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Density-functional theory for inhomogeneous Auids: Adsorption of binary mixtures
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The nonlocal-density-functional theory for hard-sphere mixtures proposed in an earlier paper [Phys.
Rev. A 42, 3382, (1990)] is used to investigate the structure and the thermodynamics of binary simple
liquid mixtures adsorbed on substrates. We study (i) the adsorption of Lennard-Jones Auids in slit-

shaped pores with varying pore size, (ii) the selective adsorption of liquid argon-methane mixtures onto a
planar graphite surface at constant pressure, (iii) the density profiles of charged hard spheres in the vicin-

ity of a highly charged hard wall (primitive model of the electrical double layer). We compare our calcu-
lations to computer-simulation data and to the predictions of other recent theories. In all cases, packing
effects are very well described by the theory, and most discrepancies can be ascribed to the mean-field
treatment of attractive forces.

PACS number(s): 61.20.Gy, 68.45.—v, 05.70.—a

I. INTRODUCTION

The extensive use of computer simulations and the de-
velopment of density-functional (DF) theory during the
past decade have significantly improved our understand-
ing of the physical processes involved in solid-Auid inter-
facial phenomena [1—5]. In particular, a comprehensive
picture of the complex thermodynamic behavior of Auids
in confined geometries is now available [6]. Comparison
of the theoretical calculations with simulation results
shows that DF theories are generally able to give a good
qualitative description of the thermodynamics of these
systems and predict correctly a large variety of possible
phase transitions (wetting, prewetting, layering, capillary
condensation, etc.). The most sophisticated versions of
DF theory, which treat the short-ranged repulsive part of
the intermolecular potential in a nonlocal fashion [7—12],
can also describe successfully the microscopic structure
of the Auids in the vicinity of solid surfaces, in particular
the oscillatory behavior of the density profiles. In a
preceding paper [13] (hereafter referred to as I) we pro-
posed such a nonlocal DF for the inhomogeneous hard-
sphere (HS) fluid and showed that it provides an accurate
description of the adsorption of the pure Auid at a wall.
This functional, which is essentially a simplified version
of the one proposed recently by Rosenfeld [14,15], is
based on the so-called smoothed (SDA) [8] or weighted
(WDA) [9] density approximation like other nonlocal
DF's used in the recent literature, but it has two major
advantages over the other versions of the theory: first the
weight functions are characteristic of each type of mole-
cule, so that the application to multicomponent Auids is
straightforward, and second these weight functions are
purely geometric (i.e., density independent), which
reduces considerably the computational effort required to
minimize the free energy and to solve the corresponding
Euler-Lagrange equations. Computational simplicity is
an important aspect of the theory when dealing with mul-
ticomponent Auids. The main objective of the present

work is therefore to test more thoroughly the predictions
of the functional against existing simulations, in various
situations where size (or packing) effects may play an im-
portant role: adsorption of Auids in micropores, selective
adsorption from mixtures at constant pressure, and ad-
sorption of electrolytes onto highly charged surfaces.

The remainder of the paper is arranged as follows. In
the next section we briefly review the formalism and dis-
cuss the two-dimensional (2D) and one-dimensional (1D)
limits of the theory: the behavior of a three-dimensional
(3D) DF in these limits is a good indication of its perfor-
mances for describing adsorption phenomena. For a
more complete account of the theory the reader is re-
ferred to I and to recent papers of Rosenfeld [16]. Sec-
tion III contains the results of our calculations and the
comparison with simulations for Lennard-Jones Auids ad-
sorbed in narrow slits. Emphasis is put on the determina-
tion of the solvation force which is now a measurable
quantity. In Sec. IV theoretical predictions are compared
to Monte Carlo simulations for liquid argon-methane
mixtures adsorbed on graphite at constant pressure: in
this case the relative surface excess as a function of the
bulk composition is the relevant quantity for experiment.
Section V is devoted to the study of the primitive model
of the electrical double layer (charged hard spheres in a
dielectric continuum near a charged wall). Conclusions
and comments are found in Sec. VI.

II. THEORY

A. Brief review

As the general framework of the DF formalism is now
well known [5], we give here only a brief account of our
version of the theory (more details can be found in I).
Like most of the works in this field, the theory is based
on the usual separation of fluid-Auid interactions into
repulsive and attractive contributions. The latter are
treated in the meanfield approximation, i.e., correlations
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cv;''(r)=e(R, —r),
cv,

' '(r) =5(R; r), —

~(, "(r)=(1/8m)5'(R, r), —

cv,'.0)(r) = —(1/8m. )5'(R,. r)+(1/2m—r)5"(R;—r)

(5)

Therefore, this DF theory for the HS Quid looks like a
generalization of the SPT free energy to nonuniform situ-
ations and, as stated before, the main difference from the
other nonlocal approximations proposed in the current
literature is the introduction of four density-independent

I

are neglected (however in Sec. V electrostatic contribu-
tions to the short-range part of the pair correlations will
also be considered). The repulsive part of the intrinsic
Helmholtz free energy is modeled by the free-energy
functional of a reference hard-sphere Quid, so that the
grand potential functional of a multicomponent Quid in
the external potentials v;(r) is written as

f) [[p I) FHS[[p;])

+ —,
' f f drdr'p, .(r)p (r')(() '"(~r—r'~)

+ f drp;(r)[v;(r) —p;],
where p;(r) and p; are, respectively, the number density
and the chemical potential of component i, and P,'~'" is the
attractive part of the pair potential (summation over re-
peated indices is implicit throughout this paper).

The originality of our treatment is based on the calcu-
lation of the excess contribution to FHs [ [p; I ] which we
write after Percus [17]and Rosenfeld [14—16] as

FHs[[p, j]=kTfdr@([n (r)]), (2)

where kT@ is the Helmholtz excess free-energy density
of the HS uniform Quid and

n (r)= fdr'p, (r')co(; '(r —r') . (3)

a=1,2, 3,4 are weighted densities. 4 is taken from the
scaled-particle theory [18] (SPT) [or, equivalently, from
the compressibility equation in the Percus-Yevick [19]
(PY) theory]:

(Ii= —noln(1 —n3)+n in2/(1 —n&)

+(1 /24 ir)n2/(1 n3)— (4)
where no n&, n2, n3 are the reduced variables of the SPT:
n. =p, R,| ), with R,{ )=1, R,{ ~=R„R,{')=4~R,', andR"'= 4~R'.

1 3

The four weight functions cv;''(r ) are simply related to
the successive derivatives of the Heaviside step function
e(r):

weight functions related to the geometry of the individual
spheres. Conceptually, this is a great simplification; there
is no need to introduce ad hoc generalizations of the
weight functions for mixtures as is the case in Tarazona's
approximation [20] or in the WDA of Curtin and Ash-
croft [21]. Moreover, in practice, one does not have to
solve self-consistent equations for the weighted densities
as in the WDA or in the Meister-Kroll-Groot recipe [10].
The main difference from the original Rosenfeld's treat-
ment [14] is the use of scalar weight functions only, since
the introduction of vectorial quantities seems an unneces-
sary complication. By construction, this HS functional
generates the analytical PY pair direct correlation func-
tion c, (r ) i"n the uniform limit; we have shown in I that it
also predicts a good triplet function c (r, r') for the pure
fluid. Although the theory does not seem to describe
correctly inhomogeneities of infinite spatial extent
[p(r)Ap everywhere), as is the case for the HS solid, it is
fairly accurate for the adsorption at a wall where the den-
sity inhomogeneity is finite. In particular the density
profile of the HS Quid near a hard wall is almost perfectly
reproduced, up to a bulk packing fraction g=0.46. The
probable reason for this good performance is now ex-
plained.

