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The aim of this work is to show that, in the condensed phases, the flux of thermal energy couples with
a flux of momentum. This follows from considerations of rational mechanics and can be also deduced as
a corollary of a theorem established by Boltzmann, following a straightforward reasoning already
developed by Ehrenfest in a somewhat simpler case than the one considered by us. When heat flux
crosses the boundary between two adjoining media, the momentum flux changes, and “thermal radiation
forces” should appear. Accordingly, the momentum-balance equation of continuous-field hydrodynam-
ics should include, when applied to nonisothermal media, the momentum flux due to heat flow. When
this is done, analytical expressions for thermal radiation forces are obtained with reference to various
simple physical systems. The theoretical predictions lend themselves to direct experimental verification.
Very good qualitative and quantitative agreement between theory and experiment has been found in
various experimental systems, as described here, lending strong support to the proposed approach. In-
terestingly, experimental results obtained with macroscopic objects and with molecular or ionic particles
both lead to analogous conclusions concerning the properties of thermal radiation forces, a circumstance
that broadens the possible field of application of these concepts. Finally, it is suggested that the concept
of momentum flux coupled to transport of thermal energy in the condensed phases can be fruitfully em-
ployed in the investigation of complex phenomena such as acoustic streaming and the Bérnard-Rayleigh
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instabilities.

PACS number(s): 47.10.+g, 03.40.Kf, 62.30.+d, 65.90.+i

I. INTRODUCTION

Radiation pressures resulting from wave propagation
are known in a variety of different physical situations. A
radiation pressure occurs in electrodynamics, the
Maxwell stress tensor being used to describe the force ex-
erted on an object by electromagnetic waves. Mechanical
radiation pressure also occurs in acoustics, where waves
exert forces on obstacles: the force per unit area being
proportional to the energy density of the impinging
mechanical radiation. This form of radiation pressure
has been extensively studied since the pioneering work of
Rayleigh [1,2] and, although the literature is full of er-
rors, satisfactory treatments of various aspects of the
problem do exist [3—-11]. The tensorial character of the
so-called ‘“‘radiation pressure” in the condensed phases
was initially pointed out by Brillouin in 1925 [3]. The
importance of considering the density of flux of momen-
tum coupled to the energy flux has been demonstrated by
Borgnis [7] and Johansen [9]. Suggestive generalizations
of the concept are due to Lucas [5], who measured radia-
tion forces produced by fluxes of thermal rather than
acoustic energy.

On the other hand, very little attention has been paid
to either the phenomenology or the theory of radiation
stresses in nonisothermal media. Actually, modern devel-
opments of rational mechanics of continuous media, prin-
cipally those due to Truesdell and Noll [12], formally
couple momentum flux to the flux of thermal energy,
without leading to insight into the underlying physical
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mechanisms. The lack of an adequately broad theoretical
basis and the smallness of known effects of nonisothermal
matter transport, reduced interest in the field or induced
completely different approaches. Efforts to explain
thermal diffusion in liquids, for instance, generally took
the form of modifications of the kinetic theory of gases.

A simple theory of the thermomechanical effect was
developed by one of us [13] by invoking analogous situa-
tions from acoustics—i.e., momentum carried by ul-
trasonic waves in elastic media. In the course of subse-
quent experimental studies, supporting evidence has been
obtained confirming the theoretical expectations [14—-18].
Other situations in which the heat flux couples with
transport of matter or produces sizable hydraulic pres-
sure have also been experimentally investigated [19-24].
Thus the idea that thermal energy propagating in con-
densed matter generates radiation pressure rests by now
on a sufficiently broad experimental basis. On the other
hand, membrane systems yielding the most convincing
evidence are structurally complex and operate under non-
linear conditions, the observed effects being obtained by
applying very large temperature gradients across thin
porous membranes, thus generating intense heat fluxes
within their liquid-filled pores [23,24]. A straightforward
quantitative comparison of these experimental results
with theory is therefore not yet feasible at present. With
this work we propose a more satisfactory form of the
theory of radiation forces due to heat propagation, which
follows from a simple application of a theorem due to
Boltzmann and, alternatively, can be also deduced from
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an application of the momentum-balance equation to a
system through which heat is flowing. We also discuss
here accurate experimental results recently obtained in
our laboratory employing a simple system that allows
comparison with the theory; finally we present a critical
discussion of some well-known experimental articles of
other authors whose puzzling results may be simply inter-
preted in terms of the thermal-radiation-force theory.
When heat propagates in an anisotropic medium, the
flux of thermal energy J, is connected with the tempera-
ture gradient by the thermal conductivity tensor K, the
phenomenological ~ equation being J,=—K-gradT
(Fourier). According to our working hypothesis then the
propagation of momentum carried by thermal energy
shall be described by a momentum flux tensor Jp consti-
tuted by the dyadic product of momentum density g and
velocity of propagation of phononic excitations u, namely
, =gu. Momentum density is related to energy flux by
the relation g=1J,/u 2, similar to energy and momentum
of sound waves [13]; thus we have

n, (1)

J =—"=——f—~gradT )

is the momentum flux due to the flux of thermal energy.

Thus, whenever one considers the mechanics of a non-
isothermal system, the momentum flux coupled to the
heat flux must be allowed for. In particular, the
momentum-balance equation of hydrodynamics must in-
clude the thermal-radiation stress tensor.

The use of Fourier phenomenological law in this con-
text, where reference is made to thermal excitations prop-
agating with finite velocity u, may seem contradictory. A
more general constitutive approach using, e.g., the
Maxwell-Cattaneo equation [25,26] 7,(dJ,/dt)+],
= —K-gradT looks to be more appropriate. Here 7, is a
relaxation time connected with the finite propagation ve-
locity of thermal excitations. However, in this paper we
are dealing only with steady-state situations, where the
Maxwell-Cattaneo equation reduces to the -classical
Fourier expression. Radiation-pressure effects appearing
in the transient behavior, connected through the relaxa-
tion time 7,, shall be dealt with in a separate paper.

II. THERMAL RADIATION FORCES
AND A BOLTZMANN THEOREM

We shall now try to establish Eq. (2) on a firmer physi-
cal basis, by deriving the expression for the momentum
flux coupled to heat flow directly from a theorem of
Boltzmann [27]. This theorem was subsequently applied
by Ehrenfest to the adiabatic condition. We will consider
boundary conditions slightly more general than those as-
sumed by Ehrenfest, and also carry our analysis one step
further.

