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Electrostatics of random walks: A numerical study
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Electrostatic properties of polymers have been studied by numerical measurement of the capacitance,
polarizability of unrestricted, and self-avoiding random walks of length I.=2,4, 8, . . . , 128. Asymptotic
values of the depolarization coef6cients have been found. The electrostatic shapes of random walks have
been shown to be signi5cantly more aspherical than could be predicted from the components of the
squared radius of gyration. Proportionality coe%cients of various scaling properties have been estab-
lished, and a very strong correlation between the shape tensor and the polarizability tensor has been
found.

PACS number(s): 36.20.Ey, 41.10.Dq, 35.20.—i, 64.60.Ak

I. INTRODUCTION

Properties of random walks (RW's) have been exten-
sively investigated due to their relation to the statistical
mechanics of polymers [1]. The two most investigated
types of such objects are the unrestricted random walks
(URW's), which are extremely simple and most suscepti-
ble to analytical treatment, and the self-avoiding random
walks (SAW's), which correctly reproduce the statistical
mechanics of long polymers. The simplest geometrical
characteristic of RW's is their radius of gyration (rms
size) R, which is known to scale with their length (or
number of monomers) L as follows: (Rs ) -L ", where
v= —,

' and 0.558 (Ref. [2]) for URW's and SAW's, respec-
tively. ((~ ) denotes ensemble averaging of the quantity
~; for the sake of simplicity, in the following text, I will
frequently omit the averaging signs where the presence of
the averaging is self-evident. ) The degree of sphericity,
or rather the lack of it, is also an important characteristic
of RW s. This absence of spherical symmetry in the indi-
vidual configurations of polymer molecules was pointed
out a long time ago by Kuhn [3]. Typically, the longest
linear dimension of a configuration is over three times
longer than the shortest one. Such a strong asphericity
should not be surprising in an object in which the size
fluctuations are of the same order as its linear dimen-
sions. The need to properly account for that asymmetry
in the treatment of polymer viscosity, birefringence,
diffusion, and dielectric relaxation has resulted in
numerous numerical [4—7] and analytical [8,9] studies of
the SAW's and the URW's. Most of the analytical stud-
ies considered the URW's [8], and only recently have the
shapes of SAW's been analyzed [9] to the first order in an
a=4 dexpansion —(d is the space dimension). While all
the studies stressed the importance of the asymmetry for
the physics of polymers, they concentrated on the investi-
gation of the geometrical properties of the RW's, such as
various moments of the mass distribution tensor.

The behavior of certain physical quantities can be
guessed from general scaling considerations. For exam-
ple, the hydrodynamic radius of a polymer and the elec-
tric capacitance of a conducting polymer should be pro-

portional to its 8, and therefore their mean values
should scale as L . Such arguments, however, cannot
predict the proportionality coeScients in those relations.
The situation is even worse with respect to the more sub-
tle properties related to the shape of the polymers. While
it seems reasonable to assume that the asphericity of the
geometry implies asphericity of the physical properties,
there is no simple way to relate the physical and the
geometrical shapes, since hydrodynamic or electric prop-
erties involve long-range interactions between the mono-
mers. In this work I consider the simplest physical prop-
erty characterizing the polymers: the behavior of ran-
dom conducting walks in an external electric field. One
may visualize the problem as a solution of electrostatic
equations for a long folded conducting wire embedded in
a three-dimensional space. The scalar nature of the un-
derlying problem (potential fields or charge distributions)
simplifies the numerical treatment, while the fact that one
treats a model as opposed to a real polymer does not limit
the applicability of the results which are primarily deter-
mined by the large-scale structure of the walks.

Some of the results presented in this work have already
been reported [10]. In this paper, the model, the
methods, and the results are described in detail. In the
first two sections I describe the electrostatic model and
the numerical method for generation of RW's. Section
IV describes the results of geometric shape measure-
ments, and introduces the concept of the "geometrically
equivalent ellipsoid, "which is used to roughly predict the
electrostatic properties of the walks. Section V presents
the results of direct electrostatic measurements of the
physical properties of the walks, verifies the scaling of
their capacitance, and establishes the proper prefactors in
the scaling relations, as well as demonstrates that the
electrostatic properties of the walks are even less spheri-
cal than can be judged from the equivalent geometric el-
lipsoid. Section VI demonstrates that, despite significant
quantitative differences, the geometrical and electrical
properties of RW's are strongly correlated. In particular,
it shows a strong correlation in the depolarization
coefticients, and almost complete coincidence of the ma-
jor axis of the shape tensor and the polarizability tensor.
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Finally, Sec. VII discusses the applicability and possible
extensions of this work.