B. One- and two-dimensional limits

The structure of a Quid adsorbed at a solid substrate
bears some resemblance to that of a uniform system in
lower dimensionality. This is especially true for Auids
confined in narrow slits [8] (then D =2) or cylindrical mi-
cropores [22] (D = 1), but also when they are strongly ad-
sorbed at a planar surface (D =2). Therefore, as suggest-
ed by Tarazona and co-workers [8], the performance of a
three-dimensional DF in such situations can be related to
its ability to describe properly the two- or one-
dimensional uniform Quids. We first consider the 2D lim-
it of a HS Quid mixture with radii R; and three-
dimensional densities of the form

p, (r)=p," '5(z), (6)

where each p'; ' is a two-dimensional uniform density

p = drp r{2D)

where g =f f dx dy is the area in the x-y plane. The
calculation of the corresponding weighted densities from
Eqs. (3) and (5) is straightforward and the excess free en-
ergy can be obtained from Eq. (2) via elementary integra-
tions. The resulting expression for a mixture with un-
equal sizes is rather lengthy so we only give here the re-
sult for the one-component Quid. The excess free-energy
density per particle is

(P(2D)/ (2D) —
( 1 z (2D)/( 1 (2D)) ( (2D)+ [ (2D)/( 1 (2D)

) )
i/2 t ). (2D)/( 1 (2D)

)
il/2)

3 9 (9 9 I L I

where g' '=~R, p,
'' is the 20 packing fraction.

The numerical results are compared in Table I with
those obtained from the accurate scaled-particle theory
for hard disks [18]:

q (2D) / (2D) — (2D) /( 1
(2D)

) ln( 1
(2D)

) (8)

and also with the predictions of Tarazona's functional
[8]. The overall agreement is surprisingly good and in
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TABLE I. Excess free-energy density per particle for hard
disks as a function of the packing fraction g' "'. The result in
the 2nd, 3rd, and 4th columns correspond to the present theory,
the scaled particle theory (Ref. [18]),and Tarazona's SDA (Ref.
[8]), respectively.

Bf
BH

(10)

where the relevant quantity is the so-called solvation
force (per unit area) f, defined by [25]

(2d)

0.05
0.1

0.2
0.3
0.4
0.5
0.6
0.7

q)(2d) y (2d)

[Eq. (7)]

0.104
0.215
0.468
0.777
1.172
1.714
2.528
3.936

(y(2d) y (2d)

[Eq. (8)]

0.104
0.216
0.473
0.785
1.177
1.693
2.416
3.537

q)(2d) y (2d)

(SDA)

0.105
0.220
0.492
0.840
1.314
2.014
3.195
5.794

where y= —,'(t)A/BA) v T„H is the plate-fluid interfacial

tension, A is the surface area of each plate, and H is the
separation between the plates (we put aside the direct van
der Waals interaction between the material of the two
walls). The solvation force f, (H) vanishes in the limit
H~ oo and for small plate separations it shows oscilla-
tions which are due to the packing of the molecules
confined by the walls. From the preceding discussion we
expect that this force should be accurately determined by
our density functional. %'e first consider the case of a
pure fluid.

any case much better than for Tarazona's approximation.
Good results are also obtained for asymmetrical mixtures
when the size ratio is less than 2. Therefore we may be
confident in the ability of the theory to describe correctly
packing effects in quasi-2D regimes. Note that the struc-
ture of the hard-disk fiuid (for instance the pair direct
correlation function) can be also derived easily from the
functional and that other interesting cases such as hard
disk mixtures with nonadditive diameters can also be
studied analytically by a similar procedure [23].

We now consider the 1D limit with three-dimensional
densities of the form

p;(r) =p' '&(x)&(y), (9)

where p,
" '=(I/L) f drp, (r) is now a one-dimensional

uniform density and I. = dz is the length in the z direc-
tion. Calculation of the corresponding weighted densities
is again straightforward but the excess free energy is now
infinite: no(r) and n &(r) have nonintegrable singularities
at r =R,-. Therefore the functional cannot describe
correctly the 1D limit. This is unfortunate since
Tarazona's SDA also fails in this regime [22]: the descrip-
tion of very small cylindrical pores remains a difficult
challenge for any 3D density functional. Although that
does not mean that our DF is totally inadequate for
describing the behavior of fluids in cylindrical geometry,
we shall only consider in Sec. III the case of slitlike pores.

III. ADSORPTION IN NARROW SLITLIKE PORES

The adsorption of fluids in porous materials has been a
domain of very active research for a long time because of
important applications in industry. Significant advances
on the theoretical side have been made during the past
decade (see [6] for a recent review on the subject) and this
is a domain where DF theories have proved to be ex-
tremely useful. Because of the difficulty in describing real
porous solids at the microscopic level, most theoretical
studies have considered only highly idealized systems,
such as single slits or cylinders of infinite length. The
slitlike geometry is approximately realized in the we11-
known experiments of Israelachvili and co-workers [24]

A. Adsorption of a pure quid

r*=r~'=-,' f [p*(z") p*)dz', — (12)

where z*=z/o, H*=H/cr, and p*=po' . This choice
means that we take the Gibbs surface at the plane where

becomes infinite. The mean pore density is then

p~ =p o =2I */H*+p* and the number of particles in
the pore per unit area is %*=No. =p*H*. With these
definitions, the thermodynamics of the confined system
can be summarized by the following Gibbs adsorption
equation:

2 d y+2s d T+ 2I dp+ f,dH =0, (13)

where s is the surface excess entropy per unit area.
We notice here that the.choice of the relevant thermo-

dynamic variable (p, p, or p) for comparing simulation re-
sults to theoretical predictions is not obvious, because of
the underlying differences in the bulk equation of state,
which is only given approximately by the mean-field
theory. Although the knowledge of p is sufficient to ob-
tain the density profile in a DF calculation, we think that
it is preferable to use p (i.e., the density of the uniform
fiuid at the chemical potential fixed by the reservoir) as
the input of the theory when varying the plate separation.