Let us consider a system consisting of an isotropic
medium made by a great number of particles interacting
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among them through forces limiting the total number of
degrees of freedom. The system can vibrate at many
characteristic frequencies, and, at any temperature above
absolute zero such vibrations spontaneously occur, even
in the absence of external excitation. If an amount AQ of
thermal energy is added to the system, the Boltzmann
theorem states that

=25 E. dr=2 .
AQ—TSfOEkde =8((Eyqn).7) €)

where (E,, ), is the average kinetic energy associated
with vibrations of period 7. Ehrenfest considers the par-
ticular case of an adiabatic system, not exchanging heat
with its surroundings. We instead focus our attention on
a system at thermal steady state, where the condition
AQ =0 follows from the equality of entering and issuing
heat fluxes. Such is, for instance, the case of an isotropic
condensed phase—say a cylinder of homogeneous liquid
which is thermally insulated on a lateral surface, while a
steady heat flux enters and, respectively, emerges from its
upper and lower faces (see Fig. 1), due to a temperature
difference along x. Once thermal effects connected with
the initial transient are over, the net exchange of thermal
energy of the system with the external world is equal to
zero over any time interval, as in the adiabatic case, and
from Eq. (3) for each value of 7 one then has

8({E\y,),)=0, i.e,{E,),7=const along x.  (4)

The thermodynamic difference, of course, is that here
there is a constant rate of entropy production in the sys-
tem due to the steady-state flux of thermal energy, a cir-
cumstance, however, that does not affect the form of Eqgs.
(3) and (4). Elastic vibrations in the medium may be con-
sidered to satisfy locally the relation

<Ekin>T=(Epot>‘r=%U ’ (5)

(E,o ), being the average potential and U the total
mechanical energy connected to oscillations. (For a dis-
cussion of this point see Appendix A). From Egs. (4) and
(5) then it follows

[ A
| |
| |
\\:" \\/’

FIG. 1. Cylindric portion of an homogeneous liquid thermal-
ly insulated on its lateral surface. A temperature gradient is ap-
plied along its axis x producing a steady heat flux in the medi-
um.
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1dr | 1dU Xy, dT dr
T dx + U dx 0 (© Eixxy) fx1 dx dx
This means that every change of local vibration fre- = ar ™ dt
. . e . SRK x , (10)
quency will be connected with a variation of mechanical dx Jx dx

energy U. More specifically, the percent variation of the
period shall be equal and opposite to that of the mechani-
cal energy.

It is well known that thermal energy in the condensed
phases mostly consists of very-high-frequency elastic
waves. Part of the spectrum of these phonon-type
thermal excitations has been experimentally investigated
in liquids via optical methods [28—-33]. Proceeding from
a region of the liquid to another that is hotter or cooler,
the waves undergo frequency changes due to thermal ex-
pansion.

On the other hand, Eq. (6) allows us to write

dr _

ar _¢| U
T

dL=Fdx=—dU=U
ST

S dr, (7)

where S is the cylinder cross section. Thus mechanical
work is produced by the system when thermal excitations
drift down the temperature gradient. Since we are con-
sidering steady-state conditions, every production of
work connected with the transient must have disap-
peared. So the work dL can be due only to energy dissi-
pation connected with the heat propagation in the medi-
um. We see that the temperature gradient affects the
elastic properties of the medium which now change along
x while, at the same time, it also affects the dynamics of
the population of thermal phonon excitations, producing
a net drift of the excitations along this same axis. The
quantity U /ST represents mechanical work per unit of
surface produced in the medium per period, when
heat—in the form of high-frequency elastic-waves—
propagates along x. Obviously, U /ST is proportional to
heat flux, i.e.,, to the equidimensional quantity
J,= —K(dT /dx), K being the tensor thermal conductivi-
ty, reduced here to a simple function of x. We may then
write

U

T

dL =S dr=5|-k%L 7 |47 4 (8)
dx dx

R being an a-dimensional proportionality constant con-
necting U/S7 and J, within dx. The physical meaning
of R is that of a reflection coefficient due to the noniso-
thermal condition, defined by

d(pu)

pu+pu+dipu) |’ ©)

where pu is acoustical impedance of the medium. Thus
wave reflection is seen as due to the gradual change of
density and sound velocity brought about by temperature
change along x rather than by abrupt discontinuity as in
the case of acoustic radiation pressure. We shall discuss
this point further elsewhere [34].

Let us now proceed in considering what occurs when
thermal excitations drift from x; to x, (Fig. 1). The
work L(Xlr"z) shall be given by

where K (dT /dx), being invariant along x, can be taken
out of the integral. It should be noted that now
R =(pyu,—piuy/pyte+pyu;)?, where (pu )x, =pi%; and

(pu)y, =pyu;.

On the other hand, 7 is connected with phase velocity
by 7=2mh/u, where h, is intermolecular distance in the
medium at O K. (See the Appendix for a discussion of
this point). We thus have

*2dr *2d |1 1 1
—dx= — |— |dx=2 ——— .
% dxdx 27hg % dx [u x =2mh, “ “1]
(11)
From (10) and (11) follows
- (x1,x5)
p(.‘xl,xz :S(xz—xl)
_ ho 1 _ 1 |dT
= —2 —_—— —— _
(xy—x1) u, uy dx
K dr K dTr
=—H —_ | ===
u dx |x, u dx |x,
_m| |2 ]
u |x, u |x;
=H[(J,),,—(Jp)x 1> (12a)
where H =2m(hy/x,—x)R. Generally, it will be
_ (ry,ry)
p(rl,rz)n—_-S(rz_rl)n
=——H[ ﬁ-gradT - —K—'gradT
u ry u r
—al|le| -k
u |r, u |rn
=H[(J,),,—J,). 1, (12b)

where r =(x2+y%+2z%)!/2, n is the normal to section S
oriented from r; to r,. One can see that the pressure
developed in the medium from r, to r, is proportional to
the variation of the momentum flux in the same interval.

III. RADIATION FORCES PRODUCED BY ACOUSTIC
WAVES ON A LIQUID-LIQUID INTERFACE AND
ON A SOLID OBSTACLE SUSPENDED IN LIQUID

The pressure exerted by a sound wave on the inter-
phase boundary between two immiscible liquids macros-
copically at rest can be found from energetic considera-
tions. As the two phases are to stay in mechanical equi-
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librium, the “free”-energy density in one phase must be
equal to the energy density in the other [35]. Of course,
the mechanical equilibrium dealt with here is in the
direction perpendicular to the interface and hence energy
density of waves propagating at right angles to the inter-
face should be considered. If the incidence angle of a
wave is 0, and its (time averaged) energy density W, we
decompose it into a perpendicular wave whose energy
flux density equals W, u,cos0, and a parallel wave of en-
ergy flux density W,usin€,. The expression W, u cos6,
may be viewed as energy flux of a wave propagating at
angle 6, whose energy density is W, cosf,. Assuming
that the x axis is normal to the interface, the x com-
ponent of this energy flux is W, cos0,ucosf,. Hence en-
ergy density of the component wave propagating perpen-
dicularly to the interface with velocity u; is equal to
W ,cos?0;. In the first liquid the reflected wave also prop-
agates. The x component of that wave has energy density
W'cos?0, by the same reasoning.

Thus the energy equation required at mechanical equi-
librium has the form

W, cos20,+ Wicos’0, = W,cos’0,+p , (13a)

where W, is energy density of the refracted wave, 6, the
angle of refraction, and p the energy density due to pres-
sure in the second liquid. Hence

p=(W,+W/)cos?0,— W,cos?0, . (13b)
In the case of normal incidence, it is easy to see that
U, —pu
p=2W, Pata — Pty (14)
paty tpiu,

where p,u, is the acoustic impedance in the first liquid
and p,u, in the second.