II. THE MODEL

The model system used in this work is supposed to
represent (approximately) an L-step chain consisting of
L + 1 small conducting spheres (L =2, 4, 8, . . . , 128) of ra-
dius b, connected by conducting wires of negligibly small
diameter. It is constructed as an URW or a SAW on a
simple-cubic lattice, with the steps of the walk taken
along the bonds of the lattice. The spheres of the
modeled chain are presumed to be located on the sites of
the lattice, and the lattice constant is taken to be the unit
of length.

For the purpose of the geometrical measurements, such
as the radius of gyration, all sites along the chain are as-
sumed to have the same mass. Thus, in the case of an
URW, a particular site may be visited several times, and
therefore counted several times. This is a standard prac-
tice in such calculations, although other choices, such as
counting each site belonging to the URW only once,
could slightly modify the values of the geometric quanti-
ties without changing their scaling behavior: The most
significant part of repeated visits to the same points
comes from the short-length-scale behavior; e.g. , on a cu-
bic lattice there is a probability of —, of returning to the
same point just after two steps. This probability quickly
saturates, and can be "eliminated" by rescaling the step
sizes (and, thus modifying the total number of steps of
the walk). Due to the local nature of the effect, it does
not modify the overall scaling. This, of course, does not
mean that one can completely eliminate intersections by a
simple rescaling, since a very long, L-step, URW, has
essentially constant probability L/Rg -L' "=L ' to
visit any site within its radius of gyration, thus creating
the total of L' intersections. This eC'ect could be
significant in the thermodynamic treatment of random
walks with self-interaction. However, it carries a negligi-
ble weight in the treatment of the geometrical properties
where the main "weight factor" is proportional to the to-
tal mass L.

The electrostatic problem of the random walk is for-
mulated in terms of charges q,. situated on the spheres po-
sitioned on discrete lattice sites. The interaction energy
between two charges positioned at r; and r, namely, a
distance r; =~r, —rj~ apart, is q;qj/rj, while the self-
interaction energy of a charge q, is q; /2b Any electro.-
static problem in this model can be solved by minimizing
the total energy with respect to q,-'s under appropriate
constraints, such as constraint on the total charge and
the behavior of the potential at an infinite distance from
the chain. One should bear in mind that the discrete en-
ergy function only approximates the true energy of such a
chain in a continuous three-dimensional space. In partic-
ular, it ignores the dipole and higher multipole interac-
tions between the neighboring spheres. If the charges are
approximately homogeneously distributed along the
chain, then the total self-interaction energy, as well as the
energy of closely located sites, increase as L. At the same
time the interaction between remote pairs of charges

1/r, j for r,")0
1/b for r; =0 (2.1)

should be positive definite. I could not find a general
bound on b that would satisfy this condition. A detailed

( -L such pairs) separated by typical distances of Re in-
creases as L /R -L ", which for both an URW
(v= —,

