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Starting with the canonical quantization procedure for the electromagnetic field inside an e8'ective
(linear or nonlinear) medium, we present a direct-space formulation of the theory of quantum optics.
This approach does not use the conventional modal decomposition of the field, but relies on the elec-
tromagnetic momentum operator defined in terms of local electric- and magnetic-field operators. The
momentum operator contains all the information on the spatial characteristics of the field, and can de-
scribe the translation of a short light pulse in a nonlinear medium, without a modal analysis of the pulse.
Propagation is described through an operatorial wave equation that relates the temporal evolution of an
electromagnetic pulse to its spatial progression. Through this equation, the direct-space approach to
quantum optics can treat traveling-wave nonlinear-optical phenomena and, at the same time, account for
their quantum statistics. The theory is applied to squeezed-light generation by the parametric down-
conversion of a short laser pulse, as an illustration.

I. INTRODUCTION

The classical theory of optics can address the problem
of propagation of a short light pulse through a transpar-
ent linear or nonlinear medium in a relatively simple way,
owing mainly to two features in its formalism. First, the
material is considered as a continuous dielectric charac-
terized by a set of phenomenological constants, the opti-
cal susceptibilities, and second, the spatial progression of
light pulses is calculated explicitly by reducing the elec-
tromagnetic wave equation directly into a spatial
difI'erential equation for the electric field of the propaga-
ting pulse. By contrast, the rigorous theory of quantum
optics [1] gives rise to a relatively cumbersome (albeit ac-
curate) formulation of propagative optical phenomena,
because of two corresponding features in its basic as-
sumptions. First, the material system is introduced in the
form of point charges (or atoms) interacting with the field
and, second, a11 calculations are carried out in reciprocal
space in terms of modal (photon) operators that represent
electromagnetic excitations delocalized throughout the
cavity of quantization.

An important simplification of quantum optics results
when the microscopic description of the material, in
terms of individual atoms, is replaced by a macroscopic
description, in terms of an effective (linear or nonlinear)
polarization, analogous to that of classical optics. This
constitutes, essentially, an approximation that neglects
the field statistics which may result from correlations
among the excited atoms in the medium and is therefore
valid only at frequencies far from the atomic resonances
or atomic ionization frequencies, in the transparency re-
gion of the material, where the scattering of the field by
the atoms is elastic. In spite of the phenomenological
treatment of the medium, such an e6'ective theory still

permits a quantum-mechanical description of the field, in
the sense that it can treat all the problems associated with
the noncommutativity of the field operators (such as
spontaneously initiated nonlinear processes or photon
statistics) without requiring the introduction of external
fluctuations as in the theories in which the field is treated
classically.

Several authors have examined the effective theory of
quantum optics. The quantization of the electromagnetic
field in a homogeneous linear (refractive) dielectric was
studied quite early by Jauch and Watson [2]. Later, Shen
introduced a procedure that became quite popular in
quantum optics, whereby the linear polarization is incor-
porated in the definition of the field modes [3]. More re-
cently, Glauber and Lewenstein [4] examined the canoni-
cal field quantization in an inhomogeneous linear medium
(i.e., with a position-dependent dielectric function) in
view of an analysis of the quantum-mechanical Auctua-
tion properties of the field inside dielectrics. The quanti-
zation of the electromagnetic field in a homogeneous non-
linear medium has been discussed by Hillery and Mlodi-
now [5] and by Drummond and Carter [6]. Starting with
the canonical procedure of quantization, these authors
showed that, inside an erat'ective nonlinear medium, the
definition of photon creation and annihilation operators
(as well as the modal expansion of the Hamiltonian) must
be done in terms of the modes of the displacement field D
and the vector potential 3, since these are the canonical
conjugate variables, Modal expansions of the electric
field E (such as those often introduced heuristically in
nonlinear quantum optics) lead to equations of motion
that are not compatible with the macroscopic Maxwell
equations.

The second feature of the conventional theory of quan-
tum optics, that is, the use of modes and the reciprocal-
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space representation, has been adopted essentially be-
cause it simplifies the treatment of the quantized free field
or the field in a homogeneous linear medium. In these
cases, the modal decomposition of the cavity of quantiza-
tion permits the separation of the overall Hamiltonian
into a sum of mutually commuting partial Hamiltonians,
one for each mode, each of which has the structure of a
harmonic oscillator. In the presence of a nonlinear polar-
ization, however, the modal approach does not produce
such a simplification since the nonlinear interaction terms
in the Hamiltonian cause the modes to mix with each
other. This reAects the fact that reciprocal-space (i.e. ,
Fourier-transform) techniques are helpful for solving
linear differential equations by converting them into alge-
braic equations. For nonlinear differential equations, on
the other hand, a Fourier transformation does not simpli-
fy the solution.