Now we consider a liquid-solid interface, for instance,
the front surface of a solid slab immersed in the liquid,
kept in place by an external adjustable force. No pres-
sure in the sense of free-energy density can be developed
within the solid phase, nor can it develop in the liquid
phase if the solid phase is just an obstacle suspended in
the liquid. The same energetic criterion of mechanical
equilibrium cannot be applied now; in order to calculate
the pressure exerted by a sound wave impinging on a
liquid-solid interface, we have to apply the momentum-
balance equation, which we use here in the form of the
Euler equation supplemented with the time-averaged
momentum-flux-density tensor (Wn;n,; ) due to the sound
wave and the stress tensor S;;. In the absence of external
mass forces, we can write

9 9
9:PViT T BZ(P 8 +pv;v + WinUnil
+WinUni+ WonPnP+8,) ,
(15)

for the ith component of the momentum density, having
adopted Einstein’s convention on the sum. The symbol p
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here indicates the pressure of the fluid in motion, defined
by a suitable equation of state; §;; is the Kronecker delta
function. Indicating with 7, the quantity in large
parentheses and upon integration over a volume V, sur-
rounded by surface S, we have

9 —— [ 9 =
at prvidV— fV ax;, mixdV fs TienidS , - (16)

with the use of Gauss’s law. Thus the balance equation
has the form

d

ar prv,-dV: - fs(l"sik +pv;v+Win{Vn!
+ Wllni(l’)nl((llj_*_ WZni(Z)nI£2)
+Sik )nde . (17)

In a steady-state condition, neglecting infinitesimals
higher than first order in v, we integrate over the liquid-
solid interface which we assume to be of thickness 6 (see
Fig. 2).

For unit surface of the interface and the assumed situa-
tion of no movement of either phase and noting that no
stress can develop at 0, the result of the integration along
x normal to the interface is

S, (8)=k,[W,cos?0,— (W, +W)cos*6,] , (18a)

having set S; =S, n; and k, being a unit vector along x.
Without reflection and for perpendicular incidence this
gives us

S, (8)=k (W,—W,) . (18b)

Now we calculate the mechanical effect on a solid-
liquid interface, assuming the solid and the liquid to be
the same as previously and with no reflection (see Fig. 3).
Since no stress can develop at §, the result of the integra-
tion is

\

N\

W, <W,+W;

FIG. 2. Liquid-solid interface of thickness 8. Incident,
reflected and refracted waves of respective energy densities W,
W, and W, for angle of incidence 8, generate stress vector S,
in the solid, pointing right (upper part of figure), or left (lower
part) depending on the condition W,2 W, + W}.
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FIG. 3. Solid-liquid interface of thickness &; as above, but
with no reflection. The upper part shows stress vector in the
solid in the case W, < W,; the lower part refers to the case
when W, > W,.

S, (0)=k, (W,co0s’0,— W,cos?0,) . (19a)
Hence for perpendicular incidence, we have
S (0)=k,(W,—W,). (19b)

Having obtained the same result as for liquid-solid in-
terfaces, we finally obtain for the stress vector at both in-
terfaces the expression

pk,=S_(8)+8,(0)=2k, (W,—W,), (20)

representing a pressure proportional to the difference of
acoustic energy density in the media. In the case, con-
sidered by us, of a solid slab kept in place by an external
adjustable force f°*', the nonzero resultant stress can be
identified with that force, so that pk, + f***=0. Equation
(20) can be experimentally checked by measuring £,
which gives us access to “radiation force.”

IV. THERMAL-RADIATION FORCES
IN NONISOTHERMAL SYSTEMS

A. Thermal-radiation forces on a solid slab

In the case of heat flow the momentum-flux tensor cou-
pled to heat flux has the form (Jgn;ny)/u, because in this
case the energy density W =J,/u.

Expression (20) for radiation pressure of acoustic
waves on a solid slab may be tentatively written, in the
case of a flux of thermal excitations, in the form
E/A/

=2H*
P Uy Up

, (21)

where the slab has been situated horizontally and A4
stands for the liquid phase and B for the slab. The logical
gap between Egs. (12) and (20) may be bridged by bring-
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ing sections x; and x, progressively nearer to one anoth-
er, leaving the temperature difference (7', — T, ) constant.
We thus have in the limit a surface of discontinuity, be-
tween warm and cold liquid, the form of Eq. (12) remain-
ing unchanged, i.e., the pressure p staying proportional to
the difference of momentum-flux densities. The numeri-
cal proportionality constant however may be different
from H since this constant depends on the average prop-
erties between x; and x,, while in the present case only
the “local” conditions at the discontinuity are involved;
we shall call it H*, without discussing for the time being
the problem in more detail. Now the difference in physi-
cal properties of the two materials in contact may also be
generalized, including differences in composition or state,
leaving unaltered the form of Eq. (12). We see that an ex-
pression analogous to Eq. (12) has been arrived at in a
completely independent way, upon substitution in Eq.
(20) of energy density due to heat flow in place of acoustic
energy density.

Making use of Fourier’s law and introducing the slab
surface o,, Eq. (21) allows us to write the following ex-
pression for the thermal-radiation force on a slab or
plunger suspended in a liquid:

K AT
u Ax

K AT
u Ax

Fi,=20,H* (22)

A B

The subscripts 4 and B mean that the values of the quan-
tities concerned are those of phase A4 and B, respectively.
The material constants K and u depend on temperature.
Equation (22) neglects that dependence and takes the

respective quantities at the average temperature
T,,=—(T1+T5)/2. A more exact formula is
K AT K AT
Ft{wi) =g H* [ = _ ===
sa p u Ax |, u Ax |z |1}
_ | |KAT | _ |KAT
u Ax |, u Ax | |1

(23)

When the solid slab is very thin and/or the tempera-
ture gradient is not too steep, Eq. (22) is a good enough
approximation and will be used here for calculations as
well as for qualitative discussions. Thus whenever the en-
ergy density J,/u due to heat flow in a solid slab B
suspended in a liquid A is greater than that in the liquid,
the force acting on the slab is counter to the heat flow;
and instead it has the sense of the heat flux, when the en-
ergy density of the slab is smaller than that of the liquid.
As the heat-flow coupled energy density
J,/u=(K/u)(AT /Ax) is equal to the absolute value of
the heat-flow coupled momentum flux, one can also
loosely say that solid material with thermal momentum
conductivity K /u greater than that of the liquid is
pushed counter to the heat flux; the push will be in the
sense of the heat flux in the opposite case. This is a
clear-cut prediction of the theory, readily amenable to ex-
perimental verification.
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B. Thermal-radiation forces on solute particles

Equation (22) could be applied in principle to objects of
any size suspended in a nonisothermal liquid; its extrapo-
lation to ionic or molecular solute particles requires some
caution however. Momentum should be transferred at
different rates to solute and solvent particles to generate
nonvanishing time-averaged effects on solution com-
ponents. On the other hand the impinging phonons
might be unable to discriminate among objects having di-
ametral dimensions comparable with their own wave-
length. Stating the problem in a different form, it can be
questioned whether the expression (K /u)(dT /dx) can be
defined with reference to a single ion or molecule. Anoth-
er independent problem concerns the possible contribu-
tion of side forces, not accounted for in the
homogeneous-phase system treated above. In the case of
flat, thin disks having a large cross section normal to the
heat flux, the approximation is acceptable. Thus
thermal-radiation force on a flat, thin disk will be practi-
cally coincident with the “front force” given by Eq. (22)
but obviously this argument cannot be extended to ob-
jects as small as a solute particle.

