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Mean-field theory of binary mixtures of nematic liquid crystals consisting of biaxial molecules
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Binary mixtures of liquid crystals whose constituent molecules are not cylindrically symmetric are
considered. For a mixture consisting of biaxial molecules with DzI, symmetry, two tensor order parame-
ters are required to specify the orientational order of each component. Using mean-field theory, expres-
sions for the free energy of the mixture and the orientational order parameters are obtained as functions
of temperature. In the geometric-mean approximation, the parameters of the theory are ratios of aniso-
tropic interaction strengths, which can be determined from measurements on the pure components. The
theoretical predictions are compared with recent experimental results of H-NMR measurements on the
binary mixture of the liquid-crystal 2-fluorenyl-4'-tetradecyloxy-benzoate-d9 (FLOCl4) and p-xylene-

dlP (P-Xy).

PACS number(s): 61.30.8y

INTRODUCTION

Although most nematic-liquid-crystal phases are uni-
axial, the constituent molecules do not usually possess cy-
lindrical symmetry. Recently, considerable theoretical
[1—5] and experimental [6—8] work has been performed
on pure materials to investigate the role of molecular
biaxiality in determining the characteristic physical prop-
erties of bulk samples. However, most efforts directed to-
wards understanding the behavior of liquid crystalline
mixtures [9—15) have ignored the biaxiality of the con-
stituent molecules.

Information on orientational order and molecular dy-
namics of liquid crystals [16] is frequently obtained from
results of measurements on dissolved probe molecules.
Such measurements include Auorescence depolarization
[16], UV [17], IR [18], and Raman [16] spectroscopy,
electron spin resonance (ESR) [16], NMR [19—27], and
neutron scattering [16]. A satisfactory theoretical frame-
work has yet to be established for mixtures of biaxial
molecules on the basis of which the behavior of the liquid
crystal can be inferred from that of the probe.

In this paper a mean-field theory is proposed to de-
scribe binary mixtures of liquid crystals consisting of bi-
axial molecules which form isotropic, uniaxial, or biaxial
nematic phases. A general pseudopotential consistent
with the symmetry of the constituent particles is con-
structed, and thermodynamic information is obtained by
minimizing the resulting free energy. If the particles are
cylindrically symmetric, the model of binary nematic
mixtures [13,15] which has been successful in describing
component order parameters [19—22] and the phase be-
havior of mixtures of rod- and disklike molecules [28] is
recovered. If only one component is present, the formal-
ism reduces to a model of biaxial particles interacting via
dispersion forces [5], which is formally equivalent to the

biaxial hard particle model of Straley [2]. The first unam-
bigous determination of the biaxial orientation (of the rig-
id segment) of a liquid-crystal molocule in a pure nematic
phase was reported by Wu, Ziemnicka, and Doane [8];
their observations are consistent with the predictions of
this model.

A complete theoretical description of orientational or-
der in binary mixtures of biaxial particles must include
the effects of molecular asymmetry. Emsley, Luckhurst,
and Sachdev [24) have recently proposed a model of
orientational order of a biaxial solute in a uniaxial nemat-
ic phase in the infinite dilution limit. The approach
presented here is more complete in that it enables the
determination of the order parameters of both species for
the entire range of compositions and allows the evalua-
tion of the free energy and calculation of the phase dia-
gram.

In this formalism, the orientation of each species is
characterized by two orientational order parameter ten-
sors. Since these tensors are traceless, four scalar order
parameters are associated with each component of the
mixture; two of these are zero if the phase is uniaxial.
These order parameters are measurable by techniques,
such as NMR, which are capable of distinguishing the
orientational order of each species [29]. The parameters
of the theory are coupling constants which provide a
measure of the strength of the interaction between indivi-
dual molecules and the effective nematic field. In order
to reduce the number of parameters, the geometric-mean
assumption is made. In this approximation, all particles
couple to the same mean field and the coupling constants
may be determined from measurable properties of the
pure constituents. In order to demonstrate the applica-
bility of this approach, connection is made with recent
experimental results of H-NMR measurements [29] on a
binary mixture of the liquid-crystal 2-Auorenyl-4'-
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tetradecyloxy-benzoate-d9 (FLOC, 4) and p-xylene-d, o

(p-xy).

