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Immiscible fluid-fluid displacement was studied experimentally and numerically in porous models con-
sisting of uniform pores on a square lattice where all nearest neighbors were connected by bonds ran-
domly given one of two permeabilities. Patterns formed by a high-viscosity fluid (glycerol) being dis-
placed by a low-viscosity fluid (air) injected at the center of the model network were studied and com-
pared with the results of diffusion-limited-aggregation (DLA) simulations using a network with identical
geometry. For a bond permeability ratio k=~0.004 close to the bond percolation threshold f.=0.5 of
high-permeability bonds, simulated and experimental patterns exhibit a high degree of overlap. The dis-
placement patterns generated in experiments and in simulations can be characterized by the same
effective fractal dimension D,~1.5. We find that the model geometry strongly influences the structure
of the displacement pattern formed, and that Meakin et al.’s [Physica A 115, 1 (1989)] modified-DLA al-

gorithm provides a good model for the displacement.

PACS number(s): 47.55.Mh, 47.55.Kf, 64.60.Ak, 05.40.+j

I. INTRODUCTION

Complicated patterns arise in many flow situations.
Clouds formed during turbulent flow of air and the struc-
tures observed in convective flows are well-known exam-
ples. During the displacement of one fluid by another in
porous media, fronts are formed. These fronts often have
complicated structures. Depending on the displacement
rate, viscosity ratio, miscibility, interfacial tensions, and
pore geometry, a variety of displacement patterns arise.
In the pattern formation, the disorder of the porous ma-
trix plays a key role that is not well understood.

Fractal [1] displacement fronts have been observed
both during slow and fast displacement [2,3].

Viscous fingering (VF) refers to the onset and growth
of instabilities in the displacement fronts that arise when
a low-viscosity fluid (1) quickly displaces a high-viscosity
fluid (2) (u; <<u,). In a homogeneous porous medium,
when the displaced fluid wets the solid matrix, fractal
patterns are observed [4-6]. When the displacement is
fast, the capillary number, defined by Ca=uU /o, is
large. Here u is the viscosity of the displaced fluid, U is
the average front velocity, and o is the surface tension
between the two fluids. This dimensionless parameter re-
lates the strength of long-range viscous forces to local
capillary forces. Viscous forces dominate at high dis-
placement rates, at values of Ca=0.02 or above [6].

Viscous flow of a fluid in a porous medium is described
by Darcy’s law, which, neglecting gravity effects, may be
written

v=— ﬁv P, ) (1)
u
where v is the average fluid velocity, VP and u are, re-
spectively, the pressure gradient and viscosity of the
fluid, and k the average permeability of the medium. For
incompressible fluids V-v=0 and therefore

H“

V-(kVP)=0. (2)

If the permeability k is constant, (2) reduces to the La-
place equation

viP=0. (3)

When one fluid is displaced by another, the description
of fluid flow is more complex. In traditional reservoir
simulations [7] one introduces a Darcy equation similar
to (1) for each fluid component i:

kk,;
v,=— VP, 4)
Hi

where the phenomenological relative permeability of the
ith fluid, k,;, depends on the relative amounts of fluids in
the pore space. However, the very concept of relative
permeabilities is inapplicable for nonstationary situations
and, in this simple form, incorrect for even the simplest
capillary tube experiments [8].

However, the patterns generated in a fluid-fluid dis-
placement experiment in a two-dimensional porous model
[5,9-11] are similar to the patterns generated by the
diffusion-limited-aggregation (DLA) algorithm [12] (see
Sec. IV A), the dielectric breakdown models, and discrete
solutions of the Laplace equation [13]. Simulated DLA
patterns and experimental observations look much the
same and have similar fractal dimensions.

The DLA model of Witten and Sander [12] is a gen-
eral, stochastic model without details specific to the phys-
ics of two-fluid displacement in porous media. It is sim-
ple and fast compared to numeric solutions of the flow
equations in network models.

The aim of this paper is to test in detail to what extent
two-phase flow in a complex porous model may be
modeled by the simple extension of the DLA algorithm
described by Meakin et al. [14].

To do this we make model porous media with a known
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but complicated pore-space geometry based on percola-
tion theory. Percolation clusters have nontrivial
geometries that are completely characterized in a statisti-
cal sense, and we use them as basis for our model porous
media.

In previous experiments on porous models at the per-
colation threshold by Oxaal et al. [15], we used models
consisting of pores on a square lattice randomly connect-
ed by bonds between nearest-neighbor pores. The frac-
tion of bonds was at the threshold for bond percolation
on a square lattice, which is f,=0.50. Connected pores
form clusters, and flow was possible only on the spanning
cluster, i.e., on the pores all strung together in a connect-
ed labyrinth that contained both the central site (where
the displacing fluid was injected) and was connected to
the boundary (where the displaced fluid was expelled).
Incompressible fluid flow is confined to the backbone of
the spanning cluster since the invading fluid cannot enter
the dead ends. Experiments agreed with simulations
solving a discretized Laplace equation [16,17] for fast dis-
placement and with the so-called 7—0 model for slow
rates. By itself, the geometric restriction of the backbone
favors high correspondence between experiment and
simulation.

Real porous media are seldom exactly at the percola-
tion threshold, and so we consider departures from criti-
cal percolation. There are two ways of doing this: We
may increase the fraction of bonds above f, or we may
add weak bonds where previously none were present.
These two ingredients may be mixed.

Adding low-permeability bonds where previously none
were present introduces a new length scale [14] in the
pore-space geometry (see Sec. II B), which in turn may
influence the fluid-displacement process. The patterns
formed change, since the low-permeability bonds make
“would-be” dead ends available and also permit flow of
fluid in finite clusters of high-permeability bonds. The
displacement patterns also scale differently on various
length scales. To know the relevant scaling relations and
the length scales where they apply is important in appli-
cations such as oil recovery, besides being interesting
from a physical point of view.

The type of network we describe in this paper may
map onto macroscopic situations like regions of high-
permeability rock embedded in low-permeability rock or
fractured (low-permeability) rock.