'
) and a SAW (v=0. 588) increases much faster than

the local interaction energy. Obviously, the minimum of
energy is primarily achieved by minimizing the large dis-
tance contributions, and therefore the exact definition of
the short-range interaction is irrelevant to the electrostat-
ic behavior of very long chains. (Similar argument ex-
cludes the necessity of introduction of multipole interac-
tions at large distances. } Exclusion of multipole interac-
tions between the charges on the spheres, however,
sacrifices the detailed knowledge of charge distribution
on short-length scales, i.e., if one compares the solution
of this discrete model with an actual distribution of
charges on the spheres of size b in a continuous three-
dimensional space, one may discover significant
differences on individual spheres. (Such sensitivity of the
exact solutions has been reported in the literature [11].)
The continuous and discrete problems coincide only in
the limit b~0, which makes the multipole interactions
negligible. (Actually, it would suffice to take b «1.)
However, the object of this work is the long length s-cale-
behavior of the chains, and therefore the definitions may
be chosen to ensure the fastest approach to the asymptot-
ic regime, in complete disregard of the accuracy of local
charge distribution. In particular, one would like to
choose the sphere radius b in such a way that the local in-
teraction energy is negligible compared with the interac-
tions of remote charges, i.e., L /b «L /Re -L '/a, or
b »aL ', where the prefactor a depends on the lattice
and on the detailed way in which the energy estimate is
performed, but is typically somewhat smaller than unity.
To have such an inequality even for modest values of L
one should choose b »0. 1. However, b cannot be arbi-
trarily large: From a purely physical point of view, the
diameter of a sphere should not exceed the separation be-
tween the neighboring spheres. Thus, only b (—,

'

represents (at least approximately) a real physical situa-
tion. This physical argument indicates the possible pres-
ence of a mathematical problem in the discrete energy
function. Indeed, the exact (continuum) energy function-
al is positive definite with respect to charges. No such
property is a priori present in the definition of discrete en-
ergy. Consider, for example, an L=1 chain, i.e., two
neighboring connected spheres charged by a total charge
Q. The charges of the spheres, q0 and q i

=Q
—q0, can be

found by minimizing U=(1/2b )q, +(1/2b )(Q —q0)
+q0( Q —

q0 ). The extremum of U is always
q0=q, = Q/2. However, for h ) 1 it becomes maximum,
i.e., the system starts gaining energy by transferring
charge from one sphere to another, since the energies of
the (opposite) charges of the spheres are offset by the de-
creasing (negative) energy of the intersphere interaction.
For a general configuration with spheres positioned at
r; (i =0, 1,. . .,L ) the matrix A," defined by
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inspection of all possible configurations with L =2 pro-
duced more stringent (lower} bounds than the L =1 case.
In all cases, however, the maximal physically possible
value of b= —,

' produced a positive-definite form. This
conclusion has also been confirmed in a sample of L =3
cases. Presumably, one can safely choose any b & —,

' for
any chain. In the actual calculation, I used b = 4, which
reasonably compromises between the opposite require-
ments on the size of b.

A somewhat related problem is what to do with the
coinciding sites of an URW; I chose the numerically
simpler approach, namely to treat the coinciding sites as
a single sphere. Therefore, the number of unknown
charges (as well as the number of equations used to find
them) in an L-step URW frequently was smaller than
L+1. Since the short-range interactions do not inhuence
the long-range behavior, this choice does not change the
large-L results.

It should be noted that minimization of the total ener-
gy U, i.e., equating its derivatives to zero, reduces any
electrostatic problem to a set of linear equations. Essen-
tially, BU/Bq, is simply the potential of the ith sphere,
and the solution of the linear equations represents a
search for charges q;, ensuring that the entire walk is
equipotential under the defined boundary conditions.

III. THE NUMERICAL PROCEDURE

The numerical procedure begins by generating a com-
plete set of all self-avoiding and unrestricted random
walks of lengths L =2,4, 8 and a random set of S=1000
(mutually uncorrelated) random walks for each of the
lengths L =16,32, 64, 128. The generation of a random
sample of a long URW is very simple: one simply has to
make L steps in random directions on a simple-cubic lat-
tice. The problem arises when one tries to generate long
SAW's: The total number of SAW's of length L is given
by JVr =Az Lr ', where A is a lattice-dependent pre-
factor, z is the lattice-dependent effective coordination
number (for a simple-cubic lattice z =4.68), and
y=1. 162 [2] is a universal constant that, for a given
space dimension (d=3}, does not depend on the lattice.
If one attempts to generate a SAW by simply performing
a random walk on a lattice [each consequent step being
made in one of the randomly chosen five directions (no
steps in direction opposite to the preceding steps)], then
out of 5 possible random walks only the fraction
-(z/5) Lr ' will survive. The exponentially decaying
factor (z/5) =e shows that the attrition (number
of walks to be discarded) practically prevents the usage of
this method for the generation of very long SAW's. Oth-
er algorithms that have been suggested may have a small-
er attrition; however, they produce highly correlated sets
of SAW's.