The development of an exact theory of phonon-particle
interactions is laden with difficulties, and it seems thus
preferable to follow an alternative procedure. We shall
express the phenomenological coefficients of thermal
diffusion in terms of thermal-radiation forces, and then
compare experimental results with these expressions. It
is expected that the comparison will yield some clear-cut
evidence lending support to the assumption that
thermal-radiation forces are the physical cause of
thermodiffusive effects in solutions. At the same time by
comparing theoretical expressions with the actual phe-
nomenology, one could also obtain hints on the kind of
refinements needed to construct a more appropriate
theory for the calculation of momentum exchanges
among phonon excitations and solution components. It
is easy to derive the expressions for thermodiffusive phe-
nomenological coefficients within the frame of reference
of Eq. (22). Applying this equation to a solvated solute
particle of radius r, one gets for the net thermal-
radiation force F5" acting on it the value

5]__
u g

where subscripts p and /, respectively, indicate the solvat-
ed solute particle and the surrounding liquid. The dis-
tinction between the value of the temperature gradient in
the particle and the surrounding liquid has been dropped
in the second term where only the space-averaged tem-
perature gradient {dT/dx ), is considered. The intro-
duction of the cross section 7rrp2 of the solvated particle in
Eq. (24) is justified because the bound solute shall have a
momentum conductivity different from the surrounding
liquid. Accordingly the “object” different from the solu-
tion in bulk, is not the naked solute, but the entire solvat-
ed particle.

The force F;h will cause solute drift with a velocity
vy =D'(dT /dx) where D'(cm®s~2°C™!) is the thermal

X

(F,)h=2mr2H* »

dT
( a1 >x, (24)

p
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diffusion coefficient of the particle, defined as drift veloci-
ty in a unitary temperature gradient. The value of v,
shall be determined by the power balance equation

wih=wn, (25)

stating the equality of the power input W;h due to the
work performed by thermal-radiation forces and the en-
ergy dissipated per second by the particle through hydro-
dynamic friction W. In ordinary thermal diffusion the
center of mass of the liquid is stationary, and with dilute
solutions, solvent backflow can be neglected, thus solute
motion occurs in a standing liquid and the power balance
equation reduces to the balance of thermal-radiation
force and viscous drag, the latter being given by the
Stokes equation. Assuming solvated solute particles to be
spherical

r

D'=H*-£2-
3y

X
u

K
u

1

’ (26)

p

7; being the viscosity of the solution. From Eq. (26) it is
immediate to deduce the expression for Soret coefficient
s=D'/D (°C™'), where D (cm?®s™!) is the coefficient of
isothermal diffusion. Making use of the Stokes-Einstein
equation to eliminate the product 7;D we get

27rr2
s=H*——¢ [ |K| _ K| | 27
kgT,, u |, u |,

where kp is Boltzmann constant and T,, is the average
solution temperature.

Since the concentration ratio in the cold and warm
solution at  thermodiffusive steady  state is
C

Cc/Cy=expsAT, one also has
—-—C; =exp lH* ] . (28)

This concentration ratio is reached at steady state in a
gravitationally stable nonisothermal solution, when
thermodiffusive solute flux and diffusive counter-flow bal-
ance each other, i.e., when the temperature gradient is in
equilibrium with the gradient of the chemical potential.

Due to the approximations introduced in our treat-
ment, expressions (26)—(28) are not expected to be quanti-
tatively accurate but should allow clear-cut qualitative
and semiquantitative predictions on the phenomenology
of thermal diffusion in the condensed phases.

A qualitative prediction is that upon change of sign of
the quantity (K /u);—(K /u), an inversion should occur
in the sense of solute thermodiffusive drift relative to the
temperature gradient. Two semiquantitative predictions
are as follows.

(1) That the value of the Soret coefficient of quasispher-
ical macromolecular solutes should be proportional to rp2
and hence that a series of molecular cuts of polymer
should exhibit a dependence of s on molecular mass M,
given by s = AM?/3,

(2) That the experimental values of D', s, and C/Cy,
should lead, through Egs. (26)-(28) to values of
(K /u);—(K /u), consistent with those derived from the

21Trp2A T
kB -Tav

K

u

K
u

1

p
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ratios of thermal conductivities and velocities of propaga-
tion of elastic waves of the respective materials in bulk.

V. EXPERIMENTAL MEASUREMENT
OF THERMAL-RADIATION FORCES

If the concept of thermal-radiation force is valid, many
aspects of the phenomenology of nonisothermal systems
will have to be reconsidered. Here however, in view of
the preliminary character of this paper, we attempt only
to check experimentally the four fundamental predictions
of the theory, namely, in the first place that measurable
forces should be produced by heat flux on solid-liquid and
liquid-solid interfaces as well as on molecular “obstacles”
and even in liquid mixtures; second that such forces
should be proportional to the temperature gradient; third
that the intensity and the sense of the measured forces
should depend on the nature of the two adjacent media
and on their order of succession along the temperature
gradient; finally that the forces should depend on the
average temperature as the momentum conductivities of
the components.

The experimental system employed is the following: a
solid slab B is immersed in a nonisothermal liquid so that
thermal-radiation forces are expected to act on the slab.
Of course, the plungers have side walls, where forces dis-
tinct from those discussed above might appear in the
nonisothermal condition. Still, if the plunger is cut in the
form of a flat, thin disk, the forces on the lateral surface
can be neglected. According to Eq. (22), we assume
thermal-radiation force on the plunger to be given by

K AT
u Ax

K AT
u Ax

!

Fllinger =20 ,H* , (29)

s

subscripts / and s indicating ““liquid” and “‘solid,” respec-
tively, and o, being the plunger’s cross section normal to
x. Values of K and u must be taken at the average tem-
perature T,, =(T1+T%)/2.

The force acting on the plunger will displace it, unless
an equal and opposite force is applied from outside. This
force can be easily supplied and measured by means of
the apparatus schematically described in Fig. 4. The
solid shaped as a flat disk, immersed in the liquid con-
tained in the cell, hangs on the arm of a balance. The
upper and lower metallic surfaces of the cell can be, re-
spectively, heated and cooled, the lateral walls are of a
thermal insulating material.

It should be mentioned here that we already derived
some time ago, from dimensional considerations, an ex-
pression very similar to Eq. (29) for the thermal-
radiation force acting on a solid slab [13,14]. We then
provisionally expressed the constant of thermal-radiation
force by means of the transmission coefficient of acoustic
waves. Preliminary experiments with a variety of solids
and liquids were performed and have been described by
us elsewhere [14,17]. Presently, in view of the fundamen-
tal importance of these measurements as a direct check of
the theory of thermal-radiation forces, we have per-
formed the additional series of experiments described
here, employing an improved version of the apparatus
and covering a wider choice of system composition and of
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FIG. 4. Schematic representation of our apparatus. Plunger
(1) is accurately counterbalanced at temperature. Tj: then the
upper flow chamber is heated to T, and the lower flow chamber
cooled to T, subject to the condition T\=T,,=(T,+T,)/2.
Heat flows through the liquid (2) and the plunger. The guard
ring (3) prevents convective disturbances. Thermal-radiation
force is compensated by means of dynamometric measuring de-
vice (4). Plunger movement can be detected by optical device
(5) to better than +0.005 cm.

physical parameters.