In Secs. IIA and IIB we describe the random
geometry of the model and scaling relations for aggre-
gates formed on the model. We give a detailed descrip-
tion of the experiment and data collection in Sec. IIIL
The algorithm used in the simulations is described in Sec.
IV B, and in Sec. V we present experimental and numeri-
cal results. Section VI contains discussion and con-
clusions.

II. GEOMETRY

A. Model geometry

We made models consisting of cylindrical pores con-
nected by bonds between nearest neighbors on a
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145X 145 square lattice. Each bond was randomly given
one of two permeabilities: a fixed high value, which we
set equal to one, and a lower value k=4X1073. The
fraction of high-permeability bonds in the model was
f=0.497, close to the critical value for bond percolation
on a square lattice, f.=0.50. The fraction of low-
permeability bonds was 1—f=0.503. Figure 1(a) shows
a small part of our model.

In bond percolation, where bonds are present or absent
with probabilities f and 1— f, we define clusters as groups
of pores (or lattice sites) connected by bonds. In the
present case we define clusters to be groups of pores con-
nected by high-permeability bonds. These definitions are
equivalent if we for a moment ignore the existence of
low-permeability bonds. One high-permeability bond
connecting two pores (sites) will be called a cluster of size
2, and s pores in some way connected by high-
permeability bonds will be called a cluster of size s.

A cluster has a characteristic size that may be given by

FIG. 1. (a) Enlarged portion of the model showing pores con-
nected by high- or low-permeability bonds between nearest
neighbors. (b) The same portion of the model showing different
clusters of pores connected by high-permeability bonds in
shades of gray. The color of pores and high-permeability bonds
specify the cluster that they are part of, while low-permeability
bonds and matrix appear as white background.
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its radius of gyration:

s 172
R, = ;Elri_foﬁ} ’ (5)

i=1

where r; is the position of the ith pore in the cluster, s is
the cluster size, and r; is the position of the center of
mass, given by

r0=%2ri . (6)

i=1

To characterize a given model we define a local corre-
lation length £ as an average distance between two pores
connected through high-permeability bonds:

SRJsin,

=t 7)
¢ ESJ‘an (
J

where s; and R,(j) are the number of pores and radius of
gyration of cluster j and n; is the probability per pore to
belong to that cluster. The sum runs over all clusters in
the model also those including pores at the boundary.
We chose to include them since we focused on the struc-
ture formed by clusters of pores that we expected to dom-
inate the fluid transport from the center to the boundary,
and many of the largest clusters include pores at the
boundary. However, note that clusters that include
boundary sites are usually discarded, since they are trun-
cated by the boundary and their shape as expressed by R <
is not representative. The local correlation length of our
experimental model was £=25.4 lattice constants.

B. Scaling and crossover

When air injected at the center displaces viscous fluid
from the model, we may at any instance ¢ count the num-
ber of drained pores. Since we associate a constant
amount of fluid with each pore, the cluster of drained
pores represents a certain mass M (¢). The empty pores
are all connected by drained bonds of either kind and
form an aggregate. We calculate the radius of gyration
R, (1) of the aggregate around its center of injection in-
stead of its center of mass when using Eq. (5).

We find that the mass M (¢) increases with the radius of
gyration R, (¢) to some power D,,

M~RJ® . (8)

The exponent D, is called the radius of gyration dimen-
sion [18], and it is a noninteger number less than the spa-
tial dimension d =2.

The above relation is a common way of characterizing
the scaling behavior of DLA clusters. It compares the
mass M and radius of gyration R, of different structures,
such as stages of an experiment of a simulation.

Another common way of finding a fractal dimension of
a radially grown aggregate is to measure the cumulative
mass M (R) of an aggregate within circles of successively
increasing radius R centered at the site of injection (or
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seed particle). This function is easy to measure and gives
a robust measure of the scaling property of a given struc-
ture. The aggregate reaches its total mass M, at the
maximum radius R, proportional to R,. The scaling of
M (R) is given by

M(R)/My=(R /R,)™F(R /R,) . ©)

Here M, is the total cluster mass, D, the cluster dimen-
sion, and F(x) describes the crossover. We scale the cir-
cle radius with R, rather than with R, since R, is less
sensitive to fluctuations in the aggregate shape.

For structures scaling with an exponent D, F(x) is

constant in the range x <1 and tends to x ¢ for x > 1,
so that M —M, as R >>R,.

Different ways of presenting the same data emphasize
various aspects of the results. The exponent D, charac-
terizes the scaling of a developing structure, whereas the
exponent D, only describes the geometric scaling of the
last stage. In Sec. VI we discuss how the two exponents
are related.

Based on simulations, Meakin et al. [14] describe the
dependence of the aggregate mass M on length R by the
scaling form

M((R)~R”*G(R/ER/L,) . (10)

The exponent D, =1.3 is the fractal dimension associated
with DLA on an infinite cluster at the percolation thresh-
old [15,17], §~(f —f,)”" is the usual correlation length
as a function of the fraction f of high-permeability bonds,
f. is the percolation threshold fraction of bonds on a
square lattice, and v=4% is the correlation length ex-
ponent [19]. L, is a length set by the bond permeability
ratio « through

L,~k%, (1)

where a is a crossover exponent. G (x,y) is a crossover
function that describes how the scaling relation changes
from that of DLA on a percolation cluster at f, to that of
DLA on a homogeneous model as the pore space changes
from a percolative geometry to a uniform one by an in-
crease in « or f or both.

Meakin et al. [14] discuss the form of G (x,y) in some
limiting cases: As k—0, the length scale L, — oo, and for
f=f. this yields the scaling of DLA on a percolation

cluster [15,17) M ~R "2, with D,=1.3. As the fraction f
of high-permeability bonds changes away from f,, the
correlation length & decreases and will eventually become
less than the model size L. On length scales R <&, the
aggregate mass will scale as if on a percolation cluster
with an exponent D,=1.3, whereas the model will be
homogeneous at length scales R > £ and aggregate mass
should scale with length to a power D;=1.7. Thus, pro-
vided k <<1 and £ is in the range a <§ <R, <L, a cross-
over in scaling of M as function of size from D,=1.3 to
D, =1.7 is expected to be observed.