There exists an efticient algorithm for creation of such
walks [12]: Suppose we have generated a complete set of
L-step SAW's that begin at a particular lattice site, say,
the origin (two walks of identical shape but difterent
orientation are treated as difFerent walks in this algo-
rithm). We now attempt to generate all 2L-step walks by
taking all possible pairs of L-step walks and attaching the

beginning of one of them to the end of the other (no "ro-
tation" of the walks is attempted). If the newly generated
walk does not self-intersect, it is added to the list; other-
wise it is discarded. Clearly, this method produces all
SAW's of length 2L, and every di6'erent walk is produced
only once. The "survival" rate in this process is
JV /JV =(1/A )(2/L)r =(1/A )(2/L) ', which
means that for L —100 a significant part (-0.5) of the
attempts are successful. The main drawback of the pro-
cedure is that it requires keeping complete lists of all
SAW's of a given length. I created such lists for
L =2,4, 8, 16. From the last list, only a subset of S= 1000
walks has been randomly selected for further investiga-
tion of their electrostatic properties. Beyond that point
the generation of complete sets of SAW's is practically
impossible. Of course, one can resort to a partially ran-
dom procedure: One may select a reasonably small sub-
set of L =16 SAW's and use them to generate all 2I -step
SAW's which can possibly be created from that subset,
followed, again, by selection of a random subset of the re-
sulting SAW's for creation of even longer SAW's. Such
course of action, however, introduces correlations in the
sampling, since the longest generated walks will include
very large amounts of repeating (identical) subchains, as
compared to a random sample of SAW's selected from a
complete set of such walks. To circumvent the problem
of the correlations, I adopted the following procedure: A
random subset of Si6 16-step SAW's has been selected
from a complete set of those walks and has been divided
into two halves. An attempt to pair the first SAW in the
first half with the first SAW in the second half was made,
followed by an attempt for the second walks in the
halves, etc. All successful pairings were recorded in a
new list. The resulting set of S32 32-step walks was as un-
correlated as if it was selected directly from a complete
set of 32-step walks. It was again divided into two
halves, and the process was repeated. The process was
terminated by obtaining S&@8=1000 SAW's of length
L =128. Notice that Szr is approximately equal to Sr /2
multiplied by the known survival rate. Therefore, the
size of the starting sample, S&6, was calculated in advance
in such a way as to ensure the sample of 1000 walks of
length L =128. Maintaining the lists of chains of inter-
mediate lengths is not a necessity of the algorithm, since
the longest chains can be generated one by one, thus
keeping only a small amount of information about the
subchains.

The number of operations required to create a sample
of S SAW's of length L, from twice shorter walks, is pro-
portional to SLr (the number of operations required to
check self-avoidance is -L, while the survival rate is-L' r). The total time required to generate all SAW's
up to length L (even taking into account the need for
larger subsets of walks at the lower levels) is also propor-
tional to L~. Thus, we have an extremely e%cient pro-
cedure for generating sets of very long uncorrelated
SAW's. The real limitation on the size of walks in this
work is imposed by the need to solve the electrostatic
problems on these walks, which requires a number of
operations increasing as L . A typical calculation in this
work consumed. less than an hour of CPU time on a Sun
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4/110 minicomputer. Thus, if necessary, the length of
the walks can be doubled or quadrupled and the sample
size can be increased by an order of magnitude, within
reasonable computation times.

IV. GEOMETRY OF RANDOM YVALKS

The simplest measure of the geometrical size of a ran-
dom walk is provided by its radius of gyration. More de-
tailed information can be provided by various moments
of the mass distribution. The first-order moment pro-
vides only the coordinates of the center of mass, which is
of no interest to us. The simplest description of the shape
of the walk can be provided by the second-order central
moment tensor, denoted the shape tensor,

