ref. [17], while keeping the nonlinear part of Eq. (4) in-
tact. This comes at the price of a small inconsistency in
the model, as discussed below.

The linear term in the expansion of FHs in powers of
the packing fraction g is exactly the excluded volume free
energy, that is
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m.kT 3

12V,

co; =exp QN (o 1+. o; )
12V

(16)

The validity of this approximation can be demonstrated a
posteriori. Table IX, which is discussed in detail in Secs.
VIII C and VIII 0 indicate that the degree of excitation
of H atoms remains extremely low at the temperatures
considered here. In the case of the H2 molecule, the de-
gree of electronic excitation is more relevant than the vi-
brational excitation reported in Table IX, simply because
a; depends weakly on the vibration level, while it in-
creases rapidly when electrons are promoted to higher
levels (see Sec. IVB). Electronic excitation of H2 is even
less pronounced than for the H atom, due to a higher first
excitation energy (11.4 eV compared to 10.2 eV).

As discussed in Ref. [17], the argument of the exponen-
tial in Eq. (16) is uncertain by a factor of 2, an incon-
sistency inherent to the linearization procedure. Because
the excitation remains low throughout the temperature
domain of interest, this problem is not severe. Most par-
ticles are in their electronic ground states whose popula-
tion is not only affected by the somewhat erroneous co;&,

but also by the nonlinear terms represented by Eqs.
(15a)—(15c) which dominate at the high densities where
60, , departs significantly from unity (see Sec. VIII D).

Equation (16) shows another interesting property of the
occupation probability formalism which allows the attri-
bution of a different radius for each state, resulting in an
individualized state by state cutoff -as -the strength of the
interaction increases. In particular, high lying states are
destroyed first, as expected.

Our application of the HM formalism aims at ensuring
statistical mechanical co-nsistency between nonideal effects
and the internal levels of bound species However t.his for-
malism is truly useful only when I'„„f is linearized in
terms of the level populations, thus limiting the physical
content of the occupation probability to rather elementa-
ry interactions: in this case, an excluded volume treat-
ment. As a consequence, the dissolution of states as
given by the co; will not be as eScient as the strength of
the nonlinear interactions (F„„&)would indicate. There is
thus a continuing need for a better description of the rela-
tion between interparticle forces and internal levels of
bound species.

g N, N, (o, , +o., )',
12V, ,. ~ "

and the occupation probability of level o, of species i is
r

based on a thermodynamic criterion (WCA) and are tem-
perature and density dependent (see Sec. III B 2). For the
diameters of excited states, we have used simple scaling
laws based on basic results of quantum mechanics. The
case of atomic hydrogen, for example, is relatively sim-
ple. For the "size" of an excited state, we propose to use
the exact result of quantum mechanics for the electronic
wave function. Using the expectation value of r for a
state with quantum numbers n averaged over the degen-
erate l values [58], we obtain

cr„= (Sn +1), (17)

which is normalized so that the ground state diameter is
o.H, the WCA diameter for H.

The IPF of atomic hydrogen reads

where

2 —Phc( 127 736.3 —109 677.6/n )
H

n =1

2

to„=exp g N, . (o „+o.„)3
12V,.

(18)

where r& and r2 are the hydrogenic LCAO orbital radii
for atoms 1 and 2, respectively, and r„„„is the internu-
clear separation. The latter can be found in the literature
[60]. The hard-sphere diameter assigned to state a with
vibrational quantum number n is

2
an 2 42 1a 2a eq, nr

n+ —,
'

7rmHc W, —W, X,(n+ —,') A,

h is the Planck constant, c is the speed of light, and o., is
given by Eq. (17). The energy levels are measured rela-
tive to the (n =O, 1=0) ground state of the H2 molecule
[59].

To determine the size of a molecular state, we again es-
timate the spatial extent of the electronic wave function.
As the latter is rather complex, we have used the linear
combination of atomic orbitals (LCAO) method, which
gives reasonable values of energies and bond lengths for
diatomic molecules (H2 is a textbook example). We ap-
proximate the electronic wave function of the molecule
by the LCAO wave function corresponding to the spec-
troscopic "terms" of that state. The "radius" of the mol-
ecule is defined as

r =
—,'(r, +r2+r„„,),

B. Internal levels of atoms and molecules

In the occupation probability formalism, the hard-
sphere diameters are arbitrary. While HM [57] use
reasonable physical arguments to estimate their hard-
sphere diameters, the relation we have established be-
tween our choice of I'„„&and the occupation probability
yields the ground-state values naturally. These cr;& are

(19)

where r, is the equilibrium nuclear separation and 2.42
A normalizes Eq. (19) so that cr10=crH, and o H is the2' 2

WCA diameter of H2. The last term on the right-hand
side of Eq. (19) is a correction for nuclear vibrational
motion, 8', and 8;X, being vibrational spectroscopic
constants and m H is the mass of the H atom.
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g'(2S + 1 )(2J + 1 )
a=1 n =0 J=O

X
—Pc(a, n, J)~ane (21)

where E(a, n, J) is given by Eq. (20). The occupation
probability is

2

co „=exp g X, (o., i+a „)12V,
(22)

where o „ is given by Eq. (19).
We emphasize that the co depend on the density but

TABLE II. Multiplicity g' for the H& molecule. For AWO

states, the assumed degeneracy of even and odd symmetry states
implies g' =4.