As the permeability ratio « increases, the associated
length L, decreases, i.e., the contribution from low-
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permeability bonds to transport properties of the model
increases. As k— 1, the scaling behavior of the homo-
geneous model M~R"" with D,=1.7 should be ob-
served independent of f.

The scaling and crossover behavior when both £ and
L, have intermediate values compared to the model size
L has not been discussed, but is expected to be complicat-
ed. It is also a region of expected practical importance,
since naturally occurring porous media are homogeneous
above and inhomogeneous below certain length scales
and may have permeability ratios anywhere in the range
[0,1].

III. EXPERIMENT

Physical models were made by a photolithographic
technique using a computer-generated transparent mask
to prevent uv-polymerization in designated areas of the
photosensitive nylon layer of a printing plate. After uv
exposure the unpolymerized nylon was washed away, and
we obtained a recessed pattern of pores connected by

bonds. A “lid” was clamped over the pattern, and we ob-’

tained a network where fluid flow was only possible on
the etched network. The network was filled with dyed
glycerol, later displaced by air injected at the center. The
setup permitted the displacement process to be photo-
graphed from above. The photographs were digitized,
and we were able to find the coordinates of the drained
pores in the aggregate and relate these data to the cluster
structure of the model. Once the coordinates of the ex-
perimentally. obtained aggregate where known, we could
find the scaling relations and, in detail, compare experi-
mental with simulated aggregates.

In the following subsections we give a detailed descrip-
tion of the experimental method.

A. Design of pattern

We chose a design, shown in Fig. 1(a), with a fixed pore
diameter d equal to one-half of the lattice constant a and
a fixed bond length of @ /2. The high-permeability bonds
have a width W and the low-permeability bonds a width
w. The large pores facilitate digitization of the experi-
ment (see Sec. IIT E).

The technique we use to make the photolithographic
mask limits the resolution we may achieve. Ideally, we
want a model with infinitesimally thin low-permeability
bonds. However, even a “large” ratio such as k=~10"%
requires a linewidth ratio w /W =0.01 since the volume
flux through a simple tube changes with its width to the
fourth power. Using the lattice design of Fig. 1(a), we
would get a lattice constant @ =2d =4W =400w. Thus
the lattice design, permeability ratio, and linewidth reso-
lution of drawing determine the lattice constant of the
network. Our Tektronix 4693 printer could print a
minimum line width of 84.6 um. In practice, we must
draw the thinnest bond at twice the printer resolution to
prevent the processor in the printer from removing bonds
as it rounds off values received from the computer. The
low-permeability bonds would then have a width of 170
um, yielding a lattice constant @ ~68 mm. The available
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printer paper would then permit a lattice of about 5X35
pores. Clearly, such lattices would be too small
Compromising, we used a ratio of bond widths,
w/W=0.25, giving a lattice constant a =2.7 mm. The
paper size then allowed a grid of 80X 80 pores. The lat-
tice size was increased to 145X 145 pores by printing the
pattern in four parts, assembling them, and reducing the
grid photographically to fit the 310-mm-wide plate into
which the pattern was etched.

It is possible to obtain a larger lattice by photographi-
cally decreasing the pattern more and by reducing the ra-
tios d/W and a/d. With such models, however, the
pressure needed to close the model (see Sec. III C) and the
data acquisition (see Sec. III E) set experimental limits.
The model we have used is close to the limit of what may
be achieved using the experimental techniques of this pa-
per.

B. Production of model

The assembled network was photographically reduced
to 28.5X28.5 cm? onto Agfa Rapidoline Ortho RA716
pm film. The pores and bonds appeared in black, while
the regions blocked to flow were transparent. The film
was used to mask photosensitive nylon plate (BASF
Nyloprint WA175) during exposure (14 min at a distance
of 1 m from the lamps) to ultraviolet radiation from a
Philips tabletop solarium (model HP3150/01A).

The unmasked portions of the plate were hardened by
uv polymerization, while the regions masked by black
remained unpolymerized, soft, and water soluble. After
exposure unpolymerized nylon was removed with water
under high pressure. The hardened regions remained,
and pores and bonds formed a recessed pattern in the
nylon plate.

Narrow bonds became more shallow than wide bonds
because the uv light came in at angles between 0° and 22°
to the surface normal. A simple geometric argument lets
us approximate the depth of the bonds to be equal to
their width. This was roughly what was observed using a
stereoscopic microscope.

The bond widths of the finished model were measured
under a Nikon SMZ-10 stereoscopic microscope with a
ruler having divisions of 0.1 mm. The average bond
widths were w=0.145+0.03 mm and W =0.58+0.03
mm, and the permeability ratio calculated with these
values was k=(w /W )*~4X10"3,

The nylon plate is red, and photographically this back-
ground provided poor contrast to fluids of almost any
other color. We coated the models with an aluminum
layer about 0.1 um thick by vapor deposition. The color
contrast to the dyed glycerol was thereby improved. In
addition, it improved the wettability of the model surface
toward glycerol.

C. Running an experiment

Figures 2 and 3 show the experimental arrangement.
The model was sandwiched between two 15-mm Plexiglas
plates held together by 12 clamps. The upper plate was
clamped together with a 0.02-mm-thick Mylar mem-
brane, and air at 3-5 kPa above the pressure on the
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FIG. 2. Experimental setup. a, the model in its holder is
shown in detail in the next figure b, camera; ¢, lamps; d, pres-
sure gauge, e, buffer volume, f, pressure reduction system; and
g, pressure to membrane.

displacing fluid was applied to the space between. Pres-
sure on the membrane was controlled by a Norgren low-
pressure valve and measured with a barometer (manome-
ter). The applied pressure forced the Mylar membrane
into contact with the etched side of the model as Fig. 3
shows, and so the flow of fluid was confined to the chan-
nels. Wide channels around and leading out of the
boundary kept the model open to flow and the boundary
pressure at ambient conditions. The plates and mem-
brane were transparent, permitting photography from
above.

Before the model was closed, a mixture of pure gly-
cerol, water, and a black dye (water-soluble Nigrosine
Merck “Certistain”) was poured over the model. The
viscosity was u =380 cP. The open model was placed in
an evacuating chamber to remove air trapped in the
pores. The model was closed by the inflated membrane
as described above.