In the conditions of Fig. 4 heat will flow through liquid
and the plunger, the fluid being gravitationally stable.
The cylindrical guard ring ensures protection from con-
vective disturbances eventually originating at the cell
wall. The force exerted by the plunger on the balance
arm is accurately counterbalanced at the initial tempera-
ture T, by weights placed in the balance dish. In this
condition the dynamometric device exerts no force. The
temperature gradient is applied subject to the condition
that the temperature at the plunger’s midheight T,, =T,.
The forces produced by the heat flux on the plunger are
measured at the dynamometric device. In the previous
measurements, the balance deflection was used to deter-
mine the force acting on the plunger, which consequently
was allowed to change slightly its position during mea-
surement, and this resulted in a small variation of average
temperature and of buoyancy forces. In the present mea-
surements the plunger position was kept fixed, by apply-
ing a continuously controllable force to the balance arm,
by means of the dynamometer; this force measures the
thermal-radiation force acting on the plunger. It is re-
quired that the solid slab is very thin and that the tem-
perature T,, =T, at the level of the slab stays constant
during measurement. Complete absence of convection
must be ensured, this last condition being easily checked:
the light beam reflected by a mirror attached to the bal-
ance is focused on a sliding film and photographically
recorded. In this way the eventual occurrence of convec-
tion in the cell is readily detected by oscillations on the
trace of the film. Temperature at various levels in the cell
was continuously measured by means of thermistors suit-
ably positioned, their output being registered on a twelve
channel Leeds and Northrup Speedomax recorder. Mea-
sured forces are generally found to increase with time un-
til a constant maximum value is reached —in coincidence
with attainment of the steady-state temperature distribu-
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tion in the cell, as revealed by the thermocouples.

One series of measurements was carried out at the ini-
tial temperature T, coincident with final average temper-
ature T,,= +15°C employing various solids and liquids.
The plungers were kept at the cell’s middle height; all

4

plungers were 0.15 cm thick and of circular cross-
sectional area 0, =7.068 cm?. The temperature gradient
was 30°C/cm (AT=21°C; cell height # =0.7 cm). Re-
sults of these measurements are reported in Table I,

where the measured forces are also compared with ex-

TABLE I. Calculated and measured thermal-radiation forces on plungers 0.15 cm thick, having a cross section of o, =7.068 cm?,
when the applied temperature gradient is d7/dx =30°C/cm and average temperature T,, =15°C. Theoretically expected values cal-
culated from Eq. (29) as explained in the text. Forces directed against the sense in which heat flows are marked with a minus sign.
All experimental data are average values relative to four distinct experiments conducted in identical conditions, with the exception of
those marked a, where the plunger was slightly affected by exposure to solvent. No systematic effect on successive measurements was

detected in these cases.

Thermal-radiation force

l —kﬂ & Expected Measured {Measured force)
u |, u (Expected force)

System (dynecm™'K™1) (dyn) (dyn) (%) Observations
Water-polyethylene 0.264 111.95 85.06 76 First sample
Water-polyethylene 0.267 113.20 88.25 78 Second sample
Water-Plexiglas 0.342 144.08 87.82 61
Water-glass (Crown) 0.325 137.88 112.71 82
Water-nylon 6-6 0.308 130.80 114.94 88
Water-rubber (Ebonite) 0.382 161.99 141.00 87
Methanol-polyethylene 0.0405 17.17 11.16 65 First sample®
Methanol-polyethylene 0.0476 20.19 13.53 67 Second sample®
Methanol-nylon 6-6 0.0770 32.74 21.60 66
Methanol-glass (Crown) 0.1085 46.01 30.83 67
Ethanol-polyethylene 0.0036 1.52  undetectable First sample®
Ethanol-polyethylene 0.0105 4.47 3.28 72 Second sample®
Ethanol-glass (Crown) 0.0716 30.38 22.20 73 Second sample®
Ethanol-Plexiglass 0.0862 36.55 27.04 74
Ethanol-nylon 6-6 0.0403 17.09 14.70 86
Butanol-polyethylene —0.0205 —8.69 —7.38 85 First sample
Butanol-polyethylene —0.0136 —5.77 —4.97 86 Second sample
Butanol-glass (Crown) 0.0475 20.14 18.33 91
Isopropyl-polyethylene —0.0270 —11.39 —10.25 90 First sample
Isopropyl-polyethylene —0.0195 —8.29 —7.21 87 First sample
Isopropyl-glass (Crown) 0.0409 17.37 14.76 85
Isopropyl-nylon 6-6 0.0096 4.07 3.84 94
Isopropyl-Plexiglas 0.0555 23.54 20.72 88
n-Heptane-polyethylene —0.0198 —8.40 —6.87 82 First sample
n-Heptane-polyethylene —0.0129 —5.48 —4.11 75 Second sample
n-Heptane-Plexiglas 0.0626 26.27 17.84 67
n-Heptane-nylon 6-6 0.0167 7.10 6.24 88
n-Heptane-glass (Crown) 0.0481 20.40 18.27 89
Carbon tetrachloride-Plexiglas 0.0531 22.50 15.75 70
Carbon tetrachloride-nylon 6-6 0.0071 2.33 ~2 =85
Carbon tetrachloride-glass (Crown) 0.0385 16.32 13.16 81
Ortoxylene-polyethylene —0.0431 —18.28 —15.72 86 First sample
Ortoxylene-polyethylene —0.0362 —15.35 —13.51 87 Second sample
Ortoxylene-Plexiglas 0.0395 16.75 13.20 79
Ortoxylene-glass (Crown) 0.0250 10.60 9.33 88

°Plunger’s surface was slightly affected by interaction with solvent. Effect on measured force was negligible as shown by repeated

measurements.

"Expected values have been calculated from parameters relative to pure ethanol; actual measurements however were conducted

without protection from ambient air.



4 RADIATION FORCES ASSOCIATED WITH HEAT . ..

pected values, calculated from Eq. (29). In the calcula-
tion of the force the group velocity u at ultrasonic fre-
quencies has been used in place of the phase velocity of
hyperfrequency thermal waves, which is unknown. Oth-
er measurements were performed to check the depen-
dence of the force acting on the plunger from the average
temperature and from the temperature gradient; some of
these results are summarized in Tables II and III.

For the reader’s convenience in Fig. 5 the K /u ratios
of the materials presented in Tables I-III are plotted in
graphical form against temperature. The values of K and
u for these substances have been found in the literature.
Solid lines are used for liquids, dashed lines for the solid
samples actually used by us in the present study. Mea-
surements of K and u of these samples have been per-
formed in our laboratory as described below.

As can be seen from Tables I-III the measured values

TABLE II.
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of the radiation forces are found to exhibit all the qualita-
tive features predicted by the theory; furthermore, the
quantitative agreement is rather good, since experimental
results average at about 80% of theoretical values. Sign
reversal of the measured force relative to the sense of the
temperature gradients always takes place as predicted.
Substitution of water, with methyl, or ethyl, butyl,
isopropyl alcohol produces a variation in the measured
radiation force consistent with the respective momentum
conductivities of these liquids. The proportionality of
measured forces to the intensity of the applied tempera-
ture gradient clearly emerges from inspection of experi-
mental results. The temperature dependence of the effect
in turn is consistent with the temperature dependence of
the differences of the K /u of each pair of substances em-
ployed. From Table II this fairly good agreement be-
tween expected and measured forces at various (average)

Thermal-radiation forces calculated from Eq. (29) and actually measured at constant temperature gradient

dT /dx =30°C/cm and various average temperatures. Cell height and dimension of solid plungers in these experiments were the

same as above.