~nuc

Xg
Xg
X„
X„
II,E

odd
even
odd
even

all

ortho-H&
para-H&
para-Hz
ortho-H2

We have discussed the possibility of hindered rotation
at high densities. Recently, a decrease in the vibration
frequency of Hz molecules at pressures above 1 Mbar has
been measured [5]. In the conditions of interest for this
model, this frequency drop is less than 4%, and the net
eA'ect on the EOS is only a fraction of a percent, and we
neglected it altogether. The e6'ect of this vibron softening
on pressure ionization is discussed in paper II.

Molecular hydrogen has 46 bound states, each with vi-
brational and rotational sublevels. The energy of state a
with vibrational number n and rotational number J is cal-
culated from [60]

E(a, n, J)= T,(a)+ W, (a)(n + —,
'

) —W, X, (a)(n +—,
'

)

+B,(a)J(J+I)—D, (a)J (J+1)
a, (—a)(n + —,')J(J+1)—2170.3 cm ', (20)

The constant 2170.3 cm ' is introduced to make e(1,0,0)
coincident with the ground state of the molecule. This
expression includes anharmonicity corrections, deviations
from the rigid rotator approximation, and vibration-
rotation coupling [61]. The various constants T„W„
O' X„B„D„ande, for each electronic state are taken
from Ref. [60].

Since H2 is a homonuclear molecule, the total wave
function of the nuclei must be antisymmetric under ex-
change of the two protons. Ortho-hydrogen (S„„,= 1)
has odd J values only and para-hydrogen (S„„,=O) has
even J values only, for X,II,5, . . . states, and vice ver-
sa for the X„,II„,h„states. The adopted multiplicities g'
are given in Table II.

Finally, the molecular partition function reads

also on the temperature through the hard-sphere diame-
ters o.;J.

V. THE QUANTUM CORRECTION, I'

It is possible to account for weak quantum eCects due
to the finite size of the particles by using the semiclassical
approximation when taking the trace of the HamiItonian.
This leads to the well-known A expansion of the free en-
ergy [62]. The first nonvanishing term of the expansion
Ieads

(23)

Pli Pl .

P7l,J
=

rn;+m

is the reduced mass of particles of types i and j.

gl. COMPUTATION OF THE CHEMICAL EQUILIBRIUM

We now summarize the main assumptions and approx-
imations of our model free energy for a mixture of hydro-
gen atoms and molecules.

(1) The model is based on the chemical picture and we
assume factorizability of the partition function and classi-
cal particle statistics.

(2) We account for weak quantum diff'raction eFects
with the Wigner-Kirkwood A correction.

(3a) The configuration free energy is evaluated in the
framework of the WCA fluid perturbation theory in the
HTA approximation, after suitable modification for ap-
plication to a binary mixture at high densities and tem-
peratures. We consider only pairwise interactions.

(3b) We use an experimental H2-H2 potential, and ab
initio H-Hz and H-H potentials. The latter results from a
simple averaging of the bonding and antibonding H-H
potentials and cannot sustain bound states.

(4a) The energies of bound levels are those of the isolat-
ed atom or molecule and the eFect of interparticle in-
teractions is described with an occupation probability
formalism.

(4b) Occupation probabilities are computed from the
lowest order, excluded volume part of the configuration
free energy.

(4c) The ground-state hard-sphere diameters are for-
mally given by the WCA criterion and are temperature
and density dependent. Diameters for excited states are
obtained by simple scaling laws.

(4d) The practical realization of the occupation proba-
bility formalism requires the linearization of the excluded
volume interaction (the low excitation approximation).
Bringing all contributions to our free-energy model to-
gether, we obtain
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PF
x; ln

V m;kT

2 —pc,—1 —g x;1ngg; ai; e ' +[PFHs(N„Nz, cr„o.z, V, T)/N (—4 3—y, )i)]
2=1 a

2

+ g x;xj fPPPJ.'"(r)g~ (N. , /V, Nz/V, o„o.z, r)d r
ij =1

+
z
—g fV PJ(r)g~ (N, /V, Nz/V, o„o.z, r)d r,

48(kT)
(24)

BF
AH+

aF
dNH =0,

"2

where the changes in particle number are related by the
stoichiometric coefticients of the chemical reaction:
dNH = —2dNH .