During experiments, air at constant pressure was in-
jected from below through a 0.7-mm hole into the pore at
the center of the model. Pressure of the injected air was
measured differential to ambient conditions with a Texas

light & camera

+
; Plexiglas

compressed air

Mylar membrane

Nyloprint model

Plexiglas

J
T

injected air

FIG. 3. Model consisting of a nylon printing plate (BASF),
with a recessed network pattern on one side was closed by a
Mylar membrane. The assembly was supported by 15-mm-thick
Plexiglas plates held by clamps. The Mylar was kept in contact
with the model by pressurized air as shown. The displacing
phase was injected at the center, from below.
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Instrument fused-quartz pressure gauge. Pressure fluc-
tuations at the center were typically less than 1%. As air
intruded, a growing structure of air-filled pores and
bonds was observed and photographed. When the in-
truding air reached the boundary of the model, the set
pressure could not be maintained and the experiment was
stopped. The displacement process was photographed
from above using a Nikon F3 camera with 50-mm Nik-
kor lens and motordrive. We used Agfapan professional
black-and-white 100 ASA film. The camera was trig-
gered by an IBM PC that also recorded the moment at
which each frame was taken. Lighting was provided
from above by four halogen lamps.

D. Displacement conditions

The maximum displacement pressure we used was 390
mbar above ambient conditions.

We determined the capillary number Ca, by finding the
average front velocity U from a digitized sequence of
photographs of the displacement experiment. Plotting
the maximum cluster radius R ,, versus ¢ (Fig. 4), we
found U in units of lattice constants per second from the
linear fit. The maximum capillary number used in the ex-
periments was Ca=0.12, and the minimum value we
used was Ca=0.02. According to Lenormand, Touboul,
and Zarcone [6], our experiments at Ca=0.03 and above
fall within the viscous-fingering domain, where viscous
forces dominate and DLA is expected to be a valid mod-
el. Our experiments at Ca=0.03 and 0.02 are borderline
cases, and we concentrate on the experiments at
Ca=0.12.

We let the pressure on the membrane closing the model
exceed the displacing pressure by about 10% to ensure
that the membrane stayed in position during the displace-
ment, and the maximum force on the plates holding the
model was around 10* N. We have not explored at which
applied pressure the unit bursts, but the pressure require-
ments grow inversely with the permeability of the model.
In models of the present size, but having an increased lat-

80 T T T T

60

20

t (sec)

FIG. 4. Experiment. The largest cluster radius R ,, vs time
t for the experiment at f=~0.50. The line shows a linear fit and
a velocity U =10.7 lattice constants per second is obtained from
the fit.
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tice resolution of 1000X 1000 pores, pressure require-
ments would increase by a factor of 10°-10* to reach a
capillary number Ca=0. 1.

E. Digitization

To find quantities such as M (¢) and R, (¢), we digitized
the negatives obtained in experiments with a Nikon LS-
3500 Film Scanner controlled from an Apollo DN4000
work station at a resolution of 4000 X 4000 pixels for each
frame. The scanner resolves 256 levels of intensity in
each pixel. The film scanner reads 35-mm film and the
image area is 24 mm wide; i.e., the thinnest feature the
scanner can resolve is 24 mm/4000=6 pum wide. This
corresponds to a feature of 71.3 um in our model. We
measured thin bond widths around 150 um, and this cor-
responds to one to two pixels in the digitized image.

We found the pores invaded by air in the following
way: Before we started the flow of air, we took a picture
of the filled model, where the network of channels ap-
peared black on a white background. As air displaced
the dyed glycerol, pores and bonds invaded by air ap-
peared white as Fig. 5 shows. By numerically subtracting
the first image from later frames, we obtained only the
differences causes by the injected air; emptied pores and
bonds appeared white on a dark background. By this
procedure we acquired the pattern formed by the injected
air, parts of which otherwise would be lost. The software
allows correction for alignment errors between individual
frames, for distortions of the grid by the lens, and for
uneven lighting.

However, information about displacement in the low-
permeability bonds was lost when subtracting, since we
were unable to superimpose the two images to the re-
quired accuracy of one to two pixels. A main difficulty
was to rotate the two images (numerically) to align the
lattice axes exactly. Small deviations would cause the
low-permeability bonds to literally black out.

Having placed the digitized image back onto the grid,
we could identify the coordinates where air had entered.
The total number of pores was underestimated by roughly
5% of the total number and the number of bonds even
more. Since bonds were not reliably obtainable, we con-
centrated on the pores in the aggregate.

Now the experimental results could be compared with
those of the simulations performed on exactly the same
configuration of high- and low-permeability bonds, as
well as with simulations on other models.

IV. SIMULATIONS

A. DLA algorithm

In the DLA model of Witten and Sander [12], particles
are added, one at a time, to a growing aggregate. The
simulation starts with a central fixed seed particle and
another mobile particle at “infinity.”” This particle per-
forms a random walk until it reaches a neighboring site of
the seed. Here the particle terminates its random walk
and becomes a permanently fixed part of the aggregate.
The process is continued by starting new particles at
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infinity, one at a time. Each new particle walks until it
reaches an empty neighbor site of any occupied site,
where it is added to the growing aggregate.

The growth of the DLA aggregate is a stochastic pro-
cess where the growth probability for a particle to hit
(and stick to) the aggregate is given by the gradient of the
probability field obeying the Laplace equation. The gen-
erated patterns occur with a probability proportional to
their statistical weight. In all physical realizations of the
DLA model, a random-growth process occurs in which
the probabilities for growth are controlled by a field that
obeys the Laplace equation. Paterson pointed out [9]
that in viscous fingering the pressure field satisfies the La-
place equation and that DLA describes the process.

B. Meakin’s modifications of the DLA algorithm

Our simulations are a modified version of ordinary
DLA that take into account the permeability fluctuations
of the porous model. This algorithm was introduced by
Meakin et al. [14]. We used their computer program,
and we follow their description closely.

The boundary conditions used correspond to those of
the experiments we performed. The simulation started
with single occupied site at the center of the model and
was halted when a site at the boundary of the model was
reached.