1 1TaP L+1 ~ i, a i, P (L+1)i ~ ia, ~i,P &%r r Tr Tr
I I l

where the surnrnation if performed over all sites i of the
walk, while the Greek subscripts represent the Cartesian
components. The trace of T is R of the walk, and it is
closely related to the inertia tensor M =1 Tr7—T, where
1 is the identity tensor. The shape tensor is frequently
used to describe the shapes of polymers [5] and polymeric
surfaces [13]. Its eigenvalues R i ~Rz ~R3, called or-
dered components of R, provide a convenient criterion
of the ansitropy of the random walk. Since each R
scales as L, ', the ensemble-averaged quantities
((R i )/Rs, (R@ )/Rg (R3 ) /Rg ) approach constant
values (0.76, 0.176, 0.065) for an URW, and
(0.79, 0. 161, 0.054) for a SAW, as L~ oo. The quoted
numerical results were obtained by Kranbuehl and Ver-
dier [7] a long time ago for somewhat shorter chains, and
they coincide within the statistical errors with the results
of the present work. It is interesting to note that these
ratios practically reach their asymptotic values already at
L, =8, and the accuracy of the result depends primarily
on the size of the sample. To apply the knowledge of the
components of R to some physical properties, it is con-
venient to represent the random walk by a homogeneous
solid body of a simple shape with an identical T. While,
in the absence of higher-order information on the mass
distribution, the choice of a specific shape is quite arbi-
trary (it could be a right prism or an nth-order oval shape
[6]), I choose to represent it as an ellipsoid, which is the
most standard representation for such properties as iner-
tia tensor, or the tensor of dielectric constants. A corn-
pelling argument for this choice is simplicity: an ellipsoid
is one of very few shapes with analytically solvable elec-
trostatics. The major semiaxes of this geometrically
equivalent ellipsoid are defined as a~ =&5R . The pre-
factor &5 is selected in such a way that the shape tensor
of a homogeneous ellipsoid of this size would coincide
with the T of a given chain. Since such definition of the
"real" linear size is somewhat arbitrary, in most of the
following definitions I will omit the prefactor &5 and
simply use an ellipsoid defined by the semiaxes a =R
The spatial orientation of the equivalent ellipsoid will be
determined by a triplet of mutually perpendicular unit
vectors IdI~I] (a=1,2, 3), which are the eigendirections
of the symmetric tensor T, corresponding to eigenvalues

X
(s+a )[(s+ai )(s+az)(s+a3)]'~

(4.2)

The depolarization coeScients are independent of the
overall size of the ellipsoid, and therefore the n' 's are in-
sensitive to the arbitrary scale factor that we used in the
definition of a s. Since the capacitance of an object of a
given shape is proportional to its linear dimensions, one
expects the ensemble-averaged value ( Cs ) to scale as L,
while the depolarization coeKcients are expected to ap-
proach constant values as I.—+~. The open signs in
Figs. 2(a) and 2(b) depict the 1/L dependence of the en-
semble averages of the geometrically calculated depolari-
zation coeKcients of URW's and SA%'s, respectively.
As in the case of R 's, the convergence to the asymptotic
(L = ~ ) values is extremely fast. The extrapolated values
of those coefficients are (0.133,0.323, 0.543) for URW's,
and (0.118,0.317,0.566) for SAW's, with an estimated
(statistical) error +0.002 in each of these coefficients.
Note that for a spherical object one expects to have
n', '=n'2 '=n3 '=

—,'. The results in Fig. 2 display the

FIG. 1. Self-avoiding walk projected onto the plane of the
eigendirections of the shape tensor corresponding to the two
largest eigenvalues. The ellipses represent the equivalent
geometric (inner) and electric (outer) ellipsoids (see text).

[R ]. Actually, the d' 's are directors rather than vec-
tors, since they are defined up to a sign. Figure 1 depicts
a SAW projected onto the dIfI —dI(I plane. The sinaller
ellipse is the projection of the ellipsoid with semiaxes a ',

and a2. One can, therefore, talk about the geometrical
volume" of the walk defined, e.g., by Vs =(4m. /3)a, a2a&.
A conducting ellipsoid with serniaxes a&, a2, a3 would
have [14] capacitance

Cg =2 I ds/[(s+a, )(s+a~)(s+ai)]'~ . (4.1)