In a chemical equilibrium calculation, N is not con-
stant in general, but the total amount of matter involved
does not change. Then it is more appropriate to choose
the free energy per gram, or equivalently, the free energy
per proton, as the quantity to be minimized. The in-
dependent variables of the specific free energy are
(xi,p, T), in terms of which the condition for equilibrium
can be written as

BF
BX1

(25)

We have used a robust algorithm for locating the
minimum of a function without using its derivative
known as Brent's method [63]. The minimization algo-
rithm is stopped when it has found the minimum free en-
ergy to within one part in 5X10' . Because F has a

where I, is the mass of particles of species i, and co; is
the occupation probability of level a of species i, as
defined by Eqs. (18) and (22). The summation index i la-
bels the species and we identify atoms (H) as i = 1 and
molecules (Hz) as i =2. The first term on the right-hand
side (rhs) is the translational, Maxwell-Boltzmann free
energy. The third term on the rhs is the nonlinear contri-
bution of the hard-sphere reference fluid, the linear part
being absorbed in the internal structure (second term on
the rhs). The perturbation potential P~""(r), is defined by
Eqs. (1)—(5) of Ref. 4 and Eq. (2) and by the poten-
tial separations discussed in Ref. [53] and

g J. (N, /V, Nz/V, o„crz, r) is the pair correlation func-
tion of the hard-sphere fluid. All other symbols have
been defined previously. The concentrations of each
species are imposed by the conditions of chemical equilib-
rium and are constrained by x1+x2 = 1.

This free-energy model has three independent vari-
ables, which we have chosen as x1, T and the mass densi-

ty p. Once the three independent variables are fixed, we
first solve Eqs. (7a) and (7b) for cr i and o.z, then cr iz fol-
lows by Eq. (8). Solving Eq. (7c) gives the proper form of
the potential separation for P,z(r). Each term of Eq. (24)
can then be evaluated to obtain the total free energy.

The chemical equilibrium is given by the condition

"broad" minimum, we prefer to specify the convergence
criterion on F rather than on x1. The corresponding un-
certainty on x1 is about 10 . For a representative selec-
tion of (p, T) points, we have verified that our free-energy
model has a single minimum. This ensures that Eq. (25)
has only one solution.

VII. CGMPARISON WITH EXPERIMENTAL RESULTS

0.2
6 &

DENSITY (g/cm )

O. I 5 O. I

I

0.08
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l 5 20
V (crn /mole)
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FIG. 3. 300-K pressure isotherm of Quid molecular hydro-
gen. The solid curve represents experimental data (Ref. [26]).
Theoretical calculations are shown by various symbols: Ref.
[4], open circles; the sEsAME EOS library No. 5251 (hydrogen:
Ref. [68], squares); Ref. [69], (triangles); and this caiculatiou
(solid circles). Experimental uncertainties are reAected in the
H2-H2 potential used in all but the SESAME calculation. The
magnitude of this uncertainty in the theoretical compression
curves is shown by the error bar.

We assess the reliability of our model by comparing the
predicted thermodynamics with experimental results.
Unfortunately, the data available in this regime is limited
to a static compression isotherm at room temperature
and shock compression experiments.

Figure 3 shows the 300-K pressure isotherm up to the
solidification point (about 5.4X 10' dyn/cm ). Under
these conditions, the fiuid is purely molecular. Our P-V
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relation (solid circles) is in excellent agreement with the
calculation presented in Ref. 4 (open circles). Compar-
ison with the pressure, density, and packing fraction of
the Quid along the melting curve calculated by these au-
thors again shows excellent agreement. Our computa-
tions also reproduce the experimental data [26] quite
well, (solid curve in Fig 3.). The exception to this is the
region V (10 cm /mol, where both our calculation and
that of Ref. [4] yield too high a pressure. This is prob-
ably due to the uncertainty inherent in the theoretical
calculation, where a 4%%uo uncertainty in the predicted
volume arises from the large volumetric error bars in the
experimental data (both shock tube and diamond anvil
experiments) used to fit the effective pair potential [4].
This uncertainty is shown by the error bar in Fig. 3. This
excellent agreement with both Ref. [4] and the experi-
mental results is not surprising since we use the same Hz-
H2 interaction potential which was constructed to fit a
broad set of experimental results. It indicates, however,
that the differences between the two models are inconse-
quential at this low temperature.

The most constraining data come from the high tem-
peratures and pressures achieved in shock compression
experiments, where the compression curve (P, V) of the
sample follows a "Hugoniot curve". Using the Rankine-
Hugoniot jump conditions across the shock front, one ob-
tains the Hugoniot relations [64]. Only one of these is of
interest to us:

U —Uc =—2(P +Po )( Vo —V),

0.1—

0.05—

0
8

I I

10 12
V(cm3/mole of H2)

14

FIG. 4. Single-shock Hugoniot curve of H2. The experimen-
tal data is drawn from Refs. [22] (squares) and [23] (circles).
The solid curve shows the theoretical Hugoniot curve derived
from the model given by Eq. (24). Points along the curve are
given in Table III.