THEORY

——'(D —C)2 0
—

—,'(D+C) 0

Order parameters

The definition of suitable order parameters may be ob-
tained by considering the polarizability of a biaxial parti-
cle. It is assumed that the particle has D2I, symmetry and
principal polarizabilities ~„~2, and ~3 along the orthogo-
nal molecular axes n, , n2, and n3. The polarizability ten-
sor ~ p of the particle is

K~P=K1n la 1P+~2n 2an 2P+ K3n 3a 3P

where n, is the a component of the unit vector n, in a
laboratory fixed frame. Choosing n3 arbitrarily as the
distinguished axis, the polarizability may be written as

q =
—,'(3n3, n3, —1)= —,'(3cos 8—1),

Q=&q),

p 2(n3 n3 n3«n3«) 2sin 8cos2$,

'=&p),
2(nl nl n2 n2 ) csin 8cos2$,

D=«),
c ——(nl nl np np nl nl+n2n2)

(9a)

(9b)

(10a)

(lob)

(lla)

(lib)

The matrix elements are given, in terms of the usual [31]
Euler angles (8,$, $), by

K p=K5 p+(K3 K) ,'—(3n3—n3p 5 p)

+—(Kl Kp) —(nl nip n2 n2p) (2)

=
—,'[(1+cos 8)cos2$ cos2$ —2cos8sin2$ sin2$],

(12a)

0 p= —,'(3n3 n3p
—5 p) (3)

—3/1 p= —( 1 nip 2 n2p) (4)

It is expected that the nematic interaction is primarily
determined by second rank tensor properties of the parti-
cles. Therefore for a system of biaxial particles the orien-
tational order parameters can be defined as

S p=(o p)=(-,'(3n, n, p
—5 p))

where the isotropic average is K= —,'(Kl+K2+K3). Thus
the orientation of the particle enters the polarizability
only through the quantities

C=(c) . (12b)

For a pure material these order parameters are identical
to those obtained by considering explicit dispersion in-
teractions between particles with Dzz symmetry [5], and
are equivalent to those of Straley [2]. It is worth noting
that even in the case of the cylindrically symmetric uni-
axial nematic phase (P =C=0), two order parameters
(Q and D) are necessary to describe the orientational or-
der of biaxial particles. The physical significance of a
nonzero value of D (often denoted [6—8] by S „—S «) is
that there is a preference of one of the two minor molecu-
lar axes to align parallel to the nematic director of the
uniaxial phase.

S p=

—
—,'(Q P)—

0

0

0
—

—,'(Q+P) 0

0 Q

and

T p=(r p) =(—', (n, n» —n, nzp))

where ( ) denotes the ensemble average. If S p and T p
are codiagonal, as may be expected for reasons of symme-
try [30], then, in the principal axis frame

The single-particle pseudopotential

In general, to describe orientational order in a binary
mixture, four order Parameter tensors, S, p, T, p, S2 p,
and T2 p, are required; the subscripts 1 and 2 refer to
components of the mixture. The orientational part of the
single-particle pseudopotential consists of a linear com-
bination of scalar invariants formed from the
orientation-dependent terms o.

p and ~ p, and the order
parameters S p and T p. To lowest order, the single-
particle pseudopotential for a particle of species 1 is