(Measured force)

T,y Thermal-radiation force
(Expected force)

System (°C) Expected (dyn) Measured (dyn) (%) Observations
Water-polyethylene 15 111.95 85.06 76 First sample
Water-polytehylene 25 112.20 86.51 77 First sample
Water-polyethylene 27 112.60 86.43 77 First sample
Water-polyethylene 30 113.35 86.00 76 First sample
Water-polyethylene 47 116.62 88.42 76 First sample
Water-polyethylene 15 118.67 92.00 77 Second sample
Water-polyethylene 25 113.20 88.25 78 Second sample
Water-polyethylene 27 109.41 85.32 78 Second sample
Water-polyethylene 35 102.08 79.20 77 Second sample
Ethanol-polyethylene 7 0.00 undetectable First sample
Ethanol-polyethylene 15 1.52 undetectable First sample
Ethanol-polyethylene 26 3.09 2.2 71 First sample
Ethanol-polyethylene 45 8.10 7.5 92 First sample
Ethanol-polyethylene 7 8.48 5.76 68 Second sample
Ethanol-polyethylene 15 4.47 3.28 72 Second sample
Ethanol-polyethylene 26 0.46 undetectable Second sample
Ethanol-polyethylene 45 —13.61 —9.79 72 Second sample
Water-glass (Crown) 15 137.88 112.71 82
Water-glass (Crown) 27 139.90 111.92 80
Water-glass (Crown) 47 142.03 114.28 80
Isopropanol-polyethylene 15 —11.39 —10.25 90 First sample
Isopropanol-polyethylene 26 —9.12 —7.38 81 First sample
Isopropanol-polyethylene 30 —17.89 —5.99 76 First sample
Isopropanol-polyethylene 15 —8.29 —7.21 87 Second sample
Isopropanol-polyethylene 27 —11.75 —9.42 80 Second sample
Carbon tetrachloride-nylon 6-6 7 2.84 2.30 81
Carbon tetrachloride-nylon 6-6 15 2.33 ~2 ~85
Carbon tetrachloride-nylon 6-6 26 1.65 undetectable
Carbon tetrachloride-nylon 6-6 45 —2.76 —2.05 74
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TABLE III. Thermal-radiation forces calculated and measured at the constant average temperature
T,,=27°C and with various intensities of the applied temperature gradient. In the case of the system
(carbon tetrachloride nylon 6-6) average temperature was +45°C.

dr

Thermal-radiation force

(Measured force)
(Expected force)

'y
(°Ccm™!) Expected (dyn)Measured (dyn)

System (%) Observations
Water-polyethylene 10 37.53 28.13 75 First sample
Water-polyethylene 20 75.06 54.04 72 First sample
Water-polyethylene 30 112.60 86.43 77 First sample
Water-polyethylene 35 131.36 86.65 78 First sample
Water-glass (Crown) 10 46.63 36.36 78
Water-glass (Crown) 20 93.26 76.47 82
Water-glass (Crown) 30 139.90 111.92 80
Water-glass (Crown) 35 163.21 133.82 82
Isopropanol-polyethylene 10 —3.92 —3.17 81 Second sample
Isopropanol-polyethylene 30 —11.75 —9.42 80 Second sample
Isopropanol-polyethylene 35 —13.70 —11.37 83 Second sample
Carbon tetrachloride-nylon 6-6 20 —1.84 —1.47 80 T, =+45°C
Carbon tetrachloride-nylon 6-6 30 —2.76 —2.05 74 T, =+45°C
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FIG. 5. The momentum conductivities of liquids and solids
composing the systems in which thermal-radiation forces have
been measured in this study are plotted against temperature.
Liquids: solid lines—data from the literature. Solids: dashed
lines—our own measurements. Each of these last points is the
average of three measurements, the corresponding fiducial lim-
its are indicated.

temperatures can be appreciated.

In reading Tables I-III one should remember that “ex
pected values” have been calculated from Eq. (29): sol-
vent momentum conductivities being derived from the
handbook data as explained above, while the momentum
conductivities of the plungers have been obtained by
direct measurements of K and u on each sample at vari-
ous temperatures. These measurements were performed
by a thermoconductometer (Colora of Messtechnik
GMBH) and by an ultrasonic interferometer, using stan-
dard procedures.

We shall proceed now to discuss experimental evidence
on the thermodiffusive behavior of various kinds of solu-
tions. For this it was not necessary to do measurements
ad hoc in view of the existence of a great number of pub-
lished experimental works on the Soret effect in liquid
mixtures. This evidence shall be discussed here with
reference to our theoretical approach.

(1) Coincidence of inversions in the sense of
thermodiffusive solute drift with the change of sign of the
expression (K /u);—(K /u),. Studies of thermodiffusive
behavior of solutions of polyvinylpyrrolidone K90 of
360000 amu in the solvents water, methanol, ethanol, n-
butanol, and isopropanol, evidenced an inversion in the
sense of solute drift among the first three and the last two
of these solvents [17]. This is precisely what would be ex-
pected on the basis of the comparison of the k /u value of
the solute with the ones of the solvents, as shown in Table
Iv.

(2) Dependence of the value of Soret coefficient on the
molecular mass of a polymeric solute. Accurate measure-
ments of the value of the Soret coefficient as a function of
the molecular weight of a polymeric solute were per-
formed by Emery and Drickamer [36] using various cuts
of polystyrene in toluene. The molecular weights of the
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TABLE 1IV. Soret coefficients, measured in solutions of polyvinylpyrrolidone K90 (360000 amu) in
various solvents are compared with differences of the K/u ratios. Change of sign of s and of
(K /u);—(K /u), occurs in n-butanol and isopropanol relative to the first three solvents which have

higher (K /u), values.

Solution K| | (K| e || 1K) _JKG ) _etg (g Dlecy
u |, |em*°C u |, |cm*°C u |, u |, || em*°C D

Polyvinylpyrrolidone
K90 in water 0.4031 0.137 0.266 19.82Xx 1073
Polyvinylpyrrolidone
K90 in methanol 0.1830 0.137 0.046 0.38%x1073
Polyvinylpyrrolidone
K90 in ethanol 0.1440 0.137 0.007 2.31Xx1073
Polyvinylpyrrolidone
K90 in butanol 0.1205 0.137 —0.016 —5.78%x 1073
Polyvinylpyrrolidone
K90 in propanol 0.1197 0.137 —0.017 —6.01X1073

solute ranged from 1X 10* to 338X 10° amu. The experi-
mental points fit very nicely a curve drawn for the func-
tion s = AM?/3, where the value of the constant A has
been obtained by fitting the expression to the central ex-
perimental point of the series (Fig. 6). Other data
confirming this law of dependence on the solute mass
have been published by Debye and Bueche [37], Lang-
hammer [38-41] and by ourselves [18].