To represent the flow of viscous fluid through the net-
work, a random walker moved with probabilities P; along
each of the four channels associated with its position on
the lattice. Here P,=k;/k, where P; and k; are the
probabilities and permeabilities associated with the ith
bond and k- is given by

4
kr=SK; . (12)

i=1

The probabilities P; (i =1,2,3,4) were calculated for each
lattice site before the simulation began, based on a list of
coordinates for high- and low-permeability bonds.
“Simulations on the experimental model” refers to use of
the list of coordinates we used when we made the nylon
model and the same permeability ratio k=4X 1073 as in
the experiments.

To represent the constant pressure in the sites occupied
by the nonviscous displacing fluid, occupied sites in the
growing cluster were selected at random with equal prob-
abilities. This corresponds to boundary conditions in the
dielectric breakdown model [16,20]. A particle was
launched on a random-walk path from this site in the
direction of a randomly selected nearest neighbor.
Throughout the simulation the random walk was ter-
minated if the particle returned to the aggregate. The
particle could always leave the aggregate along a high-
permeability bond, but it could leave along a low-
permeability bond only with a probability proportional to
the permeability ratio k <1. If unsuccessful, the whole
process started again.

When a particle was successfully launched on a ran-
dom walk, it moved from one site to one of its nearest
neighbors with probability P; and so on. When the parti-
cle reached a site at the boundary of the model, the ran-
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dom walk was stopped and the first unoccupied site en-
tered by the particle on this trajectory was added to the
cluster to represent growth of the viscous finger. Time-
reversal arguments show that this scheme is equivalent to
standard DLA where particles start at the boundary and
end their trajectory at the aggregate [21]. This procedure
was repeated until the aggregate reached the boundary of
the model.

The algorithm described above requires large amounts
of computer time. Usual methods to speed up simula-
tions of this type, by making long steps far from the ag-
gregate, cannot be used on the nonuniform model where
the random-walk trajectory takes place. Also, the
method is slow close to percolation since random walks
on such structures have high fractal dimension [22,23].

V. RESULTS

A. Results of experiments and corresponding simulations

Figure 5 shows a photograph of an experiment at a
given instance ¢. From this picture we find both the total
mass M (t) and radius of gyration R,(¢). The solid circles
in Fig. 6 show the result of analyzing a sequence of pic-
tures. We obtain M (R,) as function of R,(#); the slope
of the straight line fitted to these data is the radius of
gyration dimension D, of Eq. (8).

Each curve in Fig. 7 shows the number of air-filled
pores or, equivalently, the displaced mass within circles
of increasing radius R centered at the point of injection.
The lowest curve is generated from a digitized image at
an early stage of the displacement; the other curves each
represent later instances in the same displacement experi-
ment. The straight line is a fit to the last stage before

FIG. 5. Black glycerol fills pores and connecting bonds of the
model. Areas blocked to flow appear white. Air injected
through the central site has displaced glycerol, and these sites
and bonds appear white.
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FIG. 6. Experiment and simulation. The number of pores
M(R,) invaded by air as a function of the radius of gyration R,
for Ca=0.12. Solid circles are experimental data, and open
squares are results of one simulation (the same as in Fig. 9) ob-
tained as explained in the text. The solid lines show a fit to Eq.
(8). In the range fitted the slopes are DJ*'=1.9 and D;““ =1.6.

breakthrough; its slope gives the cluster dimension D, of
Eq. (9). We estimate the error on both D, and D, to be
+0.1. Changing the range over which we fit the straight
line gives the main contribution to the error.

At a given value of R, the number of pores M(R,¢,) in-
vaded at one instance ¢, is less than at a later instance t,,
M(R,t;)<M(R,t,). Thus in the interval 7, —¢; new
pores are added to the structure at radii R <R, (¢;)
and not only at values of R close to R, (¢;). Qualita-
tively, this means that the structure in Fig. 7 appears to
grow in the interior as well as at the tips. It is well estab-
lished that DLA structures grow only at the tips [24].

We superimposed successive stages of the experiment
as in Fig. 8, where pores added in each interval were as-
signed a different symbol. We found that the interior
growth was an effect of the exact distribution of clusters
of high-permeability bonds in the model. New pores
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FIG. 7. Experiment. The cumulative mass M (R) as a func-
tion of radius R for a sequence of stages of an experiment at
Ca=0.12. The straight line is a fit to the last stage (shifted up
for visibility) with slope D, =1.5.
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FIG. 8. Three experimental stages superimposed. Solid
squares represent pores drained during the first 1.65 sec of the
experiment, crossed squares represent pores drained during the
next 1.65 sec, and open squares show those pores drained in the
following 1.65-sec interval. A plus shows the site of injection.

were added predominantly at the tips of the three or four
main arms of the aggregate. But some parts of the arms
curl back or start out late and, indeed, contribute to the
aggregate at radii R <R,(¢), producing the layering of
the curves in Fig. 7.

We performed simulations as described in Sec. IV B.
The program returned a list of coordinates of sites (pores)
belonging to the aggregate in the order in which they
were added. To compare the simulation with experi-
ments, we used the first My, =M., (¢;) coordinates on
the list and calculated the radius of gyration for the simu-
lation at this stage. We also calculated M (R) within cir-
cles of increasing radius between a <R <R, ()
around the seed particle. Next, we used the first
Mg, =M,,(t,) and so on until we reached either the

3.0 . .

20+ -

1.5 -

log ' M(R)

1.0 -
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FIG. 10. Crossover function for experiment and simulations.
Circles are experimental data showing the normalized mass
[M(R)/M,](R/R,)™" as a function of the normalized radius
R /R, for the last stage of an experiment at Ca=0.12. The
shaded gray region represents ten independent simulations on
the experimental model. Results are averaged, and we only
show the rms deviation of the simulations around the average.

maximum experimental mass or the maximum simulated
“mass”. This procedure allowed us to make plots such as
the one in Fig. 9. As for the experimental data, these
simulation data also approach the M (R) curve for the
largest cluster. The slope is D, ~1.5+0.1 for experimen-
tal as well as for these simulated data.