molecular dissociation, which we find is not negligible in
the double-shock Hugoniot curve of deuterium (see
Tables III and IV).

which simply reAects the law of energy conservation.
Here V, P, and U represent the specific volume of the
sample, the pressure and the specific internal energy, re-
spectively. The subscript 0 refers to the initial state (in
front of the shock). The single-shock Hugoniot curve for
hydrogen is shown in Fig. 4, with points along the
theoretical curve given in Table III. Double-shock exper-
iments have been performed on deuterium (D2), but not
on H2. Since the high compression reached in these ex-
periments constitutes an important test of our model, we
have also generated Hugoniot curves for D2. The model
is easily adapted to this case by changing the masses of
the particles and using the appropriate spectroscopic con-
stants and multiplicities in the IPF. The corresponding
single-shock and rejected Hugoniot curves are shown
along with the data in Fig. 5 and Table IV. The theoreti-
cal Hugoniot curves match the data extremely well, espe-
cially the more accurate measurements of Ref. [22]
(squares). Our calculation agrees with the data as well as
if not better than that of Ross, Ree, and Young [4].
Their model differs from the present work on the follow-
ing points. (1) In the calculation of F„„r,they make use
of the variational perturbation theory with a soft sphere
reference potential, as opposed to the WCA theory sup-
plemented by our new potential separations. (2) They
treat the internal levels of the molecule in the rigid rota-
tor and harmonic oscillator approximations for the Isolat-
ed molecule, i.e., they do not include density effects on
the IPF. (3) Most importantly, we introduce an addition-
al degree of freedom into the model by allowing for

VIII. RESULTS AND DISCUSSION

TABLE III. Points along the hydrogen Hugoniot curve of
Fig. 4, computed from our model. The last column gives the
concentration of H atoms, x H

=N„ /(NH +NH ).
2

T
(K)

20.18
266
431
722

1222
2014
3246

V
(cm'/mol)

28.430
14.092
12.993
11.912
10.857
9.808
8.742

P
(GPa)

2.97X 10-'
0.966
1.56
2.54
4.14
6.71

10.96

0
0
0
0
0

1.77 X 10
2.41 X 10

We have applied the free-energy model [Eq. (24)] in the
domain —6&log, op &0 and 2.10&logIOT &4.26. Below
log loT 3 ~ 3 hydrogen is purely molecular, and our equa-
tion of state reproduces previous calculations [4]. At
temperatures above logIOT=4. 1, temperature ionization
becomes important, and pressure ionization takes place
around log&QIG=0. We present a subset of our results in
Tables V—VII for three isotherms showing the effects of
temperature and pressure dissociation. For each density
point in the table, we give the concentration of atomic H
at chemical equilibrium, along with the total pressure,
internal energy, and entropy.
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loglo U

(erg/g)
log

leap

(g/cm )

TABLE V. Equation of state along the log&0T=3. 46 isotherm. For each density p, the entries are
the number concentration of atoms, the pressure, the internal energy, and ihe entropy.

log, op logloS
XH (erg/cm') (erg/g K)

—4.0
—3.0
—2.0
—1.5
—1.0
—0.6
—0.2

0.0

3.0709 X 10-'
9.8613 X 10-'
3. 1183X 10-'
1.7396X 10
9.9680X 10
9.1813X 10
6. 1927X 10-'
1.0931 X 10-'

7.0824
8.0800
9.1006
9.6546

10.3311
11.0980
12.0686
12.5436

11~ 5791
11.5S23
11.5455
11~ 5499
11.5775
11.6933
12.0840
12.3716

8.9864
8.9371
8.8842
8.8538
8.8160
8.7727
8.7129
8.6939

with other work of similar scope. Since they have all
used one form or another of the hard-sphere model to ac-
count for interactions between neutral species, we discuss
briefly their choice of hard-sphere diameters in light of
our results. All these calculations use fixed diameters
which do not depend on the density and the temperature
(Fig. 6). The value of oH used by Ebeling and Richert
[65] (triangle) corresponds to the low-density value of one
of our coolest isotherms, where the abundance of H
atoms is found to be small (see Fig. 7). Then this choice
of o.

H seems too large. Since the hard-sphere free energy
and pressure behave in first approximation as po. , we ex-
pect the derived free energy and pressure to be largely
overestimated. This can have severe consequences on the
thermodynamics of the system, especially on pressure dis-
sociation and ionization. On the other hand, the size of
the H atoms appears underestimated in the calculation of
Mihalas, Dappen, and Hummer [57] (square), leading to
the opposite conclusion. This explains why they had to
introduce an ad hoc modification of the configuration free
energy to induce pressure ionization at low temperatures.
Their hard-sphere diameter for the ground state of the
molecule, however, is 2.90 A (not shown on Fig. 6) which
is a relatively large value. This combination of large o.