Sl(~l) 2P1711 pP23 12 3(P1 11 1 P~l Pa+P2a12S2aP~laP+Pl llSlaP laP+P2U12 2aP laP

+Pl~11 lap+lap+P2~12 2ap+lap+P1~11 lap Tlap+P2~12 2ap lap

+p 1II11Tlap~ lap+P2II12T2apo lap

+P, W» T,aPr, aP+P, W»T, aPr, aP+P, W„T,aPT, aP+P, W12T~aPTlaP) (13)

where Q, is the generalized orientational coordinate of the particle, p; is the number density of species i, p'j U'j U j,
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V,. -, V,", II,", 8'", and 8'" are coupling constants, and summation is implied over repeated Cxreek indices. The pseudo-
potential of a particle of species 2 is obtained by interchanging the indices 1 and 2 in Eq. (13). Even though the isotro-
pic terms, such as —,P&y», and the anisotropic terms, such as P2U22S2 &S2 &, do not contain the orientational coordi-
nates of the particle (and hence do not give rise to torques), they are included in the pseudopotential to allow calcula-
tion of the free energy and the subsequent determination of the phase behavior of the system.

The configurational free energy density of the system is given by [15]

P1 P2
(14)

where k is Boltzmann's constant and d Q =sinOd Odgd g. Since at equilibrium the free energy density V is a minimum,
its derivative with respect to the order parameters must vanish. Therefore

BE,(A, ) BE,(fl2)

IP ~ BS. +P2 BS
(15)

and

BC, fL) BC2 Q2
(16)

where i =1,2. These equations yield relations between the coupling constants (e.g., U&&
= —

—,
'

U&&, II&&= V&&, etc.)

which simplify the expressions for the pseudopotentials to give

E&(Q&)——
—,p&y&&

—
—,pzy&2

—
—,(p& Ui&Si~p+p2U&zS2~p+p& V&& T&~p+p2V2& T2~p)(cr &~p

—
—,'S&~p)

—
—,'(p, V»S,~p+ p, V»S,~p+ p, W» T,.p+ p, W» T,~p)(r, ~p ,' T,~p)

—
,'p—,V» T,—~pS—,~p+3p, V»S,~pT,.p

and similarly for sz(Q2).
The coupling constant U;. gives a measure of the

strength of the interaction coupling the orientations of
the distinguished (major) axes of particles of species i
with those of j. From Eqs. (15) and (16) it is found that
U2&=U&2. Similarly, since 8'~ gives a measure of the
strength of the interaction coupling the orientations of
minor axes of particles of species i with those of j, from
Eqs. (15) and (16) it follows that W2, = W&2. V~~ gives a
measure of the strength of the interaction coupling the
orientation of the minor axes of particles of species i with
the orientation of the major axes of particles of species j.
In this case, there is no such reciprocal relation, and thus,
in general Vz, W V&z. It is interesting to note that, on sub-
stitution of the above pseudopotentials into the expres-
sion for the free energy, the last two terms of s, (Q, ), in

Eq. (17), cancel with the corresponding ones in ez(Qz).
Henceforth these terms will be ignored.

The self-consistent equations for the order parameters
are

p)=

and

rameters must be solved simultaneously. Since the sys-
tern is nonlinear, a number of distinct solutions may exist.
(For example, the isotropic phase with all order parame-
ters equal to zero is always a solution. ) Once the order
parameters are known, the free energy corresponding to
each solution can be evaluated and this enables the phase
diagram to be determined.

The geometric-mean assumption

In the general case of a binary system, there are 13
independent coupling constants (y», y22, y, 2

=
y2&,

U)&, U22, U12 —U2), V]), V22, V)2, V2]. , W)1, &22= W2, ). In order to reduce the number of parameters in
the problem, the geometric-mean assumption is made. In
this assumption, the coupling constant for the interaction
between particles of di8'erent species is taken to be the
geometric mean of the coupling constants for the corre-
sponding interaction between particles of the same
species. Specifically, U12 ——U21 ——(U11U22)1/2
W, ~

= W2, =( W', ( W22)'

V2, =( W22U» )' . This assumption can be justified for
dispersion interactions [32], and has been shown to give a
good description of nematics where the molecules are as-
sumed to have cylindrical symmetry [19—21]. Making
use of these relations, the pseudopotentials become

T, p=&r, p) = (19) E,(Q, )= —
—,'(y„)' I —(U„)' A p(o, p

—
—,'S, p)

where i=1,2. At a given temperature and composition,
these coupled self-consistent equations for the order pa-