The crossover function F(x) in Eq. (9), where
x =R /R,, is shown in Fig. 10 for the last experimental
stage of the experiment (Ca=0.12) of Figs. 6 and 7. The
plot emphasizes behavior at short length scales. The ex-
perimental data are shown together with the rms devia-
tions around the average of ten independent simulations
on the experimental model. The simulation results are
averaged by coarse graining the data from all simula-
tions. The abscissa is subdivided into suitable segments,
and the average radius and average mass within each seg-
ment is found. The standard deviation within each seg-
ment is found, and the shaded gray band in Fig. 10 corre-
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1.5

2.0

log, R

FIG. 9. Simulation. The cumulative mass M (R) in one
simulation as a function of the radius R for increasing values of
the total cluster mass. The slope of the fitted line is D.=1.5
(shifted up for visibility).
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FIG. 11. Experiment. The cumulative mass M (R) as a func-
tion of radius R for the last stage of five independent experi-
ments. One experiment is done at Ca=0.02, two experiments
are done at Ca=0.03, and two experiments are done at
Ca=0.12. The straight line is a fit to all data (shifted up for
visibility) with slope D, =1.5.
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FIG. 12. Crossover function for experiment and simulations.
The normalized mass [M(R)/M,](R/R,)™"? as a function of
the normalized radius R /R, for the last stage of five experi-
ments. Open circles, Ca=0.02; solid circles and open squares,
Ca=0.03; and solid squares and triangles, Ca=0.12. The shad-
ed gray band represents ten independent simulations on the ex-
perimental model. Results are averaged, and we only show the
rms deviation of the simulations around the average.

sponds to one standard deviation to either side of the
average.

The results of other independent experiments on the
same f =0.50 model but at different values of the capil-
lary number 0.02 <Ca<0.12 are shown in Figs. 11 and
12. The simulations show variations that are larger than
independent experiments on the same model.

Another way of comparing experiments and simula-
tions is to find the amount of geometrical overlap at the
same aggregate mass or at the same radius of gyration.
For practical reasons we chose the first alternative, and
an experiment-simulation overlap at the largest common

FIG. 13. Overlap of an experiment at Ca=0.12 and the simu-
lation shown in Fig. 9. Experiment is shown in boxes, simula-
tion crosses, and pores common to both in crossed boxes. Both
experiment and simulation contain M =690 pores. The radii of
gyration R, are 25.9 and 24.7 in units of the lattice constant for
the experiment and simulation, respectively.
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TABLE 1. Overlaps between aggregates obtained experimen-
tally or in simulations. The overlap S is the pores shared by
both structures (for example, by both experiment and simula-
tion) divided by the mass at which they are compared. Compar-
ison is made at the maximum common aggregate mass. When
nothing else is stated, the error bar on the overlap is +0.05.
The numbers given for the overlap of experiments with simula-
tions are averages of S for one experiment with each of ten
simulations. For simulation-simulation overlaps and
experiment-experiment overlap, the number is the average of all
combinations. The simulation-simulation overlap across
different models is found by averaging overlaps for all combina-
tions of one simulaton on each of nine different models with
f=0.50 and k=4X1073,

Fractal
dimension D
Overlap S=M yertap /M log oM /logoR
Experiment-simulation 0.55 1.5
Experiment-experiment 0.75+0.9 1.5
Simulation-simulation
on identical models 0.52 1.5
Simulation-simulation
Different models 0.16 1.5
On percolation cluster
Ozxaal et al. [15]
Experiment-simulation 0.78 1.3
Simulation-simulation 0.79 1.3

aggregate mass M is shown in Fig. 13.

A quantitative measure of the overlap is given by
S =M yeriap /M, Where M ..,, is the number of pores
common to experiment and simulation. The value of S
given in Table I is the average overlap between experi-
ment and ten independent simulations on the same mod-
el. Overlaps between two simulations may be defined
similarly, and are also shown in Table I. Overlap be-
tween two experiments is not found at a common aggre-
gate mass, since photographs cannot be taken at
predetermined (and equal) aggregate masses. Therefore,
we measure overlap between two experimental aggregates
(mass M, and M,) on the same model with the parameter
S =M yyer1ap /M, where M =min(M,M,).

B. Simulation results on other network geometries

Figure 14 shows simulations on other realizations of
145X 145 networks at £ ~0.5 and k=4X 1073, The top
figure shows an average over nine models with four in-
dependent simulations on each. The middle and lower
plots show two separate sets of four independent simula-
tions, each set on a different model realization. The plots
all show the crossover function F(x) of Eq. (9), and al-
though the average (over many realizations) F(x) is con-
stant for x <1, we observe that it has a model-dependent
shape when we plot the simulations on different models
separately.

C. Simulations on larger substrates

Figure 15 shows simulations on two larger models of
401X 401 sites with f=~0.5 and k=4X10"3. As in the
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FIG. 14. Crossover function for simulations. The normal-
ized number of pores [M(R)/M,](R /R,)™ ¢ as a function of
the normalized radius R /R,. Lines show average values; the
shaded gray regions represent the rms deviation of the simula-
tions around the average. (a) shows average of 36 independent
simulations on nine different models. The permeability ratio
was k=4X 1073, Each model is a different realization of the
case f=~0.50. (b) shows average and standard deviation for four
independent simulations on one model. (c) shows average and
standard deviation for four independent simulations on another
model.

loglo R/Rl

FIG. 15. Crossover function for simulations. The normal-
ized number of pores [M (R)/M,(R /R;)™ "¢ as a function of
the normalized radius R /R,. Lines show average values; the
shaded gray regions represent the rms deviation of the simula-
tion around the average. (a) shows average of four independent
simulations on a large 401401 site model. The permeability
ratio was k=4X 1073 and f~0.50. (b) shows the four indepen-
dent simulations in (a). (c) shows average and standard devia-
tion for four independent simulations on another 401 X401 mod-
el.
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previous section, we observe that the model geometry
influences the shape of the crossover function F(x) at
length scales R <R,. The average of these two sets of
simulations scales as D, ~1.6.