H 2

and small o.
H favors pressure dissociation and works

against pressure ionization. This relatively extreme
choice of diameters explains why Mihalas, Dappen, and
Hummer find fully pressure-dissociated hydrogen prior to
pressure ionization, a major qualitative diff'erence be-

tween their results and the present work. On the other
hand, the hard-sphere diameter chosen in Ref. 66 for the
H atom (solid circle), applied at log, oT 4. 1 is in better
agreement with our high-temperature values. In view of
our calculations, it appears that these interaction models
[57,65] are too crude for a reasonable description of this
high-density regime and would probably fail to reproduce
the experimental data presented in Sec. VII.

B. Molecular dissociation

Figure 7 shows the atomic hydrogen concentration xH
as a function of density for the same isotherms as Fig. 6
(solid lines). Between p=10 and 10 'g/cm, it shows
strong recombination as given by the Saha equation. At
higher densities, strong nonideal correlation efFects come
into play, affecting the internal levels and favoring molec-
ular dissociation and ultimately leading to pressure ion-
ization. Temperature dissociation effects are clearly
displayed by the low-density part of the isotherm se-
quence.

A striking feature of Fig. 7 is that pressure dissociation
occurs over a relatively narrow density range which is in-
dependent of temperature. This indicates that pressure
dissociation is a pure density effect, an intuitively predict-
able result. This probably originates in the similar behav-
ior of the repulsive parts of the H-H and Hz-H2 potentials
and the nearly constant ratio of the molecular and atomic
hard-sphere diameters, as mentioned above. The

TABLE VI. Equation of state along the log&0T=3. 78 isotherm. For each density p, the entries are
the number concentration of atoms, the pressure, the internal energy, and the entropy.

log )(p
(g/cm')

—4.0
—3.0
—2.0
—1.5
—1.0
—0.6
—0.2

0.0
0.2

8.7175 X 10
5.6867 X 10-'
2.5873 X 10-'
1.5862 X 10-'
9.5754 X 10-'
7.5364X 10
1.2001 X 10
2.3739X 10 '

3.5616X 10-'

log loP
(erg/cm')

7.6442
8.5423
9.4729
9.9883

10.6002
11.2568
12.1103
12.5561
13.0054

log~o U

(erg/g)

12.3847
12.2199
12.0626
12.0158
12.0013
12.0514
12.2803
12.4827
12.7096

log ioS
(erg/g k)

9.1547
9.0607
8.975S

8.9388
8.9018
8.8683
8.8310
8.8166
8.7996
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TABLE VII. Equation of state along the log&pT=4. 10 isotherm. For each density p, the entries are
the number concentration of atoms, the pressure, the internal energy, and the entropy.

log lop
(g/cm )

—4.0
—3.0

—1.5
—1.0
—0.6
—0.2

0.0
0.2

9.9714X 10-'
9.7325 X 10
8.2624 X 10
6.6910X 10- '

4. 8759X 10
3.6578X 10
3.2618X 10
3.6017X 10-'
4. 1035X 10

log )pP
(erg/cm')

8.0154
9.0062
9.9583

10.4274
10.9464
11.4772
12.1878
12.6020
13.0344

log)p U

(erg/g)

12.5680
12.5567
12.4946
12.4378
12.3879
12.3855
12.4955
12.6216
12.7934

logic
{erg/g K)

9.1998
9.1426
9.0693
9.0264
8.9828
8.9480
8.9127
8.8958
8.8780

inhuence of the repulsive part of the potentials on our re-
sults will be examined in Sec. VIII C.

Molecules are still the dominant species (R60%) at
high densities, whereas hydrogen atoms are nearly absent
for log, oT~3.5. For the three hottest isotherms, xH=1
at low densities, indicating the necessity of including ion-
ization in the model.

C. Inhuence of the interaction potentials

In this section, we explore the sensitivity of our results
to the interaction potentials and to the occupation proba-
bility formalism. We have recomputed two isotherms
(log, oT =3.62 and log, oT= 3.94) with different free-
energy models. The original free-energy model has been
modified by including separately the three following
changes.

1.0

O.B

0.4

0.2

0.0
—2 —1

&Og o P (g/&TTI )

FIG. 7. Concentration of atomic hydrogen along isotherms.
The temperature increases from log&p T=3.46 (bottom} to
log&pT=4. 26 (top), with a constant spacing of hlog&pT=0. 16.
The solid curves correspond to our free-energy model [Eq. (24)]
using the potentials giving by Eqs. (1)—(5) of Ref. [4] and Eq. (2).
For the log&pT=3. 62 and log&pT=3. 94 isotherms, we show the
effect of varying the interactions: Quid perturbation theory with
softened potentials (short dashes), excluded volume interaction
(short dash-dotted), and noninteracting Quid model (long
dashes).