The behavior of such an ellipsoid in an external electric
field E is determined by the depolarization tensor N' ',
which relates that field to the induced dipole moment P
via the relation (4m. /Vs)N'~&Pp=E . The principal
eigendirectors of the tensor coincide with the directions
of the ellipsoid axes, and the sum of its eigenvalues (depo-
larization coefficients) n'i ' nz ' ~ n' 3'gis unity. (Notice
that the smallest depolarization coefficient corresponds to
the largest component of the R~.) For an ellipsoid [14,15]

n =
—,a&a2a3(g) —1
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FIG. 2. Geometrical depolarization coefficients n'~' (open
symbols) and directly measured depolarization coefficients n"
(solid symbols) corresponding to the largest (squares), inter-
mediate (triangles), and shortest (circles) axes of equivalent el-
lipsoids vs the inverse length of the walk, for (a) URW's and (b)
SAW's.

lack of geometrical sphericity from an "electrostatic point
of view. " The information contained in these estimates
does not differ significantly from the information con-
tained in the ensemble-averaged moments of R, since in
each configuration they are related by definition. The re-
lation, however, is nonlinear, and thus the results in Fig.
2 represent a somewhat diferent ensemble averaging.
The geometrical depolarization coefficients are strongly
fiuctuating quantities: the fiuctuations reach 50% for
n', ' and are somewhat smaller for other coefficients.
Thus the knowledge of the averages provides little practi-
cally useful information.

mote points). For a given (particular) configuration of a
RW, I assume that the entire chain has a constant poten-
tial / = 1, and find the charge distribution from a set of
linear equations [16]:

g A;,.q~= 1 for each i,
J

(5.1)

Q.9

0.8

where A; is defined in (2.1). In the case of an URW,
coinciding sites are treated as a single site, and, therefore,
the number of equations and unknowns may be smaller
than L + 1. The capacitance is C, =g;q;.

Not surprisingly, I find that the ensemble-averaged ca-
pacitances indeed scale as the radius of gyration. Howev-
er, their numerical values are extremely smal1: For large
L the coefficient m o = ( ( R ) )

'~ /( C, ) approaches the
values 1.30 for an URW and 1.45 for a SAW (estimated
error +0.02). This is an unexpectedly large number, i.e.,
the capacitance is unexpectedly small: In the preceding
section, I argued that the radius of gyration (and its or-
dered components) underestimated the "actual" size of
the equivalent ellipsoid, and suggested using a scaling
factor of &5 to correct that underestimate. Taking that
argument seriously, one would expect ma=&3/5. It
might appear that the result is about 2 times larger than
expected. However, we must keep in mind that the inves-
tigated object is not spherical, and even for a homogene-
ous conducting ellipsoid C, (VS/3R . Indeed, a more
careful consideration reduces the apparent size of the
discrepancy. Due to the asphericity of the object, one
should instead use the value C, which has been calculat-
ed by assuming that the object is an ellipsoid, as the
"geometrical measure" of the linear dimension of the
RW. Since both ( C, ) and (C ) are expected to scale as
R, the ratio m, —= ( C ) /( C, can be used as an indica-
tor of the ratio of the "geometric" and "electrostatic"
linear dimensions of the walks. The upper solid and
dotted-dashed lines of Fig. 3 depict the 1/L dependence
of m& for the URW and SAW, respective1y. Notice that
this time the asymptotic values are significantly smaller
than the corresponding mo's. Later in this section, I shall

V. CAPACITANCE AND POLARIZABILITY
OF RANDOM %'ALES

The simplest measure of the "electrostatic size" of the
walk can be obtained from a direct measurement of its
capacitance C, . Since, as argued in Sec. II, the energy of
a RW depends on the interactions of remote charges, it is
expected that mo( C, ) =Rg. For practical reasons it
would be useful to establish the proportionality
coefBcient mo in this relation. The capacitance of the
chain is determined via C, =g/P, where Q is its total
charge, while P is its potential (relative to infinitely re-

07
0
0

0.6

0.5
0

i I I I I I I I I I I I I

0.1 0.2 0.3

FIG. 3. Ratios of the geometric and electrostatic linear sizes
m

& (top curves) and m2 (bottom curves) (see text} vs the inverse
of the chain length L for URW's (solid lines) and SAW's
(dotted-dashed lines).
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return to the subject of the linear dimensions of the
RW's.