In order to compare our theoretical predictions to
available computer simulations we shall study the adsorp-
tion of a Lennard-Jones fluid with pair potential
Pl.~(r)=4e[(o lr)' (o lr) ]—(which may be truncated
and shifted at r = r, in some cases) and confined between
two identical structureless walls by a 10-4-3 solid-fluid
potential simulating the interaction with the basal plane
of a graphite surface [26]:

P,&(z) =2rrp, E,f(7 f5 I ', (cr,/—/z)' (o,&—/z)

—o,//[3b(0. 61k, +z) ]],
where p, and 6 characterize the solid surface and c,& and
o.,& the solid-fluid potential. The cross parameters c,&
and o.,I are calculated via the Lorentz-Berthelot mixing
rules. The other important interfacial quantity is the ex-
cess adsorption per unit area which we define here as
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d =d ( T)= f [1—exp[ PP"r(r)—]]dr,
0

which is only temperature dependent. However, there is
no reason why this choice should be adequate when deal-
ing with arbitrary nonuniform situations since an optimi-
zation principle is no longer available. In particular, for
the high densities which occur near adsorbing surfaces,
the value of d given by Eq. (14) inay be overestimated.
Another possible choice for d, which appears to yield
better results for supercritical or near-critical adsorption
[30], is the one suggested by Lu, Evans, and Telo da
Gama [31]:

d (T)/o =(a,T*+a3)/(azT*+ I ), (15)

where a, =0.3837 and az=0. 4293 (as given by Verlet
and Weis [32]) and a3 is a free parameter chosen such
that the theory yields a good fit of the liquid density
along the coexistence curve. A modification of P,«, has
also been suggested by some authors [33—35] to improve
the bulk equation of state given by the mean-field theory.
We shall not consider this last possibility in the present
paper.

To illustrate the influence of the choice of d on the pre-
dictions of the theory, we first compare the DF theoreti-
cal results with simulated results mimicking the adsorp-
tion of a supercritical LJ fluid on graphite at temperature
T*=1.35 in a slit of width H =5. This system has been
first studied by van Megen and Snook [36] in a grand
canonical ensemble Monte Carlo (GCEMC) simulation
and calculations have been repeated by Walton and
Quirke [37] and more recently by Tan and Gubbins [30].
Density-functional results are also available [38]. Calcu-
lations were carried out with parameters for the Quid
modeling approximately ethylene (see Table II) and with

Then, one is sure to recover the correct limit of the densi-
ty profile at large separations. Moreover, it is p (or the
mole fractions for a mixture) which is actually controlled
in the course of the experiments. On the other hand, the
correct value of the density may not always be available
from the simulation or easily calculated from an equation
of state, especially in the case of mixtures [27].

Since we are dealing with an approximate theory, the
choice of the equivalent hard-sphere diameter is not
indifferent to the numerical predictions. Like most au-
thors, we choose to split the Quid-Quid potential at the
minimum 0-;„=2' o. in a Weeks-Chandler-Andersen
(WCA) fashion [28], which defines the short-ranged part
of the pair potential P"~=/ —P"". Then, according to
WCA, the equivalent hard-sphere diameter d should be
temperature and density dependent. A good approxima-

'tion of d is given by the Barker-Henderson [29] expres-
sion

the solid-Quid parameters actually used by van Megen
and Snook and the other authors: o,& =0.3809 nm
(o, =0.340 nm), 2mp, e,&o,&5=12.96', b, =0.3393 nm.
The cutoff radius for the LJ potential was r, =2.50. and
we found that a good fit of the liquid densities at coex-
istence was obtained with a3=1.032 in Eq. (15) [the
Verlet-Weis [32] fit to Eq. (14) corresponds to a3= 1.068].
The density profile in the slit is compared to the simula-
tion in Fig. 1 at @*=@/E = —3, which fixes the bulk den-
sity p*=0.28. We see that choosing the value of d from
Eq. (15) (d=0.4136 nm) instead of Eq. (14) (d =0.4236
nm) improves the agreement, which is good in both cases
anyway. The improvement is more apparent for the
mean pore density p which is an integrated quantity: we
find p =0.568, to be compared to p*(MC)=0. 564 in-
stead of p'=0. 521 when d is taken from Eq. (14). The
excess adsorption isotherm (I * as a function of p")
shown in Fig. 2 confirms that this slight modification of
the value of d is not indifferent to the success of the
theory. For the system and the conditions considered
here, the performance of our DF is comparable to
Tarazona's SDA, as tested by Tan and Gubbins [30] who
also adjusted the hard-sphere diameter according to Eq.
(15). We remark the pronounced maximum in the iso-
therm, which is characteristic of the adsorption of Quids
at supercritical temperatures.

Snook and van Megen [39] have been the first to carry
out a systematic study of the density profile and of the
solvation force as a function of the plates separation H.
Their CzCEMC calculations have been confirmed and
completed by Magda, Tirell, and Davis [40] in a later

TABLE II. Interaction parameters for the Lennard-Jones po-
tentials.

cr (nm)
E/k {K)

C2H4

0.4218
201.8

Ar

0.3405
119.8

0.3630
163.1

CH4

0.3817
148.2

FIG. 1. Density profile for ethylene in a carbon slitlike pore
of width 0*=5at T =1.35. The theoretical results are shown
by dashed [using d from Eq. [14)] aud solid [using d from Eq.
(15)] lines, while simulation results (from Ref. [37]) are shown as
circles.
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1.5

0.5

7 =1.35

l I ) I I ) I ) 1 I ) ) l ! I I ) I I

0 0.1 0.2 0.3 0.4

p H dp, ~(z)
f, = —I p(z)dz —p, (16)

2 477 (p,', =)M' T'»p = —1.849). According
to Snook and van Megen [39], the corresponding reduced
bulk density and bulk pressure are p* =0.5925 and
p'=pa /v=0. 24 (with r, =3.5o). This situation corre-
sponds approximately to a bulk liquid under its own va-
por pressure. The theoretical density pro6les are com-
pared to the simulation results (at the same bulk density)
for H*=3, 4, and 7.5 in Figs. 3—5. The agreement is ex-
cellent in the three cases. We have taken the value of d
from Eq. (15) (d /o =0.984) instead of Eq. (14)
(d /o = l.009) and again this choice improves
significantly the results for the integrated quantities, espe-
cially at large separations (the theoretical bulk pressure
and excess chemical potential are p

*=0.177 and
p,,*„=—3.101, respectively). The comparison for these
quantities is presented in Table III. The reduced solva-
tion force f,*=f, cr /s has been calculated from the mi-
croscopic expression [25]

FIG. 2. Excess adsorption isotherm per unit area of ethylene
in a carbon slitlike pore of width H*=5 at T*=1.35. The
theoretical results are shown by dashed [using d from Eq. (14)]
and solid [using d from Eq. (15)) lines, while simulation results
(from Ref. [30])are shown as circles.

molecular-dynamics simulation (MD). In this study, the
solid atoms are chosen identical to the Quid molecules
(rr, =o, s, =E) and values of 6= 1/&2cr and p, rr,&b, = 1

are assumed. The liquid is characterized by the reduced
temperature T*= 1.2 and the reduced chemical potential

which is equivalent to Eq. (10) (actually, the comparison
between the results computed from the two expressions
of f, can be used to test the accuracy of the calculations).
Note that Snook and van Megen [39] and Magda, Tirell,
and Davis [40] refer to the first term on the right-hand
side of Eq. (16) as the solvation force and —2(By/BH')„T
is then termed the disjoining pressure II(H), as intro-
duced by Derjaguin [41]. The variations of f, as a func-
tion of the plate separation are compared to the simula-
tions in Fig. 6 (the underlying physics is now well known

TABLE III. LJ Quid in a 10-4-3 slitlike pore at T =1.2 (p*=0.5925): thermodynamic quantities as
a function of the pore width. I, N, y, and f,* are the reduced excess adsorption, the number of
particles in the pore per unit area, the interfacial tension, and the solvation force, respectively. The
numbers in parentheses are the MD results of Magda, Tirell, and Davis (Ref. [40]).