(1) For PH H we used a new potential derived recent-
2 2

ly [7] by fitting experimental data up to P =0.265 Mbar.
The repulsive part of this potential is reduced by about
10—15% compared with the Young and Ross potential.
Also, we roughly account for X-body effects in the H-H
and the H-H2 potentials by decreasing the stiffness of the
ab initio potentials arbitrarily by about 20% and 35%, re-
spectively, under the assumption that N-body effects are
more pronounced in nonspherically symmetric systems.
The new coefficients are s, = 1.5874 A ' and y =0.45 for

H and s, =s2 = 1.3984 A ', y =0.55, and A = 10
for PH H (see Eq. (2) and Table I). The new hard-sphere

2

radii derived from these softened potentials are less than
4% smaller than the old ones and the ratio o.

H /o. H is
2

still nearly independent of p and T.
(2) We removed the nonlinear contribution in our

configuration free energy, keeping only the excluded
volume interaction, and solved the Saha equation with
the occupation probabilities (18) and (22) in the IPF.
This is essentially the model developed by HM [17] ex-
cept that we use temperature- and density dependent
hard-sphere diameters.

(3) Finally we performed a pure Saha calculation, tru-
cating the atomic IPF arbitrarily after 200 levels. In this
case, the occupation probabilities of all levels are set to
unity. This shows the effect of the occupation probability
formalism best.

Figure 7 exhibits the sensitivity of pressure and tem-
perature dissociation on the interaction model. When
compared to PH H, the new PH H is not as repulsive as

2 2'

in the original calculation. As a consequence, the
softened potentials increase pressure dissociation, but by
less than 10%. As expected, the onset of pressure disso-
ciation is shifted to slightly lower densities, but it still
occurs over a narrow density range for both isotherms.
On the other hand, the two Saha-like models fail com-
pletely at high density where they predict complete
recombination, a well known shortcoming of this theory.
This stresses the necessity of the inclusion of nonlinear
effects in the configuration free energy at high density. It
also shows that a simple excluded volume interaction
cannot lead to pressure ionization. At odds with this re-
sult, Mihalas, Hummer, and Dappen [57] have no
difficulty in reaching full pressure dissociation. We attri-
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13.0

12.0

11.5 l

—2 —1

&ogio p (g/&ITI )

FIG. 8. Internal energy isotherms along the same isotherms
as in Fig. 7. The temperature increases from bottom to top.
The solid curves correspond to our free-energy model using the
potentials given by Eqs. (1)—(5) of Ref. [4] and Eq. (2). For the
log&OT= 3.62 and log&OT= 3.94 isotherms, we show the effect of
varying the interactions: Quid perturbation theory with softened
potentials (short dashes), excluded volume interaction (short
dash-dotted), and noninteracting Quid model (long dashes).

bute this apparent discrepancy to their rather large value
of o.

H (which makes the interaction between molecules
2

much stronger) and to their relatively small value of o H,
a combination which will strongly favor dissociation.

As expected, the softened potentials lead to lower pres-
sures for given p and T. The two equations of state
depart from each other above log&~= —0.6 but the
difference remains below 25% even at the highest densi-
ties (log, o)o =0.4).

Figure 8 shows the inAuence of these various interac-
tion models on the internal energy, U. At low density all
models recover the perfect gas limit. This limit can be
bet seen for the coolest isotherm (log, oT=3.46) where U
is independent of density. Hotter isotherms depart from
this behavior because of temperature dissociation, which
brings a density dependence to U. The log&0T=3. 94 iso-
therm computed with 200 levels in the H atom and occu-
pation probabilities of unity (upper long-dashed line) has
a higher internal energy than the other three models.
This is caused by increased thermal excitation of the
internal levels of H which is not hindered by the e6'ective
cuto6' of the occupation probabilities. Note that the
thermal excitation of H is still fairly low at this tempera-
ture (Table IX) and that limiting the partition function of
H to the ground-state level with m, =1 would bring it
into better agreement with the other model, at low densi-
ty. At high densities, the repulsive forces between parti-
cles become dominant and the internal energy rises steep-
ly with density. Again, the calculation based on softened
potentials has a slightly lower internal energy, as expect-
ed. As discussed above, the model with no interactions
(long dashes) tends to full recombination at high densi-
ties, where it reaches a constant internal energy value.
The model with only excluded volume interaction (dot-

dashed), which is linear in density, lies between the two
extremes we have just discussed, but it fails completely to
reproduce the rapidly rising internal energy obtained
with realistic potentials. As we will see below, these non-
linear interactions are essential in the description of pres-
sure dissociation, and ultimately pressure ionization.