(3) Comparison of the values of the K /u ratios deter-
mined by experiments of thermal diffusion with those ob-
tained by independent methods. The ratios of thermal
conductivity and velocity of propagation of elastic waves
in solids and liquids can be calculated directly from the
tabulated values of these two quantities. Obviously these
data refer to materials in bulk, not to their isolated costi-
tuent particles. Experimentally measured orders of mag-
nitude of s are found to range between zero and
1073°C™! for small particles and up to 1072°C~! for
larger molecules; those of D’ range between zero and
1077 cm™2s7!1°C™! for small solutes and are as high as
107% cm?s7!°C™! in the case of macromolecules [18].
From these experimental values the (K /u ), can be calcu-
lated by means of Egs. (26)—(28) in which the values of
(K /u); for the solvent in bulk are introduced; then the
(K /u), turns out to be comparable with those of the cor-
responding materials in bulk. It appears therefore evi-
dent that it is not nonsensical to consider the ratio of
K /u as a quantity which can be defined also with refer-
ence to a single solute particle.

(4) Temperature dependence of Soret coefficient in ben-
zene and n-heptane mixtures. Bierlein, Finch, and
Bowers [42] have studied thermal diffusion in mixtures
containing various amounts of benzene in n-heptane,
namely 20%, 40%, 50%, by weight. In every case when
the average temperature of the solutions was varied from
+18°C to over +60°C, Soret coefficients were found to
decrease, pass through zero and then increase with an in-
verted sign. Sign inversion of s occurred at about +57°C
in solutions containing less then 50% benzene and at
about +60°C in those with over 50% benzene.

Interestingly, the temperature dependence of the K /u

ratios of benzene and toulene in bulk is such that also the
difference (K /U)penzene — (K /#), pheptane Changes sign at
about +57°C, being equal to zero at that temperature.
The value of these ratios for the two substances in bulk
are plotted against temperature in Fig. 7. The values of
the Soret coefficient for benzene in the three mixtures
containing not over 50% benzene are plotted against
temperature in Fig. 8. The coincidence of the tempera-
ture where no thermal diffusion occurs (s =0) with the

1.00 —
0.75 —
0.50
0.25 —
0.00
1 T 1
0 10° 2 x10° 3x10°  Mw

FIG. 6. Experimental values of the Soret coefficient for vari-
ous cuts of polystyrene molecules in toluene, obtained by Emery
and Drickamer (circles). The solid curve drawn through the
third experimental point represents the function: s =HM?2/3,
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FIG. 7. Momentum conductivities of benzene (O) and n-
heptane ([J) are plotted against temperature. The two plots in-
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FIG. 8. Values of Soret coefficients of benzene in mixtures
with n-heptane, measured at various average temperatures. The
results plotted in the figure have been obtained in solutions con-
taining respectively 20 mol% (@®); 40 mol% (A) and 50 mol%
(M) in weight of C¢H¢. In each case the sense of
thermodiffusive drift inverts at the (average) temperature
T,,=+57°C. The inversion point occurs where the Soret
coefficient goes through the value s =0.
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one where the difference of the K /u of the components
vanishes is striking as well as is the inversion in the sense
of thermodiffusive drift below and above that point.

The straightforward interpretation of these results
clearly is that in the case of two weakly interacting sub-
stances, such as benzene and n-heptane, each molecule of
either component exhibits the K /u of the respective sub-
stance in bulk. Phonon-particle interactions thus appear
to be events leading to momentum transfer and to the
production of radiation pressure in accordance with our
theory, even on obstacles having diametral dimensions
comparable with phonon wavelengths.

VI. DISCUSSION AND CONCLUSIONS

A critical survey of the experiments described in Sec. V
will be useful, particularly for those with the solid disks
since, notwithstanding their great conceptual simplicity,
the interpretation of results requires much care to avoid
the interference of unwanted effects and ensure that the
measured forces are due only to thermal-radiation effects.
Two major causes of error reside in the possible appear-
ance of convective motions in the liquid and in uncom-
pensated buoyancy effects on solid slabs, having the
thermal-expansion coefficient different from the liquid
one. A third possible source of error could reside in
unaccounted surface tension forces acting on the suspen-
sion wire, where it emerges from the liquid surface.

The first difficulty was overcome by careful alignment
of heating and cooling metallic surfaces in horizontal
planes, and by introducing a coaxial cylindrical guard
ring around the cylindrical slab, as shown in Fig. 4. We
also found that—for reasons which are not clear to us—
cooling from below for some 20 min before heating from
above greatly decreased the probability of convection.
Whenever notwithstanding these precautions some tur-
bulent motion was produced, it was readily detected by
the optical device used to read the position of the balance
arm.

Much more difficult is the problem set by thermal ex-
pansion. It is easily seen that differential thermal expan-
sion of liquid and solid may produce effects having the
same order of magnitude of thermal-radiation forces. To
avoid interference of buoyancy effects we took care to en-
sure that the temperature at midheight of the solid
plunger was the same at steady-state temperature distri-
bution and in the initial uniform temperature state. A
series of thermocouples were radially inserted in the
chamber containing the nonisothermal liquid, at various
heights, one of them right at the level of the midsection
of the plunger. Only when steady-state temperature dis-
tribution was achieved and temperature at the plunger’s
level was back to initial value the measured force was as-
sumed to correspond to net thermal-radiation force.

Under these conditions a slight modification
(AT==0.2°C), deliberately induced in the temperature
of one of the thermostats controlling the temperature
gradient—a change this time that produced a tempera-
ture variation of AT==0.1°C at the central
thermocouple—resulted in a barely detectable variation
of 1-29% of the force measured at the dynamometer.
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This effect, which operatively defines the sensibility and
precision of our apparatus, was found to be due much
more to the variation produced in the temperature gra-
dient than to effects due to the variation of buoyancy.
We could ascertain this circumstance by selectively play-
ing on average temperature and/or on the temperature
gradient respectively. For instance, simultaneous oppo-
site changes of 0.1°C in the temperature of the two ther-
mostats (affecting gradT but not T,,) altered the mea-
sured force more than simultaneous changes of +0.2°C
in the same sense of both temperatures.

The third possible source of systematic error is easily
disposed of. The suspension wire is only 0.1 mm in diam-
eter; the pull exerted by surface tension accordingly is
about 2 dyn when the wire dips in water and less than
that with other liquids employed in our research. Varia-
tion of this force with temperature however only
amounts, in the circumstances of the experiments, to a
few hundredths of the total surface tension force on the
wire. That is one part in 10* of the total measured forces
(see Tables I-III); this systematic cause of error is thus of
the same order of magnitude as other unavoidable ran-
dom disturbances affecting our measurements. The im-
proved quantitative agreement between experiment and
theory relative to our previously published results is evi-
dently due to the improvement of apparatus design and
operation. The circumstance that experimental values
still consistently fall below the corresponding ones calcu-
lated from Eq. (29) is however indicative of an inadequa-
cy in some of the approximations adopted in the theory.
Some of such inadequacies can be readily indicated.

A value of u; higher than the adopted one—which was
wave group velocity in the liquid at wultrasonic
frequencies—would bring the calculated values in closer
accord with experimental results. An increase in the
value of u; between 5% and 15% would bring most of the
theoretical values in excellent agreement with measure-
ment. Velocities of thermal phonon excitations in the Hz
range, determined from Brillouin-scattering experiments,
however, are generally only 2—-8 % higher than the corre-
sponding ultrasonic velocities. Propagation velocities at
still higher frequencies are unfortunately unknown,
corrections which should be introduced in the propaga-
tion velocities of the solid plungers also unknown. Final-
ly it should be recalled that in the calculated value of the
thermal-radiation force, the possible contribution of
forces acting on the lateral surface of the plunger was
neglected.