2.25

2.5

2.75

3.2

3.5

3.75

7.5

9.5

—0.281
( —0.28)
—0.318

( —0.33)
—0.203

( —0.18)
—0.164

( —0.17)
—0.206

( —0.21)
—0.227

{—0.25)
—0.155

( —0.15)
—0.141

( —0.14)
—0.123

{—0.12)
—0.120

( —0.12)
—0.117

( —0.12)

0.772
(0.77)
0.845
(0.82)
1.224

(1.27)
1.450

(1.45)
1.484

(1.48)
1.620

(1 ~ 57)
1.911

(1.92)
2.088

(2.10)
3.309

(3.32)
4.205

(4.2)
5.395

(5.4)

—2.90
(
—2.86+0.13)

—2.50
( —2.46+0.05)

—3.02
( —2.91+0.05)

—3.62
( —3.28+0.17)

—3.45
( —3.37+0.15)

—3.19
( —2.85+0.08)

—3.35
( —3.46+0.14)

—3.51
{—3.52+0.09)

—3.54

—3.56

—3.53

—2.773
( —2.88+0.04)

—0.626
( —0.66+0.01)

4.053
(4.67+0.01)

0.313
(0.24+0.06)

—1.192
( —1.29+0.01)

—0.061
( —0.25)

1.179
(1.40+0.1)

0.076
(0.13+0.1)

0.014
(0.08)
0.007

( —0.03)
0.004

( —0.07*0.08)
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Tarazona's mo e inc ud 1
'
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do not split the intermolecularlick, Scriven, and avis o n
otential according to eth WCA recipe). We believe thatp
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cribed to the use of the mean-field approximation.

We now consider the application of the theory to the
case of Quid mixtures in slitlike pores.

B. Adsorption of a binary mixture

Theoretical stu ies o ed' f th adsorption of Quid mixture
at substrates are sti in eill in their infancy and only few simu-
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confined in slitlikeconsi ere a'd d argon/krypton mixtures con

ro riate topores y ab (9 3) LJ potential, which is also app p
'

represent graphite walls [26]:

(17)
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The arameters used for Ar (1) and Kr (2) are given ine param
fi). The solid-fiuid potential param-

eters are o.„/cr, =0.5621, o.,2/o, =0.588,
=9.2367 and E,z/EI==12 1744. We have calculated the

1 s at the supercritical temperaturedensity profiles at e
T =kT/e, =2 and for the total reduce d den sit

p —
I 2,=0.444 d the mole fraction of Ar

+ )=0.262 in a pore of width H*=H/
used the Barker-0)= . n 1, =5. I this example we have simply use

h rd-s here diameters obtained from q.E . (14).Henderson ar -sp e
s is resented in Fig. 7The comparison to the MD results is presen e in

that the rofiles are drawn here for half of the slit).(notet a ep
'

ns for Ar and Kr areThe corresponding excess adsorptions or*=I o. = —0.067 and I 2 =I 2o. , =0.213, respectively,
to be compared to the MD results
I 2 =0.26. It is important to remark that the densities p&
and have been determined by Sokolowski and Fischeran p2 ave
usin the chemical potentials obtained in the simulationusing e c
by the test particle method to solve the qe uation of state

n-field theory. As pointed out before, this may
b rious source of error in the comparison oe a seri

en refer-simulation wi e'th the theory and it would have bee p
f the DF calculations with the exac"able to per orm e

f the surrounding bulk medium. is pro
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N rtheless, the overall agreement iscess adsorptions. ever e es,
ional for thisfairl ood and the performance of our functiona or t is

(MKG) approach tested by Sokolowski and isc er.
more laborious numericalDF theory also requires muc mo

computations t an e ph th resent one, in particular for ob-
taining the weighted densities.

6 have1 k' d Fischer, like other authors 6, ave
r haseconcentrated on the determination of the capillary p ase

ram of the confined Auid and the calculation of ad-

the MKG results to be significantly modified y t e
present t eory an weoteef h thermodynamics inside pores especia y e e

f the critical temperatures) is rathher sensitivemination o e c '
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FIG. 7. Density profiles for an argon- ypon-kr ton mixture ad-
H*=5 at T*=2 (di-sorbed in a graphite slitlike pore of width

in terms of the argon parameters).mensionless quantities are in erm
The total density and the mole fraction of argon are p

d =0.262 respectively. The theoretica rel results are shownan x&=
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shown as solid (Ar) and open (Kr) circles.

-10

FIG. 8. Theoretical predictions for the
~ ~

the solvation force (solid
line) and the selectivity (dashed line) for the same system as in
Fig. 7.
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when the mole fraction of argon is less than 0.09. The
critical temperature inside the pore is therefore better es-
timated with our treatment of short-ranged forces.

We wish also to look at the changes in the Quid struc-
ture as a function of the pore width, at fixed bulk concen-
tration and composition. In Fig. 8, we plot the solvation
force and the selectivity of krypton relative to argon
versus the pore width, for the same system considered
previously at T*=2. In the case of mixtures the solva-
tion force is just the sum of the forces due to each com-
ponent [25], and the selectivity (or separation factor) of
component 2 relative to component 1 is defined as [45]

S= [( 1 —y &
) /y & ]/[( 1 —x, )/x

& ], (18)

where y, =p' /(p' +p ) is the mole fraction of com-
ponent 1 in the pore. This quantity is important for prac-
tical applications since it indicates the ability of a porous
adsorbent to separate the different constituents of the
mixture. The selectivity approaches asymptotically to
unity as the pore width goes to infinity and the oscillat-
ing behavior at small separations is related to the layering
structure and the packing effects in the confined Quid, as
for the solvation force. A similar behavior has been ob-
served by Tan et al. in their recent DF calculations [44]
based on an extension to mixtures of Tarazona's SDA
[20]. In the present case krypton is preferentially ad-
sorbed, reAecting the stronger interaction with the graph-
ite surface (e,2) s„), but the selectivity is much smaller
than the one found by Tan et al. because we have con-
sidered a rather high temperature which smooths the
differences between the two components of the mixtures.
However, at very small separations, size effects play a
determinant role and since argon molecules can penetrate
into the pore more easily than krypton, the selectivity
falls to zero. In consequence, at fixed temperature and
bulk composition, the selectivity passes through a max-
imum for a certain pore size (H-0. 52 nm), which then
would be an optimum choice from the point of view of
Auids separation. Of course, this example is mainly illus-
trative and we must not forget that we have neglected the
lateral structure of the graphite walls, which may change
the quantitative predictions for the smallest pores and
lower temperatures [30].

6 I I I I
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[

I I I I
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p (z) x, =O. 19

useful in the case of real solid-Quid interfaces with strong
deviations from ideality.