D. Relative importance of the different contributions
to the free energy

Figure 9 shows the relative importance of the di6'erent
contributions to the free energy along representative iso-
therms. The vertical scale is the logarithm of the abso-
lute value of the free energy per proton (bound or un-
bound) in units of kT The .absolute value is required
since the free energy can change sign along an isotherm.
Some of the curves are interrupted at the zero crossing
point, where the logarithm diverges. Positive and nega-
tive contributions to the free energy are labeled (& 0) and
( (0), respectively. The various contributions to the total
free energy are as follows: F is the total free energy (thick
solid curve); F

&
is the ideal, translational contribution; F2

is the internal free energy of hydrogen molecules and
atoms, including the occupation probability formalism;
F3 is the configuration free energy of the H-H2 mixture
(hard-sphere free energy and perturbation), without the
linear„excluded-volume part of the hard-sphere free ener-
gy, which is implicitly included in F2 [see Eq. (15)];F4 is
the quantum correction for atoms and molecules. Note
that the behavior of these curves rejects not only the
density dependence of the corresponding terms but also
the variations in chemical equilibrium along the isotherm
as shown in Fig. 7. It is possible to isolate the intrinsic
behavior of the free-energy contributions in regimes
where the chemical equilibrium is nearly independent of
p and T.

Figure 9(a) shows the log, oT=3.46 isotherm which is
purely molecular for log, ~( —0.2 (see Table I) except
for a small amount of atoms at the very low-density end.
The molecular Quid is nearly ideal up to log, ~= —1, as
indicated by the small value of F3. The total free energy
is essentially the sum of the translational and the internal
structure contribution of the rnolecules. The configu-
ration free energy arising from the Auid perturbation
theory is the sum of the hard-sphere reference free energy
and of the HTA term, both of which are linear in p in
this regime. The linear part of the former is absorbed in
the Fz curve, via the occupation probability. All that
remains in F3 is the linear HTA term, which reAects the
attractive part of the potential at these densities. Hence
F3 is negative. As the density is raised, the (positive)
nonlinear contribution of the hard-sphere energy in-
creases and ultimately overcomes the attractive contribu-
tion. At still higher densities (log&~ & —1), the potential
separation of Kang et al. [48] takes precedence and the
HTA term itself becomes positive, and grows with densi-
ty to become even larger than the nonlinear hard-sphere
contribution. At this point, the Auid is strongly nonideal,
and the total free energy is dominated by F3. Because of
the strong density dependence of F3, it is clear that the
pressure arising from the configuration terms is much
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TABLE VIII. Details of the internal partition function of H
and H2 along the log&OT=3. 46 isotherm. The occupation prob-
ability of the ground state is co&. A measure of the degree of ex-
citation is given by N2/N&, the ratio of the populations of the
first excited state to that of the ground state. For the molecule,
level 2 is the first excited vibrational state.

log&op

(g/cm ) N2/N 1

H
N, /Ni

—0.6
—0.2

0

0.999
0.940
0.547
0.308
0.193
0.157

0.134
0.133
0.130
0.127
0.125
0.124

1.000
0.955
0.642
0.407
0.259
0.212

5.99X10-"
4.08 X10-"
1.44 X 10-"
2.43 X 10-"
2.63X10 "
3.03 X 10

in the isotherms shown in Figs. 9(b)—9(d) displays a densi-

ty dependence which is qualitatively similar to that of
Fig. 9(a). The contribution which shows the largest vari-
ation is F2, a direct consequence of the changes in chemi-
cal equilibrium. In addition, as the temperature increases
for a given density, the number of excited states increases
[see Eq. (12)], leading to larger particles which are more
strongly affected by the interactions with their neighbors.
By comparing all four figures, we make the following ob-
servations.

The temperature dependence of F3 does not lend itself
to a simple analysis in terms of the microphysics. The
HTA term has an explicit 1/T dependence and at high
density, there is also an implicit temperature dependence
in the hard-sphere reference system and in the HTA con-
tribution, via the hard-sphere diameters, o.;, the break
point of the H-H2 potential, A, », and the pair distribution
functions g;~ (r). As expected, F3 generally decreases as
the gas becomes more ideal at higher temperatures. Nev-
ertheless, the configuration free energy still contributes
substantially to the total free energy and cannot be
neglected.

The temperature dependence of the internal free ener-

gy (F2) is rather complicated. To appreciate the interplay
of thermal excitation of bound states and the density
dependence of the IPF sum, we give the occupation prob-
ability of the ground state (co, ) and the population of the
first excited state relative to the ground-state level of both
H and H2 for two isotherms in Tables VIII and IX. As
expected, ~& decreases monotonically with increasing p
and decreasing T. In both cases, the interactions get
stronger with larger packing fractions and the ground
state is affected more drastically. The ground state is
barely perturbed for densities below log, op= —2. This is
true of both H and H2. The ratio Nz/N& is a measure of
the degree of excitation, combining the effects of thermal
excitation and "removal" of states via co, and co2. For the
H atom, we consider the first excited electronic level,
while for the H2 molecules, the first excited vibrational
level is more meaningful. While the degree of excitation
of H2 is nearly independent of p, it rises rapidly with tem-
perature because we are considering temperature of the
order of the vibrational temperature of the molecule

TABLE IX. Same as Table VIII for log&OT=3. 94.

log )OJ(

(g/cm')
H2

N2 /Nl
H

N2 /Nl

—2
—1
—0.6
—0.2

0
0.2
0.4

0.999
0.955
0.666
0.450
0.296
0.243
0.208
0.186

0.538
0.537
0.528
0.520
0.511
0.506
0.503
0.500

1.000
0.969
0.753
0.558
0.391
0.331
0.289
0.262

5.00 X 10-'
3.73 X 10
4.33X10 '
3.09 X 10-'
1.01 X 10
1.80X10-"
4. 19X10 "
1.39X 10

(=6100 K). Because of the large excitation energy of H,
the atoms remain essentially all in the ground state. The
N2/N& ratio for H shows a much stronger dependence on

p than for H2, simply because the ratio of excited- to
ground-state diameters [Eqs. (17) and (19)] is much larger
for H.