The crudest indicator of the "electrostatic shape" of a
random walk is the polarizability tensor I, which relates
the external field to the dipolar moment of the chain:
P = I &E13. Its components can be found by calculating
the charge distribution on an uncharged random walk
embedded in an external electric field of unit strength. If
the external field points along a Cartesian direction a,
then the potential along the chain generated by the
charges of the chain should increase linearly along the a
direction to compensate the change caused by the exter-
nal electric field. In addition, the total charge of the
chain should vanish. Finding, the corresponding charge
distribution j q,

' ' I, amounts to solving a set of L +2
linear equations

g A, q' '=r; +. c. for each i
J

yq( ) —()

(5.2a)

(5.2b)

where A; is defined in (2.1), r,. is the a coordinate of the
position of the ith site, and the unknowns are q 's and
the constant c. The set of Eqs. (5.2) should be solved
three times a separate solution should be found for each
value of a=1,2, 3 and the elements of the polarizability
tensor I can be found from I &=+,q,

' 'r; p It c.an be
directly verified that this polarizability tensor is sym-
metric. One may use the eigenvalues of I denoted

f2 —p3 to define an equivalent conducting ellipsoid
with identical polarizability. Thus, for each RW generat-
ed, I calculated the polarizability tensor, its eigenvalues,
and the eigendirections I dI"~I corresponding to those ei-
genvalues. The depolarization coefficients n" and the
volume V, of the equivalent electrostatic ellipsoid are
defined via three relations y = V, /(4m n ") (a = 1,2, 3 ),
supplemented by the relation g n" = l. Introduction of
these depolarization coefficients provides a convenient
tool for the comparison of the geometric and electrostatic
shapes and sizes.

The larger ellipse in Fig. 1 represents such an electri-
cally equivalent ellipsoid. Knowledge of the ensemble-
averaged V, provides an additional estimate of the ratio
between the linear dimensions of the "geometric" and
"electric" ellipsoids: m z

= ( ( V ) /( V, ) )
' . The lower

solid and dotted-dashed lines in Fig. 3 depict the 1/L
dependence of the m2 for the URW and SAW, respec-
tively. While the definitions of m, and m2 are quite
different, their asymptotic values are reasonably close,
thus providing a quantitative meaning to the concept of
"electrostatic linear size" of a RW. It is interesting to
note that the electrostatic ellipsoid in Fig. 1 appears to be
bigger than its geometric counterpart; however, its
volume is actually smaller since its third axis (perpendic-
ular to the plane of the drawing) is significantly shorter
than the geometric a 3.

The solid symbols in Figs. 2(a) and 2(b) depict the 1!L
dependence of the ensemble averages of the true depolari-
zation coefficients n" of URW's and SAW's, respective-
ly. Their extrapolated values are (0.11,0.30, 0.59) for

0 0.2 0.4 0.6
depolarization coefficient

0.8

I 1 I
l

I I I
J

I I I
l

I I I

8 —'

0

0
0 0.2 0.4 0.6

depolarization coefficient

0.8

FIG. 4. Probability densities of three depolarization
coefficients n" for (a) URW's and (b) SAW's of length 128
(solid lines) and 32 (dotted-dashed lines).

URW's, and (0.08, 0.28, 0.63) for SAW's with an estimat-
ed (statistical) error less than the last significant digit in
each of these coefficients. As in the case of n' ', the
SAW's are more aspherical than the URW. Also, one
can see that for both kinds of RW the true (electrostatic)
asphericity is significantly stronger than predicted from
the properties of the equivalent ellipsoid. Such
differences can be understood: The polarizability of a
walk depends primarily on the shape and size of its boun-
daries. Thus, a single "arm" sticking out of an otherwise
spherical dense collection of sites may have little
inQuence on T, but may significantly modify I . This ap-
parently leads to greater sensitivity of I to shape fiuctua-
tions, and, therefore, to larger mean asphericity. This in-
tuitive explanation should not be taken too literally: the
difference between the geometrical and electric aspherici-
ty does depend on the particular choice of the equivalent
body shape (ellipsoid) and could be different if bodies of
different shapes were to be used.