VI. DISCUSSION

The two main quantities measured were the overlap of
pairs of aggregates and the scaling of aggregates. We dis-
cuss and compare these quantities for aggregates generat-
ed in different manners.

A. Overlap

Overlap between independent experiments on the same
model is high, $=0.75, and well above the overlap be-
tween experiments and “simulations on the experimental
model,” §=0.551+0.05. The latter value is the same as
for overlap between two independent simulations on any
(single) model realization $=0.52. The value of these
overlaps are high compared to S=0.16 for overlap be-
tween simulations done on separate model realizations at
f=0.50 and k=4X 1073, We conclude that the underly-
ing (percolation) geometry of the pore space strongly
influences the growth of both the viscous fingers and
simulations.

Experiments are more reproducible than simulations,
as shown by S for these two cases. Lower simulation-
simulation overlap could originate in the random walk,
which adds a stochastic element in simulations responsi-
ble for added noise (as demonstrated by a lower overlap).
Another source of noise in DLA stems from the stepwise
growth of the aggregate. Every time a particle is added,
the structure changes since it grows by one pore, whereas
in VF growth occurs in several places simultaneously. In
the future one could reduce experimental noise by work-
ing with more perfect models and reduce numeric
“noise” by adding noise reduction [25] to the algorithm.

Early stages of overlap between experiments and simu-
lations show that pores unique to the experiments are
predominantly found at tips of the aggregate, while pores
uniquely chosen by the simulation lie closer to the center.
A similar observation [15] was made in VF on a percola-
tion cluster.

B. Scaling

Scaling analysis of experimentally and numerically
grown aggregates in Sec. V A shows that experiments and
the average of ten independent simulations on the experi-
mental model scale with the cluster dimension [Eq. (9)]
D, =1.5%£0.1; this is shown in Figs. 7, 9, and 10. This
value agrees with numerical results on larger models at
k=0.002 and f~0.50 by Meakin et al. [14]. We have
done 58 independent simulations on 10 model realizations
of size 145X 145 sites (f =~0.50, k=0.004). Averaging
over all simulations, we find an exponent D, =1.6x0.1,
which also is what we find for eight independent simula-
tions on two models of size 401 <X401.

Before discussing the scaling relations in more detail, it
is appropriate to comment on the range of length scales
over which we find geometric scaling behavior. To estab-
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lish the fractal nature of a random structure and deter-
mine its characteristic dimension(s), geometric scaling
should be measured over a wide range of length scales.
The total range of length scales we have at our disposal is
set by the model. It is about two orders of magnitude
since our model size L =145. As discussed in the sec-
tions on design, production, and digitization, the present
models are close to the limit of what may be experimen-
tally achieved.

However, the range over which we can expect to study,
geometric scaling is reduced for the following reasons:
The minimum of the range is set by the experimentally
obtainable minimum size of the aggregate, which was
R i, =3-5 lattice constants. Likewise, the maximum of
the range is set by the largest length where aggregates
show a power-law behavior, i.e., R,. In our model
R ..=102a, and the range over which we may test scal-
ing is log,,R, €[0.4,1.8]. However, since we have a
record of how the structure develops, we may extrapolate
the scaling of viscous fingers from the asymptotic ap-
proach of M (R) curves for early stages of displacement
to the M(R) curve for the last stage as Figs. 7 and 9
show.

As discussed in Sec. VA, the experimental M (R)
curves in Fig. 7 show a layered structure, and we argued
that this appearance is produced by interior growth in
the aggregate. Interior growth are drained pores added
to the aggregate at radii R <R,(¢;) in an interval that
starts at time t,. About 70% of our simulations show in-
terior growth. In contrast to our experiments and simu-
lations, it has been established that DLA aggregates grow
in an active zone outside R, [24], have low growth proba-
bilities “inside” the aggregate [26], and that their growth
is realized on a set of points of fractal dimension one [27].

C. Relation between D, and D,

The radius of gyration dimensions D, for experiment
and simulations differ by 0.33 (see Fig. 6). This result is
surprising since the cluster dimensions D, are practically
the same for these two sets of data. Most of the
difference originates in the large shift A, =D,—D,
=0.42 between these two fractal dimensions for the ex-
perimental aggregate. We find that D, and D, are related
as Fig. 16 shows. Each M(R) curve is mapped onto a
point M(R,), where the total mass of a given stage is
plotted at the radius of gyration. The early experimental
stages are stringy; i.e., R, is large compared to the mass
of the aggregate. As the aggregate grows, mass is added
in the interior of the aggregate as well as at radii larger
than R,, as discussed above. The points added in the in-
terior of the aggregate contribute little toward increasing
R,, while the total mass increases regardless of where
new mass is added. Thus the slope of the curve M (R,)
becomes steeper.

In contrast, the simulated aggregate of Fig. 9 maintains
its radial mass distribution unchanged as it grows, and
A ==0.03 is much smaller than for the experiment. It is
also smaller than the error on the fractal dimension.

Two other experiments have been analyzed similarly
and also show a large difference between D, and D,.
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FIG. 16. Experiment. The cumulative mass M (R) as a func-
tion of radius R for a sequence of stages of the experiment at
Ca=0.12. A straight line is fitted to the last stage with a slope
D,=1.5, but is not shown. Solid circles represent the total mass
at each stage placed at the radius of gyration of the aggregate at
that stage. The straight line is a fit to these points and has a
slope D, =1.9.

Other simulations than the one used in Figs. 6 and 9 ex-
hibit internal growth and an associated large A, while
simulations that show no obvious internal growth have
small A’s. We estimate that average differences are
A=0.3 for large shifts and A=~0.1 for small shifts; the
latter cannot be distinguished from the error on the frac-
tal dimensions.

We draw attention to a difference in boundary condi-
tions used in our simulations and the usual rule in large-
scale DLA-like simulations [12,28]. In our simulations
the model has a given size L, and as the aggregate grows,
the distance between the tips of the longest arms and the
boundary shrinks, thereby causing the growth probablity
to diverge. In large-scale simulations it is usual to move
the outer boundary—equivalent to increasing L as the
aggregate grows—thus preventing the divergence men-
tioned above. The lack of divergence as the aggregate ap-
proaches the boundary is unphysical for VF; VP does
diverge and we do observe a large increase in the growth
velocity of the viscous fingers near the boundary. We be-
lieve that the different boundary conditions explain why
Feder et al. [18] find the cluster dimension of viscous
fingers to be systematically smaller than for standard
DLA. Simulations employing static boundary conditions
were used by Meakin [28] and M&ldy et al. [21], but un-
fortunately the effect on the cluster dimension was not
discussed.