In the low and intermediate density range
(logic% —1), F2 increases with T (but logio~Fz~ de-
creases since F2(0) as the atomic concentration in-
creases (see Fig. 7). Since thermal excitation of H is
negligible in this regime, it reAects essentially the thermal
excitation of H2 and temperature dissociation. For the
hottest isotherm [Fig. 9(d)], full dissociation is achieved
and E2 begins to drop, due to the onset of thermal excita-
tion of H [Eq. (12)]. In the high-density regime, tempera-
ture dissociation is still present but the main physical
effect is the increasing number of excited states in both
the atomic and molecular IPF. It stresses the necessity of
including pressure ionization in the model. Both effects
increase the internal free energy, but depending on the
sign of F2, ~F2~ can either increase or decrease. The
quantum contribution decreases monotonically with tem-
perature since Fz behaves as I/T in first approximation.

We can summarize the behavior of the different contri-
butions to the free energy as follows.

(1) The Quid is nearly ideal up to log, ~= —2. The
effect of strong correlations becomes important and even
dominant at higher densities.

(2) The correlation term is essentially linear in p and is
quite small for log, op

~ —2. Then it becomes of the order
of the internal structure contribution for
—0.5~log&op~ —0.3 and is the dominant term above
the latter value. In this model it is at the origin of pres-
sure dissociation since the particles lie in their electronic
ground state at the low temperatures considered here.
The configuration energy contribution decreases slowly
with T.

(3) For densities less than p=0. 5 g/cm, the internal
structure contribution is the major contribution to the to-
tal free energy besides the pure translational term. It in-
creases with density, first when molecular excited states
are removed from the IPF, and then when pressure disso-
ciation occurs. It increases also with temperature,
reAecting temperature dissociation and suggesting the im-
minence of temperature ionization. A consistent treat-
ment of the internal and configuration free energies is
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essential for a correct description of these physical effects.
(4) Finally the quantum contribution I'„ is the smallest

at all densities and temperatures. This term, however,
exhibits a very strong density dependence, leading to a
non-negligible contribution to the pressure at high densi-
ties and low temperatures.

IX. CONCLUSION

We have developed a free-energy model for a Quid H2-
H mixture, which is intended to describe the
phenomenon of molecular dissociation, caused by both
temperature and pressure effects. This is a highly de-
tailed model for the EOS of a dense mixture of hydrogen
molecules and atoms. We have used interatomic and in-
termolecular interactions based on realistic potentials.
The configuration free energy is calculated within the
framework of a fluid perturbation theory, based on a
hard-sphere reference system whose temperature- and
density-dependent diameters are determined by a thermo-
dynamic cviterion, . The validity of this configuration en-
ergy has been assessed by comparison with Monte-Carlo
calculations based on the same potentials. The inhuence
of the interactions on the internal levels of atoms and
molecules is calculated self consistent-ly with an occupa-
tion probability formalism. This free-energy model suc-
cessfully compares with the available shock-wave experi-
mental results, the 300-K static compression isotherm
and reproduces the accurate H2 EOS of Ref. [4] up to the
melting curve. Our model produces pressure and temper-
ature dissociation continuously as either the density or
the temperature is raised. Pressure dissociation is found
to occur swiftly over a narrow density range which is in-
dependent of the temperature, while temperature dissoci-
ation is a more gradual effect. Modifying the stiffness of
the interaction potentials by 15—35% does not change
qualitatively the results. We find that it is essential to in-
clude the nonlinear behavior of the configuration energy

and an occupation probability formalism in the internal
partition function for a proper treatment of pressure and
temperature dissociation. Moreover, under these extreme
thermodynamic conditions, it is necessary to include a
suitable treatment of the softness of the repulsive part of
the interaction potentials if the model is to be compared
successfully with experimental results.

This model represents a significant effort to describe
accurately the properties of a dense mixture of interact-
ing atoms and molecules in chemical equilibrium. It has
immediate applications in the study of the outer layers of
giant planets and the analysis of shock compression ex-
periments on hydrogen, where partial dissociation may
occur. Applications of this model to experiments on oth-
er diatomic molecules are straightforward. In a future
companion paper, we will incorporate this model into a
more general model which describes pressure and tem-
perature ionization in hydrogen.
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