Monte Carlo simulations in the isobaric-isothermal en-
semble (NPTMC) are especially appropriate for the study
of adsorption from mixtures. Such a method has been re-
cently developed by Finn and Monson [48] and applied to
the study of selective adsorption of model vapor and
liquid mixtures of argon and methane on graphite [49].
In the following, we shall compare their simulation re-
sults to the predictions of the DF theory in the case of
liquids. Vapor mixture adsorption will be studied in
more details in a subsequent paper. The graphite surface
is again represented by the 10-4-3 Steele potential (with
o, =6=0.340 nm, s, /k =28.0 K, p, = 112.26 nm ) and
the fluid-fluid potentials for methane and argon (see
Table II) are truncated at r, =2.5ocH with no tail

4

corrections. As noted by Finn and Monson [49], CH4-Ar
mixtures are reasonably ideal, so that their bulk thermo-
dynamic properties can be accurately described by the
van der Waals one-fluid theory [50]. This provides a sim-
ple way of computing the bulk densities at a given com-
position, from the knowledge of the pressure used in the
simulation. On the other hand, the choice of these densi-
ties as the input of the theory means that the pressure ob-
tained from the mean-field equation of state will not stay
constant as the bulk composition is varied. Therefore
one must check a posteriori that the variations of p
remain acceptable. Calculations have been performed at
T =0.8 and p*=0.04 (dimensionless quantities are in
terms of the methane parameters), which give a quite
dense liquid mixture. The equivalent hard-sphere diame-
ters have been computed from Eq. (14). The density
profiles corresponding to the bulk compositions
x

&
=xcH =0.19 and 0.60 are shown in Figs. 9 and 10, re-

IV. SELECTIVE ADSORPTION FROM A BINARY
LIQUID MIXTURE AT CONSTANT PRESSURE

In a large class of experiments selective adsorption
from Quid mixtures onto solid surfaces is studied at con-
stant pressure by measuring the composition of the adsor-
bate phase as the bulk composition of the Quid is varied
[46]. Many efforts have been devoted to the prediction of
multicomponent adsorption equilibria from the
knowledge of pure-component adsorption isotherms, in
relation to the design of separation processes [45]. Since
the thermodynamics of multicomponent adsorption is
most often based on the assumption that adsorbed Quid
mixtures behave like ideal or regular solutions [46,47],
the primary objective of statistical mechanical methods is
to test the validity of these approximations on model in-
terfaces well defined at the microscopic level. Then, in a
second state, one may hope that these methods will be

z
FIG. 9 Density profiles for a methane-argon liquid mixture

adsorbed on graphite at T*=0.8 (dimensionless quantities are
in terms of the methane parameters). The bulk pressure and the
mole fraction of methane are p*=0.04 (as given by the simula-
tion) and x&=0.19, respectively. The theoretical results are
shown by solid lines, while simulation results (from Ref. [49])
are shown by dashed lines.
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FIG. 10. Same as in Fig. 9, but for a mole fraction of
methane x& =0.60.

spectively. It is clear that the predictions of the theory,
which are good at x& =0.19, deteriorate significantly as
the concentration of methane increases. The mean-field
pressure is quite far from the MC pressure and varies be-
tween p

' =0.74 and 1.06 as x, goes from 0 to 1. Howev-
er the source of the problem is not in these variations and
we have checked that keeping constant the pressure by
adjusting the densities or that using the bulk densities ob-
tained from the limit of the MC profiles far from the sur-
face would lead only to minor changes in the theoretical
predictions. In fact, the poorer agreement at the higher
methane concentrations arises from the failure of the
mean-field theory: this is not very surprising, because the
temperature is near the triple point of methane and a
higher methane concentration means stronger attractive
forces in the liquid and with the surface. It is likely that
the theory would be more accurate at a higher tempera-
ture. However, changing T in the calculations in order to
have the same reduced temperature T/T, as in the simu-
lation [T,(MC) =1.23, T, (MFA) =1.32] does not improve
the agreement. Attempts to adjust the hard sphere diam-
eters have been unsuccessful too. The annoying conse-
quence of this failure is that the surface excess concentra-
tion of methane I '&"' =x 2 I,—x, I 2 is not predicted
correctly in the whole domain of bulk composition, as
shown in Fig. 11. This quantity is the primary function
characterizing adsorption equilibrium in liquid mixtures
and is readily obtained from the experiment once the
specific surface area of the solid is known [46]. Both
simulation and theoretical results show a small positive
adsorption excess for methane due to the stronger in-
teractions with the surface (note the large error bars in
the simulated results which reAect the difhculty of com-
puting excess properties). From the parabolic shape of
the surface excess isotherm in Fig. 11 it is usually con-
cluded that the mixture is close to ideality, both in the
bulk and in the "adsorbed phase" [46]. This is precisely

FIG. 11. Surface excess concentration of methane as a func-
tion of bulk composition for methane-argon liquid mixtures ad-
sorbed on graphite at T*=0.8 and p*=0.04. The theoretical
results are shown by solid lines, while simulation results (from
Ref. [49]) are shown as solid circles.

the kind of assumption which should be controlled by a
statistical mechanical treatment and we intend to return
to this problem in a future work.

V. APPLICATION TO THE THEORY
OF THE ELECTRICAL DOUBLE LAYER

The last example of solid-Quid interface that we want
to investigate in the present paper is the one correspond-
ing to an electrolyte solution in the vicinity of a charged
surface. Because of the ubiquity of charged layers in
physical chemistry or biology, considerable efforts have
been devoted to the theoretical description of this inter-
face and we refer the reader to one of the many reviews
on the subject (for instance, [51]). A large part of the un-

derlying physics is already contained in the so-called
primitive model, in which ions are represented by
charged hard spheres next to a uniformly charged planar
wall, the whole system being immersed in a dielectric
continuum. At high bulk concentrations and surface
charge densities (which, incidentally, cannot be reached
in real experiments), computer simulations in 1:1 electro-
lytes [52—54] show the formation of a second layer of
counter ions next to the wall, which leads to a large value
of the potential drop. The prediction of this
phenomenon, which supposes a proper description of
both electrostatic and packing effects in the inhomogene-
ous Quid, has been a challenge for all modern double-
layer theories and sophisticated calculations have been
performed in the recent years [53,55]. It is clear that
nonlocal density functionals are also adequate to the
treatment of this problem and this route has been taken
by some authors [56,57]. Our approach is similar to the
one proposed recently by Micr-y-Teran et al. [57] but we
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suggest a slightly di6'erent derivation which we think is
more transparent (in particular in the treatment of elec-
trostatic contributions).