There is a class of problems, nevertheless, for which
the modal approach is very convenient for calculating
nonlinear dynamics of the field: Inside a cavity, when the
field excitations extend throughout the cavity, boundary
conditions impose a stationary modal structure to the
field, involving a small number of modes. The nonlinear
interaction term in the Hamiltonian, in such a case,
reduces to a very simple form when it is expressed in
terms of modal operators. The modal approach has been
extensively used in the development of the input-output
formalism for nonlinear interactions in cavities [7—9].

In propagative problems, on the other hand, we exam-
ine, generally, the interactions undergone by a short pulse
of light (much shorter than the cavity) as it progresses in
space through the nonlinear medium. Such propagative
problems are traditionally treated through the modal ap-
proach by setting up wave packets of a large number of
modes which move in space as the relative phases of the
modes evolve in time under the zeroth-order field Hamil-
tonian and undergo nonlinear interactions under the non-
linear polarization term. This procedure can describe
many of the features of traveling-wave phenomena but,
quite often, it mixes effects related to the spatial progres-
sion of a beam with the spectral manifestations of the op-
tical nonlinearity. For example, for the case of
traveling-wave parametric generation [10], a wave-vector
mismatch may appear as an energy (frequency) noncon-
servation term. In addition, in the presence of a strong
nonlinearity and high light intensities, a modal analysis
becomes extremely cumbersome as, for example, in the
case of an intense light beam propagating in a medium
with a strong nonlinear refractive index: The beam may
undergo catastrophic self-focusing down to a point, a
situation that involves a very large number of modes, all
interacting with each other. The complexity of the
modal approach in this problem contrasts with the sim-
plicity of the standard viewpoint of classical nonlinear
optics in which self-focusing is described relatively -asily
(albeit through a numerical solution) in terms of a spatial
differential equation involving the local value of the elec-
tric field.

To circumvent the difficulties associated with the
modal description of propagation, several authors have
tried to recast the quantum-mechanical problem of prop-

agation in direct space, so that it gives spatial differential
equations analogous to those of classical nonlinear optics.
One technique [6] involves the partition of the cavity of
quantization into finite cells, in each of which we can
define local field operators as the appropriate superposi-
tions of the modal operators of the overall cavity.
Another technique consists of considering the elec-
tromagnetic wave equation on the temporal Fourier com-
ponents of the local electric-field operators [11,12]. As in
classical nonlinear optics, in both cases, spatial
differential equations are then obtained which may be
solved to give the spatial structure of the electric-field
operators.

In this paper, we present an alternate approach to the
treatment of propagative phenomena in quantum optics.
This approach is based directly on the canonical quanti-
zation procedure for the electromagnetic field in a homo-
geneous effective nonlinear medium, whereby the local
field operators are quantized in direct space, with no
reference to the normal modes of the cavity of quantiza-
tion. Within this formalism, the spatial progression of
the quantized operators is described by use of the
momentum operator of the field, in addition to the Ham-
iltonian which describes its temporal evolution. The spa-
tial and temporal coordinates of the field are thus treated
on the same footing and can both be addressed through
the algebraic techniques of second quantization. Some
preliminary ideas have been given in two earlier publica-
tions [13,14], in which the problem of propagation
through a linear medium was examined, however without
following the canonical quantization procedure.

The paper is organized as follows: In Sec. II, we re-
view the canonical quantization procedure for the elec-
tromagnetic field in a homogeneous, dispersionless, non-
linear medium. In Sec. III we discuss the description of
propagative optical phenomena within the framework of
a direct-space formulation of quantum optics, and we
derive the operatorial equivalent of the Maxwell equa-
tions and the electromagnetic wave equation. In Sec. IV
we illustrate the direct-space description of propagation
(that is, without resorting to a modal decomposition of a
propagating pulse) by examining the propagation of light
through a linear medium and through a vacuum-
dielectric interface. In Sec. V, we derive the operatorial
equivalent of the slowly-varying-amplitude approxima-
tion, on which is based the classical theory of nonlinear
optics, and in Sec. VI we apply this equation to the
quantum-mechanical treatment of light propagation in a
nonlinear medium. As an illustration of this quantum
treatment, in Sec. VII, we examine the traveling-wave
generation of squeezed light, by the degenerate down-
conversion of a short pulse. Finally, in Sec. VIII, we
summarize our conclusions.