—(W(, )' A p(r, p
—

—,'T, p)

and similarly for s2(Q2), where
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and

I =Pt(rt»'"+P2(rz2)'" (21) 1.0

A p= —3[P t(U„)' S, p+P2(U~2)' S2 p

+Pt( Wtt ) Tt~p+P2( W~2) Tq~p] . (22)

In the geometric-mean approximation, therefore, all par-
ticles are affected by the same nematic field, A &, and
they couple to it via the appropriate coupling constants,
as given in Eq. (20). The free energy in this case is a func-
tion of A & only. Each species is characterized by the iso-
tropic (r;, ) and anisotropic (U;; and W;;) interaction
strengths; if the four anisotropic coupling constants are
known, the temperature dependence of the order parame-
ters may be readily calculated from the self-consistent
equations, Eqs. (18) and (19), and the phase behavior of
the system may be obtained by examining the corre-
sponding free energy.

RESULTS AND DISCUSSION

Parameters of the theory are the ratios of the cou-
pling constants, and it is therefore useful to de-
6ne rt =( Uqq/U, t )', rq =( W»/Utt )' and r3
=( W22/U&t )' . In terms of these, the pseudopotentials
become

&,(n, )= —~ (r „)'"r—( U„)t "[A.p(~,.p —
—,'s,.p)

2Aap( +lap 2 Tlap ) ]

(23a)

and

E2(+2) (3 22) 'r —( Ull ) [ 1A p(%2 p
—S2 p)

—r3A p(rq p
—

—,'T2 p)].
(23b)
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responding order parameters can be calculated. Each
point on these order parameter curves corresponds to an
extremum of the free energy; whether this is a minimum
or a maximum depends on both temperature and compo-
sition. Consequently, not all values of order parameters
are realized in any one system. The significance of the
curves in Figs. 1 —3 is that if any one order parameter is
known for a system with given values of r, , the remaining
order parameters are determined regardless of tempera-
ture or composition.

Superposed on the theoretical curves are experimental-

FIG. l. Order parameters Q, and Qz of the two biaxial com-
ponents of a uniaxial nematic binary mixture. The curves corre-
spond to various values of the ratios of the anisotropic interac-
tion strengths as follows:, r, =0.251, r2=0. 160, and
r3 0.084; ———,r& = 1 ~ 000, r, =0.400, and r3 =0.400;
r& = —0.251, r2 = —0. 160, and r3 = —0.084;
r, = —0.500, rz=0. 300, and r3=0.300. The open squares are
the H-NMR experimental results from the binary mixture of
FLOC, 4 and p-Xy [29].

For pure materials consisting of uniaxial molecules
r

&

= r2 = r3 =0, and the theory reduces to the usual
Maier-Saupe theory [33]. For mixtures of uniaxial parti-
cles, r2 =r3 =0, and the model is identical to that of Ref.
[15];where

TNi2Pi

TNT&P2

' 1/2

(24)

and TN„and p; are the nematic-isotropic transition tem-
perature and the number density of the ith component,
respectively. For pure materials consisting of biaxial
molecules, the formalism reduces to that of Ref. [5].

To illustrate the usefulness of the proposed formalism,
order parameters are calculated for a binary nematic mix-
ture from Eqs. (18) and (19). These self-consistent equa-
tions are solved simultaneously for given values of r;; re-
sults for the uniaxial nematic phase are shown in Figs.
1 —3. As can be seen from Eq. (23), the degree of orienta-
tional order is essentially determined by the nematic Geld
A p. If the quantity [(Ut t

)' /kT]A p is known, the cor-

'I .0-
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I
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FICx. 2. Order parameters Q, and D, of a single biaxial com-
ponent of a uniaxial nematic binary mixture. The curves corre-
spond to various values of the ratios of the anisotropic interac-
tion strengths as follows: 0.251, r, =0.160, and
r3 0.084; ———,r