There is no need to discuss here any further the experi-
ments of thermal diffusion, whose results were compared
with the theory, since their critical survey can be found
in the literature cited therein.

In conclusion, the experiments described above lend
strong support to the proposed theory of thermal-
radiation forces in the condensed phases. All the main
theoretical predictions were confirmed. Indeed in the
case of the experiments with the solid plungers (i) the
forces measured were proportional to the difference of
the k /u ratios of the liquid and solid medium: (ii) propor-
tionality of the forces to the intensity of the temperature
gradient was also ascertained; (iii) average temperature
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affects the results as forseen from the temperature depen-
dence of the k/u of the materials; (iv) the sense of
thermal-radiation forces depends, as expected, from the
order of succession of the media along the temperature
gradient.

In nonisothermal solutions, the thermodiffusive behav-
ior of various kinds of solutes gives evidence of the action
of forces that have each of the characteristics listed above
under points (i)—(iv). This does not merely add indepen-
dent supporting evidence to the experiments with macro-
scopic plungers, but shows that the concept of thermal-
radiation force can be also applied to molecules and ions
in a nonisothermal liquid medium. These forces act on
every particle with which thermal excitations can ex-
change momentum. The quantitative agreement between
theory and experiment is also quite encouraging, in view
of the many unavoidable approximations introduced in
the treatment.

Our treatment assumes that the material system dealt
with consists of condensed phases. This circumstance
was explicitly invoked at the beginning of Sec. II; it is
also implicit wherever reference is made to phonon-type
thermal excitations, not existent in the gaseous state.
However some related problems arising in heat conduct-
ing gases, were analyzed showing that a heat flux pro-
duces forces on small suspended particles [43]. The argu-
ment used is gas kinetic and cannot be extended to the
condensed phases. It should be remembered indeed that
all attempts to interpret thermal diffusion in liquid solu-
tions by means of adaptations of gas-kinetic or
Brownian-motion models [44—-47] were unable to yield
satisfactory ~ quantitative—or  even  qualitative—
explanations of the observed phenomenology [16].

The field of thermal-radiation effects is very broad and
much more experimentation will be necessary before the
theory can be considered really established. Thermal
diffusion, thermodyalysis, the Dufour effect, the behavior
of high-temperature plasmas, acoustic streaming, and the
Rayleigh-Bénard instabilities, as well as low-temperature
phenomena such as the Kapitza fountain effect, just to
mention a few examples, shall all have to be reexamined.
Finally it is interesting to observe that in this paper only
systems constituting of particles with short-range forces
and possessing no long-range order have been considered.
The application of the fundamental principle of momen-
tum conservation leads to the discovery of new properties
of the energy current and stress tensor in the noniso-
thermal state, because of the intrinsic anisotropy of such
states. The widely accepted assumption is that a seem-
ingly small departure from equilibrium, such as that
caused by the introduction of a moderate temperature
gradient, should not give rise to nonlinear effects. The
present work suggests that such an assumption might not
be justified.

Notwithstanding the relatively small intensity of
thermal-radiation forces their study may thus prove to
have sufficient theoretical and practical importance to
justify further research in this neglected field.

APPENDIX

We refer to the system represented in Fig. 1—which
we consider to be in steady-state conditions. It consists



5016

of a series of anharmonic oscillators, constituted by nor-
mal sections interacting with the neighboring ones, occu-
pying nonuniformly-spaced rest positions. Thermal ex-
pansion is seen as a nonuniformity of the numerical den-
sity of normal sections along x. (Obviously the section
mass density, i.e., the number of molecules per section,
increases going from the warmer to the cooler end.) To-
tal oscillator energy varies along x in consequence of the
existence of the temperature gradient.

We will now consider two molecules in the medium,; let
the force law be of the kind

f=ar+aer? with er <<1. (A1)
Then at uniform temperature it is [48]
€
<r>fEho+;k3T , (A2)

h being the mechanical equilibrium position of one mol-
ecule (at 0 K) and where kj; is the Boltzmann constant.
We assume the vibrations to be of small amplitude so that
damping terms can be neglected.

The temperature gradient, of course, is applied along x;
accordingly for the average position h, (averaged over
the oscillator period), we may write

€
and hence
€
hy—hy = Ekeg (T, =T, ), (A4)
€

Equations (4A) and (5A) serve to simplify the equation of
motion of the jth section

m§j=a(§j+l_§j)_a(§j—gj—l)

+ael(g; 11— &P =& =& -], (A6)
where m is the mass and £; the instantaneous displace-
ment of the section. Under the condition er << 1 of weak
nonlinearity of the force law, and in the presence of a
moderate temperature gradient, Eq. (5) of point (2) con-
stitutes a good approximation.

Now we can develop §; ., —§;and §;—§; _; as
9; 1 I,
§j+1—§j=(hj+1—hj)3xi+—2_(hj+l—hj)2_a;;_+ ’
(A7)
agj 1 azgj
é‘l“gj_l:(hj—hj_l)—a;‘—z(hj—hj_l)z—ax—z"f' >
(A8)

upon substitution in (6a) under (4A) and (5A), and
neglecting terms higher than second order, we get

F. S. GAETA, E. ASCOLESE, AND B. TOMICKI

4
azgj (ekp)? ) ) 82§j
a—t{: 2am (T;4,—T;) HT;—T,_y) ]—a‘x—{ ,

(A9)
with T; —7;=T,;—T;_,. On the other hand
dr; 1 ,d’T;
— J oy 12 J
Tj+1—Tj—h0—dx-+ 2h0 ) + , (A10)
dr; 1 ,d°T;
- j_ 1,9 Jo...

Substituting (10A) and (11A) into (9A) and neglecting
terms higher than second order, we get

2
9%, (ekg)? | dT; | d%;
5 _ Leks o—- 5 (A12)
9t? am dx ox?
Proceeding now to a continuum, one obtains
9% 3%
—= =ploUx)—= , (A13)
dt? 0 dx?
having set
e d 2
Ax)=—— |—(kgT
@{x) am dx( zT)

This is an interesting expression insomuch as Eq. (13A)
can be identified with the d’Alembert wave equation of
acoustics, for propagation along x. We assume sound ve-
locity u =u(x) to be coincident with hyw, where
o=w(x) is angular frequency of the oscillator, physically
constituted by the normal section through x. It should
be observed that the “velocity” term

hoe 4

—rp2.2 1/2—
4 )= [h30 ()] 2= ke T)

is not the usual propagation velocity of acoustic energy,
depending only on equilibrium quantities. The “pertur-
bation” we are dealing with in this context arises in the
medium, due to the presence of the temperature gradient,
and is connected with the nonuniformity of vibrational
energy density along the x axis.

Since @ =27 /7, it finally results that

Tzzﬂh(,% . (A14)

One could suspect that by neglecting in Eq. (6A) terms
higher than second order, we have neglected altogether
the anharmonicity of the chain of oscillators (the third
term indeed disappears). This is not true, since anhar-
monicity is included in the calculations through h; —h;

and h; —h;.
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