The above results represent the relations between the
ensemble-averaged properties. One should however, keep
in mind that both Rg and C, are very strongly Auctuating
quantities. Similarly, the shapes of walks exhibit strong
fluctuations: Figures 4(a) and 4(b) depict the probability
densities of n"'s for URW's and SAW's, respectively.
These results have been calculated from 1000 RW sam-
ples, with L =32 (dotted-dashed lines) and L =128 (solid
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lines). From comparison of the L =32 and 128 curves, I
conclude that the distributions are close to their asymp-
totic shapes.

VI. CORRELATIONS BETWEEN GEOMETRY
AND ELECTROSTATICS

The presence of strong fluctuations in each of the mea-
sured quantities may raise the question of whether the
rough knowledge of the geometrical shape, as provided
by the components of R~, can be of any help in determin-
ing the electrostatic behavior of a particular (not
ensemble-averaged) RW. The answer to that question is
obtained by checking the correlations between the prop-
erties in the individual RW s. Figure 5 depicts the proba-
bility density of the ratio V, /V for 128- and 32-step
URW s (solid and dashed lines, respectively). This distri-
bution is strongly centered, with typical fluctuations
several times smaller than the relative fluctuations of V,
and Vg individually.

Not just the electrostatic and geometrical volumes are
strongly correlated —the shapes and orientations are
correlated as well: A quantitative measure of orientation
correlation can be obtained by ensemble averaging
squares of the pairwise scalar products of the directors
indicating the orientation of the geometric and electro-
static equivalent ellipsoids, and defining

p~ ~= —,'[3((dIg'~ dI'~) ) —1], for a=1,2, 3 [p~ ~=1 for
perfect correlation, and 0 for completely uncorrelated
directions]. Figure 6 depicts the 1 lL dependence of these
correlation coefficients for URW's (open symbols) and
SAW's (solid symbols). Unsurprisingly, the strongest
correlation is exhibited by the longest axes (triangle).
The extremely high values of all p( )'s indicate almost a
perfect correlation.

Strong correlations between the geometry and electro-
statics are also observed in the shapes of the RW's. Fig-
ures 7(a) and 7(b) depict n" versus n' ' for a sample of
100 URW's and a sample of 100 SAW's, respectively, of
length L, =128. While for a given value of n' ' we still
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FIG. 6. Correlation coefFicients p( ) (see text) of the directors
of longest (triangles), intermediate (circles), and smallest
(squares) axes for URW's (open symbols) and SAW's (solid sym-
bols).
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observe —10%%uo scatter in the corresponding n", it is
significantly smaller than the overall fluctuations of those
coefficients (compare with Fig. 4). Thus, the ordered
components of Rg have a large predictive power regard-
ing the polarizability of a polymer.
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FIG. 5. Probability density for the distribution of the ratio
V, /Vg for URW of length 128 (solid line) and 32 (dotted-dashed
line).

FIG. 7. Geometrical depolarization coeKcients n' ' vs direct-
ly measured depolarization coefficients n" in a sample of (a)
100 URW's, and (b) 100 SAW's of length L=128. Solid
squares, X's, and open squares represent the coe%cients corre-
sponding to the shortest, the intermediate, and the longest axes
of the equivalent ellipsoids, respectively.
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VII. DISCUSSION

In this work a first detailed study of a simple physical
property —electrostatic behavior of polymers —has been
performed. The work both confirmed the expected scal-
ing relations and established various, previously un-
known, prefactors. The polarizability has been found to
be significantly more anisotropic than can be expected
from the shape tensor. Nevertheless, the shape tensor
can be used to predict the electric behavior with reason-
able accuracy to specific (not ensemble-averaged)
configurations. Since all the results are either scaled with
respect to R„or are independent of the overall size of the
polymer, they can be directly applied to real polymers.
The results also provide a useful guide to the dielectric
behavior of nonconducting polymers.

It is conceivable that some electric properties of URW

can be calculated analytically. However, the analogous
quantities for SAW's will, probably, rely on numerical
simulations for quite some time. Most of the results in
this study were reasonably well converged and accurate
already for L, =128 and sample sizes of 1000 chains, al-
though an order-of-magnitude increase in both I. and the
sample size (corresponding to a 10 increase in computa-
tion time) may still be desirable, e.g. , to obtain the values
of rrt 0, m i, and m 2 to 1% accuracy
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