We consider the general situation where the electrolyte
solution is enclosed in a macroscopic volume V with
some external charges q, (r) adsorbed on the surface S.
As usual when dealing with long-ranged Coulomb forces,
it is convenient to consider the electrostatic contribution
to the free energy separately [58], so that we write the
grand thermodynamic potential for the total system [in-
cluding the external charge q, (r)] as

6= G[Ip;}]+,' f—drq(r)%'(r)

+ fdrp, (r)[v;(r) —p, ], (19)

b, %(r)= —(4~/E)q(r), (20)

where e; is the charge of the ion of species i and c is the
dielectric constant of the medium. We may now rewrite
0 as follows:

where G is a unique (but unknown) functional of the ionic
densities p;(r), v;(r) is the nonelectrostatic part of the
external potential, and q(r)=e;p, (r)+q, (r) is the total
local charge density, related to the mean electrostatic po-
tential 4'(r) through Poisson's equation

G'"[Ip }]=G[Ip}]—F [Ip;}]
= f drg'"( Ip; } )+p', "fdr bp;(r)

kT f d r d r'c, ',.'(
~
r —r'

~ )

Xbp;(r)bp (r')— (23)

(24)

where c;J (r) is the direct correlation function of the cor-
responding uniform hard-sphere Auid (i.e., at the same
density Ip, }). A similar formal separation can be per-
formed on the direct correlation functions of all orders in
Eq. (23). We now sum the hard-sphere contributions to
all orders and neglect the higher-order terms Ac I,

'

(n & 2). The result for G is

where we have used the relationships between the func-
tional derivatives of G" and the non-Coulombic part of
the direct correlation functions c,'.", c,.'."I„.. . .
P', "=p';"—e;%(bulk) is the contribution to the excess
chemical potential arising from the non-Coulombic terms
[58] and g'" is the Helmholtz excess free-energy density
of the uniform ionic mixture minus the electrostatic self-
energy. We can write c .'as

0= G[ [p; }]+fdr q(r)+(r) —E/8m f dr~ VV(r)

+ drp, r U, r —p, (21)

G [ I p } 1
= FHS [ I p j ]+f«[g ( I p; j ) —fHs( I p; } ) ]

+(P,; —p; Hs) fdr bp;(r)

kT
f dr dr'bc;, ( ~r r'~ )b—p;(r)dpi(r'),

this formulation having the advantage that %(r) can be
treated as a variable in the theory with the same status as

[p; }, so that requiring 5Q/5p;(r) =0 implies the Euler-
Lagrange equations

+e, %'(r)+ v;(r) =p;
6G

5p, r (22)

and requiring 50/5%(r)=0 implies the Poisson's equa-
tion [58]. Moreover, the boundary condition on %(r) on
S can also be recovered by separating volume and surface
terms [58]. At this stage, the approximation
G [ [p; } ] =FHs [ I p; } j would correspond to a mean-field
treatment of electrostatic interactions, analogous to the
Gouy-Chapman theory [51], except that hard-sphere
effects are now included. We know from Groot [56] that
this first approximation is able to describe the formation
of the second layer of counter ions, but the magnitude of
the phenomenon is quite exaggerated. Therefore it is
necessary to go a step further and to include in the corre-
lations some contribution of the Coulomb interactions.
This can be done rather simply by using the perturbative
approach proposed by Curtin and Ashcroft [59] for cal-
culating the freezing properties and the liquid-gas coex-
istence curve of the Lennard-Jones fluid. We first make a
functional Taylor expansion of the excess part of 6 [ I p; } ]
in powers of hp;(r)=p, (r) —

p; (p, refers to the homo-
geneous neutral Auid far from the surface):

(25)

where Ip;Hs} and fHs are the chemical potentials and
the Helmholtz free-energy density of the uniform hard-
sphere Quid, respectively. Finally, we can rewrite the
Euler-Lagrange equations (22) for the equilibrium density
profiles:

5FHskT ln[p;(r)/p;]= —v;(r)+ —p';"Hs
5p, r

+e; [%(r)—4'(bulk) ]

kT f dr'h—cj(~r—r'~)bp~(r'),

(26)

where FHs is evaluated from Eq. (2).
So far we have not specified how to calculate the bulk

properties of the fluid. There are many approximate
theories available and the most widely used is the mean-
spherical approximation (MSA) which is of reasonable
accuracy while yielding analytical expressions for the
direct correlation functions. In the case of the restricted
primitive model (RPM) where all ions have the same di-
ameter cr, one has [60]

T —(e;e /s)[2B/cr —(B/cr )2r —1/r], r (o
kTbe; (r)= '0

0~ p'0 o~

(27)
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where 8 =x [x +x —x(1+2x)' ] and x =(Irrr )
= [(4rr/skT)p;e; ]o, lr being the inverse Debye length.
However, it is well known that the major deficiency of
the MSA is its serious lack of thermodynamic consistency
and this shortcoming may have significant consequences
when the theory is used in interfacial situations [61]. We
first note that in the RPM the chemical potential, the
pressure or the free energy calculated from Eq. (27) via
the compressibility equation are just the PY hard-sphere
values, because of the spurious structure
bc~(r)= e, e~—f(r). More seriously for the present pur-
pose, the density profiles solution of Eqs. (20) and (26) at
zero surface charge are identical to those of a neutral
mixture of hard spheres near a hard wall. In order to
overcome this problem, one should use more elaborated
theories, for instance the generalized MSA (GMSA) [62],
which is thermodynamically self-consistent and still
analytical. However, like other authors [56,57], we shall
only consider the MSA in the present work, as a first ap-
proximation. Our numerical procedure involves the
simultaneous resolution of Eq. (26) by the standard Pi-
card iteration method and of Eq. (20) by a predictor-
corrector algorithm [since the field is known at z =0 we
just guess 4'(0) until 4( ac ) is less than tolerance] [63].
The accuracy of the calculations is controlled by check-
ing two important sum rules, the so-called contact
theorem [64]:

p;(z )/p;—

I I I I

]
I I I I

)
I I I I

)
I I

akkkkakak

0:: E

FIG. 12. Ionic density profiles for a 1:1electrolyte (restricted
primitive model with o.=0.425 nm, c, =78.5, T=298 K) near a
charged hard wall. The bulk concentration is c =1 M and the
reduced charge density on the wall is q,*=0.7. The theoretical
results are shown by solid lines, while simulation results (from
Ref. [54]} are shown as circles (co-ions) and triangles (counter
ions).

kT[p+(0)+p (0)]=p+2~q, /E, (28)

where p+(0) are, respectively, the densities of + ions and
ions at the wall, and the Lippmann equation

[51,58,65]:

(29)

where AV =%(0)—4( ~ ) is the potential drop across the
double layer and q, is the uniform charge density on the
wall.

In Fig. 12, our results for the reduced density profiles
p;(z)/p; are compared with MC data in the "standard"
case where a second layer of counter ions is clearly
formed. This case corresponds to a 1:1 electrolyte at a
bulk concentration c =1 M, with v=78. 5, o.=0.425 nm
T =298 K [per =0.0924, e*=(e /EkTo )'~ =1.2965]
and a very large charge density on the wall
q,*=q,o. /e =0.7. There have been several simulations
of this system [52—54], which are not in total agreement,
especially for the magnitude of the second peak in the
counter ion profile and for the value of the potential drop

We have chosen to compare with the very recent
calculations of Caillol and Levesque [54], which have
been performed with a new e%cient method which avoids
the use of the cumbersome periodic boundary conditions
by putting the system on the surface of a four-
dimensional hypersphere. As seen in Fig. 12, the agree-
ment between theory and simulation is satisfactory, in
particular for the position of the second peak in the
counter ion profile. The magnitude however is a bit
overestimated. On the other hand, we find an overall re-
duced potential drop h%*=e/kTbÃ=4. 49 (115 mV)

which is smaller than the simulation result [54]
b, %' =5. 1+0.1 (131+2.6 mV). These performances are
comparable to those of Groot's density functional or
Tang et al. [57] approach in which Tarazona's SDA is
extended to the case of hard-sphere mixtures with the
same size. Of course the present functional, which is
much simpler to implement, is not limited to the RPM
and it will be interesting to consider electrolytes (or mol-
ten salts) where the anion and cation have very difFerent
diameters. Moreover, calculations should be repeated us-
ing another theory than the MSA for the bulk properties.