&

= 1 ~ 000, r2 =0.400, and r3 =0.400;
r& = —0.251, r2 = —0. 160, and r3 = —0.084;
r, = —0.500, r2 = —0.300, and r, =0.300. The open squares are
the H-NMR experimental results from the binary mixture of
FLOC, ~ and p-Xy [29].
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FIG. 3. Order parameters Q, and D2 of the two biaxial com-
ponents of a uniaxial nematic binary mixture. The curves corre-
spond to various values of the ratios of the anisotropic interac-
tion strengths as follows: „r,=0.251, r, =0.160, and
r3=0.084; ———,r& =1.000, r2=0.400, and r3=0.400; —-,
r, = —0.251, r2 = —0. 160, and r3 = —0.084;
r, = —0.500, r2 = —0.300, and r3 =0.300. The open squares are
the H-NMR experimental results from the binary mixture of
FLOC&4 and p-Xy [29].

ly determined values [29] of the order parameters for the
binary mixture of the liquid-crystal FLOCI4 and p-Xy.
The solid curves were obtained for least-squares 6t of the
theoretical expressions to the data [29], and correspond
to r& =0.251, r2=0. 16, and r3=0.084. FLOCI4-d9 is a
liquid crystal with an isotropic nematic transition tem-
perature TN& =409 K, while p-xylene-d, 0 is nonmesogen-
ic and an isotropic liquid at room temperature. If it is as-
sumed that Eq. (24) is approximately valid, the virtual
transition temperature [21] obtained for p-xylene is
TN&=26 K; well below its crystallization temperature.
The value of r2 can be calculated from the order parame-
ters of the pure material; fitting the theoretical curve to
measurements [8] on the pure compound gives [29]
r2=0. 13, in reasonable agreement with the mixture re-
sults. While the parameter r3 =0.084 is small, the ratio
r3 Ir i

= ( W'22 lU22 )
' =0.33 gives a measure of the biaxi-

ality of the p-xylene. Thus it would appear that the non-
mesogenic p-xylene is more biaxial than the liquid-crystal
FLOC&4. It is likely that the effect of conformational
averaging of the alkyl chain is to reduce the observed
biaxiality of the FLOCi4 molecule [29].

The relations between the experimentally determined
order parameters appear to be in good agreement with
predictions of the theory, and the three parameters r, are

physically reasonable and are consistent with behavior of
the pure components. Although the experimental results
are shown for a single mixture (11 mol%%uo p-xylene) over a
range of temperatures (7 K) in the nematic phase, order
parameter values for other compositions (including pure
FLOC) and temperatures are predicted to fall on the
same solid curves. Although the calculation of the order
parameters is straightforward in principle, in general it
requires the solution of eight coupled nonlinear equations
with multiple solutions. Calculation of the free energy
and the phase diagrams will be reported elsewhere.

The above formalism has the usual limitations of the
Maier-Saupe theory of pure nematics. These may be
overcome by using a Landau —de Gennes form for the
free energy instead; we anticipate that the expansion
coefficients for the mixture in the geometric-mean ap-
proximation are simply related to those of the pure ma-
terial. In this model the Maier-Saupe formalism has been
chosen in order to minimize the number of adjustable pa-
rameters.

CONCLUSIONS

The simple mean-Geld theory of binary mixtures pro-
posed in this paper allows the calculation of orientational
order parameters of the constituent biaxial particles over
the entire range of temperature and composition. It de-
scribes both uniaxial and biaxial nematic phases, and
makes possible the determination of phase diagrams. In
the geometric-mean approximation, the behavior of the
mixture is determined by the ratios of anisotropic in-
teraction strengths of the pure constituents; these may be
independently determined from measurements on the
pure materials. The theory thus allows the calculation of
the behavior of any mixture once these coupling con-
stants for the constituents are known.

Predictions of this model for the relation between the
component order parameters are in good agreement with
results of H-NMR measurements [29] on a binary mix-
ture of FLOCI4 and p-xylene. Such a model may be use-
ful in understanding mixtures of liquid crystals, and in in-
terpreting results from spectroscopic techniques which
employ probe molecules.
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