D. Crossover functions

Experiments and “simulations on the experimental
model” correspond beyond merely scaling with the same
cluster dimension D, =~1.5 and having a high overlap
S =0.55: The crossover function F(x) [Eq. (9)] plotted in
Fig. 12 shows that in the range R =R, experimental data
almost entirely fall within plus minus one standard devia-
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tion around the average of ten independent simulations
on the model. Repeated and independent simulations on
the other models with f=~0.50 and k=0.004 show that
the model strongly influences the details of the crossover
function F(x) at length scales R =R,, as shown in Figs.
14(b) and 14(c).

Variations in F(x) on different models are more pro-
nounced than differences between experiment and simula-
tions on the experimental model. Clearly, the inhomo-
geneous cluster structure of the model influences the
growth of the aggregate, also as expressed in details of
scaling. Figure 15 shows that, also in 401 X401 models,
simulations at R <R, scale in a way that is typical for
the model geometry.

We believe that the dependence on model geometry
may be explained by paths drained (or sites visited) dur-
ing early stages of aggregate growth. Here clusters (of
pores connected by good bonds) used for further growth
are chosen; also the pores at which the chosen clusters
are entered decide main features of the paths that will be
followed. When the aggregate is small, all paths to the
boundary are equivalent except for the local difference in
permeability close to the aggregate surface. Therefore,
for many network realizations at f =~ f, =0.50, the details
of the placement of the two types of bonds near the injec-
tion (or seed) site will influence aggregate growth de-
cisively. These details of the aggregate are reflected in
the behavior of the crossover function at R <R, .

As discussed in Sec. II B, Meakin et al. [14] suggest
the existence of a crossover length L, = Ak~ % (where
a=0.25 and A4 is the unknown amplitude), set by the
bond permeability ratio. The idea is that, if k=0, the
low-permeability bonds are closed and we have a lattice
with bond percolation, while k=1 gives us an ordinary
square lattice with all bonds present and equal so that we
have a square-lattice model; i.e., L, will change from
infinity to A4.

Aggregates grown on these geometries have known
scaling exponents D=1.3 and 1.7, respectively, and
somehow the behavior must go from one to the other as «
is changed.

Since we find crossover functions (Figs. 14 and 15) that
depend strongly on model geometry, this shows that
L,=L, for if L, ,<<L, we would see the characteristic
scaling of DLA independent of the lattice geometry [29].
Our experiments are also drastically different from exper-
iments on a percolation cluster [15]. We do not see
D_.=1.3, and we may conclude that L, is not >L. So
we may give a rough estimate: L, = Ak~ *=0.5L and
find 4 ~0.125L ~18a.

Repeated experiments on the same model, where some
were done at lower capillary number, i.e., lower displace-
ment pressure, all scale with the same exponent and have
very similar crossover functions F(x) (see Figs. 11 and
12). Thus all our experiments seem to be quite equal and
lie in the VF domain [6]. However, experiments at
Ca==0.03 and 0.02 have higher mass at breakthrough
than experiments at Ca=~0.12, M o, ~1.5M ;,. We be-
lieve this to be the first sign of the continuous transition
to capillary fingering [6]. It is interesting to note that
scaling is not noticeably affected.
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E. Relation to work of other authors

Chen and Wilkinson [4] and Lenormand, Touboul, and
Zarcone [6] have previously studied two-fluid displace-
ment in two-dimensional porous network models by com-
bining experiments and numerical methods. Compared
to our work, there are three main areas of difference:
model geometry, the algorithm used in simulations, and
method used to compared experiment and simulation.

The model we have used is inhomogeneous, as dis-
cussed in Sec. II A, whereas the other groups used homo-
geneous models. We used a statistical or cellular
automat-type algorithm on a model that has exactly the
same cluster geometry as the experimental network. The
two other groups solve the flow equations deterministical-
ly, on models that are only statistically similar to the ex-
perimental models, and also take surface tension and
capillary pressure (which are neglected in our simula-
tions) into account [6]. Finally, we have been in a posi-
tion where we could compare experimental results and
numerical results in great detail, whereas the other
groups just have had statistical methods available. As we
do here, they find a good agreement between experiment
and simulations. However, the deterministic methods
used by the other groups are very demanding and expen-
sive compared with the extended DLA algorithm of
Meaking et al. [14] that we have used, and one of our
main points has been to check the validity of the simple
extended DLA algorithm on a complex pore-space
geometry.

VII. CONCLUSIONS

We have presented a method to compare model experi-
ments and simulations in detail and have used it to study
the displacement of a high-viscosity fluid by a low-
viscosity fluid at high capillary numbers in well-defined
inhomogeneous networks.

Previously, in a system where the pore space had a
percolation-cluster geometry [15], the displacement front
was found to be fractal, with dimension D=1.3. It was
confined to the percolation cluster backbone that strongly
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influenced the aggregate formed in the displacement.

In the present models the pore-space percolation
geometry was modified by adding low-permeability
bonds, and the displacement-front geometry was strongly
changed. The effective fractal dimension was D ~1.5,
and crossover phenomena occurred, as expressed by
D,#D.. We suggest that the difference between the clus-
ter dimension D, and radius of gyration dimension D,
may be used as a measure of the degree of internal
growth in a structure.

The permeability of the thin bonds k=0.004 was high
in the sense that we cannot regard their presence as a
small perturbation away from critical percolation.
Therefore, we find the strong influence of the model
geometry on the front structure [as expressed in the
crossover function F(x =R /R,), the high overlap, and
the interior growth], both remarkable and important.

The simple modified DLA algorithm of Meakin et al.
[14] described the observed front well and also showed
the dependence on detailed pore geometry observed in
the experiments.
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