VI. CONCLUSIONS

In this work we have considered several applications of
the free-energy density functional proposed in our
preceding paper. The aim of the study was to illustrate
the versatility of the theory more than to perform a de-
tailed investigation of a specific problem. Therefore, by
many aspects, this study is far from being complete.
However, we can already state the following conclusions.

(i) Compared to other nonlocal DF theories, the
present one seems to be the most adequate to describe
packing effects at solid-Quid interfaces and to study the
adsorption of simple Quid mixtures at substrates. In all
cases considered in this paper, the theory leads to similar
or slightly better results than earlier recipes, while requir-
ing a significantly lower computational effort. Its im-
plementation is simple enough that extension to mul-
ticomponent mixtures (n )2) or polydisperse systems is a
straightforward exercise.

(ii) Density-functional methods are now becoming seri-
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ous competitors to integral equation theories for the
quantitative study of inhomogeneous simple Auids. It is
often [5,42] admitted that integral equations based on an
approximate closure at the level of the inhomogeneous
Ornstein-Zernicke equation are more accurate for the
calculation of the one- and two-body distribution func-
tions, while being inadequate for the study of thermo-
dynamic properties. However, we have displayed two ex-
amples in Secs. III A and V in which the accuracy of the
DF theory is comparable to that of the most sophisticat-
ed integral equations. The gain in computational simpli-
city is considerable.

(iii) The major weakness of existing free-energy func-
tionals is of course the mean-field treatment of the long-
ranged attractive part of the interatomic forces. The ex-
ample given in Sec. IV shows the serious consequences of
this approximation for the determination of excess prop-
erties in adsorbed phases. Perturbation theory, as sug-
gested by Curtin and Ashcroft [59] and used in Sec. V,
may be a way of going beyond this approximation when
properties of the corresponding uniform fluid (i.e., pair
correlations) are known. On the other hand, the standard
WCA separation of the potential, performed in the bulk
phase, is also questionable when applied to nonuniform
situations where the one-body densities vary significantly.
After other authors [22,30], we have verified that choos-
ing a temperature-dependent equivalent hard-sphere di-
ameter, adjusted on the low-temperature liquid-gas coex-
isting data [31], may improve the predictions of the
theory in some cases. However this recipe is not entirely

satisfactory because its domain of validity is not clearly
delimited. A more systematic procedure should be
searched for.

(iv) Density-functional methods —coupled to computer
simulations —have already provided a much more de-
tailed insight of adsorption phenomena than the classical
thermodynamic description currently in use [66]. Be-
cause theoretical studies have so far been limited to high-
ly idealized models for which direct comparison to exper-
iment is not straightforward, it is likely that these ther-
modynamic methods will not be replaced in the immedi-
ate future. However, it is important to realize that for
some we11-defined real systems, for which experimental
data are available, accurate predictions are now reach-
able. Therefore practical applications of DF theory
should be now considered (see, for instance, [67]).

ACKNO%'I. EDGMENTS

We are grateful to several colleagues for having sent
their results or papers before publicatio~: R. Evans, A.R.
Denton, and N. W. Ashcroft; Z. Tan and K. E. Gubbins;
S. Sokolowski and J. Fischer; J. E. Finn and P. A. Mon-
son; and J. M. Caillol and D. Levesque. Correspondence
with P. Monson was particularly helpful. This work was
supported in part by the Groupement de Recherche: Cen-
tre National de la Recherche Scientifique —Association de
Recherche pour les Techniques d'exploitation du Petrole
(wettability} and the FSH (Fond de Soutien des Hydro-
carbures).

[1]J. S. Rowlinson and B.Widom, Molecular Theory of Capil
Iarity (Oxford University Press, Oxford, 1982).

[2] D. Nicholson and N. G. Parsonage, Computer Simulation
and the Statistical Mechanics of Adsorption (Academic,
New York, 1982).

[3] D. E. Sullivan and M. M. Telo da Gama, in Fluid Interfa
ciaI Phenomena, edited by C. A. Croxton (Wiley, New
York, 1986).

[4] S. Dietrich, in Phase Transition and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic, New
York, 1988), Vol. 12.

[5] R. Evans, in Inhomogeneous Fluids, edited by D. Hender-
son (Dekker, New York, in press).

[6] R. Evans, J. Phys. Condens. Matter 2, 8989 (1990).
[7] S. Nordholm, M. Johnson, and B. C. Freasier, Aust. J.

Chem. 33, 2139 (1980);B.C. Freasier and S. Nordholm, J.
Chem. Phys. 79, 4431 (1983);Mol. Phys. 54, 33 (1986).

[8] P. Tarazona, Mol. Phys. 52, 81 (1984); P. Tarazona and R.
Evans, ibid. 52, 847 (1984); P. Tarazona, Phys. Rev. A 31,
2672 (1985); P. Tarazona, U. Marini Bettolo Marconi, and
R. Evans, Mol. Phys. 60, 573 (1987).

[9] W. A. Curtin and N. W. Ashcroft, Phys. Rev. A 32, 2909
(1985); A. R. Denton and N. W. Ashcroft, ibid. 39, 4701
(1989).

[10]T. F. Meister and D. M. Kroll, Phys. Rev. A 31, 4055
(1985); R. D. Groot and J. P. van der Eerden, ibid. 36,
4356 (1987); S. Sokolowski and J. Fischer, Mol. Phys. 68,
647 (1989).

[11]T. K. Vanderlick, L. E. Scriven, and H. T. Davis, J. Chem.

Phys. 90, 2422 (1989).
[12]D. M. Kroll and B. B. Laird, Phys. Rev. A 42, 4806 (1990).
[13]E. Kierlik and M. L. Rosinberg, Phys. Rev. A 42, 3382

(1990).
[14]Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
[15]Y. Rosenfeld, D. Levesque, and J. J. Weis, J. Chem. Phys.

92, 6918 (1990).
[16]Y. Rosenfeld, Phys. Rev. A 42, 5978 (1990); J. Chem.

Phys. 93, 4305 (1990).
[17]J. Percus, J. Stat. Phys. 52, 1157 (1988).
[18) H. Reiss, H. Frisch, and J. L. Lebowitz, J. Chem. Phys.

31, 369 (1959); E. Helfand, H. L. Frisch, and J. L. Le-
bowitz, ibid. 34, 1037 (1961).

[19]M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963);E. Thiele,
J. Chem. Phys. 39, 474 (1963);J. L. Lebowitz, Phys. Rev.
133, 895 (1964).

[20] Z. Tan, U. Marini Bettolo Marconi, F. van Swol, and K.
E. Cxubbins, J. Chem. Phys. 90, 3704 (1989).

[21]A. R. Denton and N. W. Ashcroft, Phys. Rev. A 42, 7312
(1990).

[22] B. K. Peterson, K. Gubbins, G. S. Heffelfinger, U. Marini
Bettolo Marconi, and F. van Swol, J. Chem. Phys. 88,
6487 (1988).

[23] E. Kierlik and M. L. Rosinberg (unpublished).
[24] J. Israelachvili, Acc. Chem. Res. 20, 415 (1987).
[25] R. Evans and U. Marini Bettolo Marconi, J. Chem. Phys.

86, 7138 (1987).
[26] W. A. Steele, Surf. Sci. 36, 317 (1973); in The Interaction of

Gases with Solid Surfaces (Pergamon, Oxford, 1974).



DENSITY-FUNCTIONAL THEORY FOR INHOMOGENEOUS. . . 5037

[27] S. Sokolowski and J. Fischer, Mol. Phys. 71, 393 (1990).
[28] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem.

Phys. 54, 5237 (1971).
[29] J. Barker and D. Henderson, J. Chem. Phys. 47, 4714

(1967).
[30] Z. Tan and K. E. Gubbins, J. Phys. Chem. 94, 6061 (1990);

in Characterization of Porous Solids II, edited by Interna-
tional Union of Pure and Applied Chemistry (Elsevier,
Amsterdam, 1991).

[31]B. Q. Lu, R. Evans, and M. M. Telo da Gama, Mol. Phys.
55, 1319 (1985).

[32] L. Verlet and J. J. Weis, Phys. Rev. A 5, 939 (1982).
[33] E. Bruno, C. Caccamo, and P. Tarazona, Phys. Rev. A 35,

1210 (1987).
[34] E. Velasco and P. Tarazona, Phys. Rev. A 42, 2454 (1990).
[35] J. R. Henderson and F. van Swol, J. Phys. Condens.

Matter 2, 4537 (1990).
[36] W. Van Megen and I. K. Snook, Mol. Phys. 54, 741 (1985).
[37] J. P. R. B. Walton and N. Quirke, Chem. Phys. Lett. 129,

382 (1986).
[38] J. G. Powles, G. Rickayzen, and M. L. Williams, Mol.

Phys. 64, 33 (1988).
[39] I. K. Snook and W. van Megen, J. Chem. Phys. 72, 2907

(1980);74, 1409 (1981)~

[40] J. J. Magda, M. Tirell, and H. T. Davis, J. Chem. Phys. 83,
1888 (1985).

[41]B.V. Derjaguin, Colloid Polymer Sci. 253, 492 (1975).
[42] R. Kjellander and S. Sarman, Mol. Phys. 70, 215 (1990).
[43] J. D. MacElroy and S.-H. Suh, Mol. Phys. 60, 475 (1987).
[44] Z. Tan, K. E. Gubbins, F. van Swol, and U. Marini Betto-

lo Marconi, Proceedings of the Third International Confer
ence on Fundamental Adsorption, Sonthofen, edited by
A. B. Mersmann and S. E. Scholl (Engineering Founda-
tion, New York, 1991); G. S. HefFelfinger, Z. Tan, K. E.
Gubbins, U. Marini Bettolo Marconi, and F. van Swol,
Mol. Sim. 2, 393 (1989).

[45] D. M. Ruthven, Principles of Adsorption and Adsorption
Processes (Wiley, New York, 1984).

[46] D. H. Everett, in Colloid Science (Specialist Periodical Re-
ports), edited by D. H. Everett (The Chemical Society,
London, 1973), Vol. 1, Chap. 2; C. E. Brown and D. H.
Everett, ibid. , edited by D. H. Everett (The Chemical So-
ciety, London, 1975), Vol. 2, Chap. 2; D. H. Everett and
R. T. Podoll, ibid. , edited by D. H. Everett (The Chemical
Society, London, 1979), Vol. 3, Chap. 2.

[47] A. L. Myers and J. M. Prausnitz, AIChE J. 11, 121 (1965).
[48] J. E. Finn and P. A. Monson, Mol. Phys. 65, 1345 (1988).

[49] J. E. Finn and P. A. Monson, in Proceedings of the Third
International Conference on Fundamental Adsorption (Ref.
[44]); Mol. Phys. 72, 661 (1991).

[50] J. P. Hansen and I. R. McDonald, Theory of Simple
Liquids, 2nd ed. (Academic, New York, 1986).

[51]S. L. Carnie and G. M. Torrie, Adv. Chem. Phys. 56, 141
(1984).

[52] G. M. Torrie and J. P. Valleau, J. Chem. Phys. 73, 5807
(1980).

[53] P. Ballone, G. Pastore, and M. P. Tosi, J. Chem. Phys. 85,
2943 (1986).

[54] J. M. Caillol and D. Levesque, J. Chem. Phys. 94, 597
(1991).

[55] C. W. Outhwaite and L. B. Bhuiyan, J. Chem. Phys. 85,
4206 (1986); C. Caccamo, G. Pizzimenti, and L. Blum,
ibid. 84, 3327 (1986); T. Alts, P. Nielaba, B. Daguanno,
and F. Forstmann, Chem. Phys. 111,223 (1987); R. Kjel-
lander and S. Marcelja, Chem. Phys. Lett. 127, 402 (1986);
M. Plischke and D. Henderson, J. Chem. . Phys. 88, 2712
(1988).

[56] R. D. Groot, Phys. Rev. A 37, 3456 (1988); R.D. Groot
and J. P. van der Eerden, ibid. 38, 296 (1988).

[57] L. Micr-y-Teran, S. H. Suh, H. S. White, and H. T. Davis,
J. Chem. Phys. 92, 5087 (1990); Zixiang Tang, L. Micr-y-
Teran, H. T. Davis, L. E. Scriven, and H. S. White, Mol.
Phys. 71, 369 (1990).

[58] R. Evans and T. J. Sluckin, Mol. Phys. 40, 413 (1980);T. J.
Sluckin, J. Chem. Soc. Faraday Trans. II 77, 575 (1981).

[59] W. A. Curtin and N. W. Ashcroft, Phys. Rev. Lett. 56,
2775 (1986).

[60] E. Waisman and J. L. Lebowitz, J. Chem. Phys. 56, 3086
(1972); 56, (1972).

[61]M. M. Telo da Gama, R. Evans, and T. J. Sluckin, Mol.
Phys. 41, 1355 (1980).

[62] J. S. Hoye, J. L. Lebowitz, and G. Stell, J. Chem. Phys. 61,
3253 (1974).

[63] L. Blum, J. Hernando, and J. L. Lebowitz, J. Phys. Chem.
87, 2825 (1983).

[64] D. Henderson, L. Blum, and J. L. Lebowitz, J. Electroa-
nal. Chem. 102, 315 (1979).

[65] V. Russier, J. P. Badiali, and M. L. Rosinberg, J. Phys. C
18, 707 (1985).

[66] S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area
and Porosity (Academic, London, 1982).

[67] N. A. Seaton, J. P. R. B. Walton, and N. Quirke, Carbon
27, 853 (1989).