II. FIELD QUANTIZATION
IN AN EFFECTIVE MEDIUM

We consider the propagation of light in a lossless, non-
magnetic, homogeneous dielectric medium. We examine
a simple geometry for the electromagnetic field such that
the electric field E is polarized along the x axis, the mag-
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netic field B along the y axis, while propagation occurs
along the z axis. This assumption permits us to reduce all
vectors to scalars, while at the same time it is representa-
tive of simple propagative experiments in which x-
polarized light emerges from a source, traverses different
(linear or nonlinear) optical elements placed along z, and
then is detected. In this simple geometry the Maxwell
equations reduce to two scalar differential equations,

BE aB
az at '

aB aD
Bz Bt

where the displacement field D is defined by

D=E+P,

(2.1a)

(2.1b)

(2.2a)

with P being the polarization of the medium, which can
be expressed as a converging power series of the electric
field

P +(1)E++(2)E2+.. . ++(n)En+ (2.2b)

(2.3)

This effective Lagrangian density is the most general in-
volving only the electric field (the medium is nonmagnet-
ic) and possessing gauge invariance. One possible way of
obtaining Eq. (2.3) rigorously from the standard Lagrang-
ian of the electromagnetic field interacting with point
charges, could involve first the use of the Power-Zienau-
Woolley transformation [1,15] on the standard Lagrang-
ian in order to incorporate the microscopic charge distri-
bution into a macroscopic polarization density. Then,
the atomic degrees of freedom could be eliminated.

We introduce the vector potential 2 and adopt the
Coulomb gauge in which the scalar potential is taken as
/=0 and A is transverse. In our simple geometry, the
vector potential is related to the electric and magnetic
fields by

(2.4a)

and

Bz
(2.4b)

where g" is the nth-order optical susceptibility of the
medium. We ignore its tensorial properties and its fre-
quency dependence (dispersion). Dispersion cannot be
taken into account rigorously within a quantum-
mechanical theory based on the Hamiltonian formulation
[5). It is thus often introduced phenomenologically once
a Hamiltonian has been obtained [6), since it may be im-
portant for nonlinear propagation. We use Heaviside-
Lorentz units and take A=@=1.

The Lagrangian density that incorporates the phenom-
enological definition of the polarization (2.2) and de-
scribes the field dynamics involved in the macroscopic
Maxwell equations was shown [5,6] to be

+ 'y"'/ + ~y(2~/3+ ~y~3~E4+
E2 B2

2 2 3 4

with 3 polarized along the x axis. In a rigorous quanti-
zation procedure, the full vectorial representation of A
(and also of E and 8) is necessary, since the vacuum fiuc-
tuations are present on all components of A. In our
simplified geometry, however, in which the propagation
geometry is one dimensional and the susceptibilities are
taken as scalars, the vectorial components of 3 are not
coupled to each other and each component can be exam-
ined independently of the others. Thus our discussion
may be limited only to that component of 3 which car-
ries the excitation of the field, and a scalar notation may
be used.

Note that the e(fective Lagrangian (2.3) is valid only at
energies that are low with respect to those of the atomic
excitations or atomic ionization. In fact, Eq. (2.3) leads
to a theory that breaks down at high energies, since the
nonlinear interaction terms give rise to incurable
infinities in Feynman diagrams containing photon loops:
the effective theory is not renormalizable, even in our
simple one-dimensional propagation geometry because
the nonlinear terms contain powers of the time derivative
of A rather than of A itself. The correct interpretation
of the effective theory, therefore, requires that no loops
appear in a perturbative treatment based on Eq. (2.3)
(tree approximation). The interaction coefficients y'"' of
the effective theory account already for the loop diagrams
that can be written in the microscopic theory, in which
infinities can be eliminated (i.e., the microscopic theory is
renormalizable).

As in the Power-Zienau-Woolley theory, the conjugate
momentum of 3 with respect to the Lagrangian density
(2.3) is the electric displacement

(2.5)

B +E + &y(&)E2+ 2y(2)E3+ 3g(3)E4+
2 2 3 4

and the momentum density,

(2.6)

6„=—H =DB .
BA
az (2.7)

Each of these two elements, when integrated over the
volume that contains the field (i.e., over infinite space), is
independent of time and thus constitutes a constant of
the motion. The spatially integrated quantities corre-
spond, respectively, to the Hamiltonian and momentum
operators that describe the temporal evolution and spa-
tial progression of the electromagnetic field.

In setting up the Hamiltonian, the electric field E has
to be expressed in terms of the electric displacement

Using this Lagrangian density, we may calculate the
energy-momentum tensor [16] of the electromagnetic
field inside a nonlinear medium 6„,. Two elements of
e„are of particular interest in our simple one-
dimensional geometry, namely, the energy density,

e =11 aw
tf
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which is the canonical momentum of A according to Eq.
(2.5). That is,

E=P'"D+P' 'D +f3' 'D + (2.8)

where the P coefficients may be expressed in terms of the
susceptibilities y'"' through the definition and Eq (.2.2),
as [5]

1 =1
1+~(&)

p(&) — p(&)p(1)p(&) (2)

and so on. The Hamiltonian is thus written as

H= 6 d = 'B + —'P"'D —+ 'P' 'D—
tt 2 2 3

+ 'P' 'D +—. . dr,

(2.9a)

(2.9b)

(2.10)

while the momentum operator can be calculated as

G= f e„dr= J BD dr,
V V

(2.1 1)

where the integration is over the infinite cavity of quanti-
zation, obeying periodic boundary conditions, that is,
B(+ OD ) =B(—~ ) and D(+ ~ ) =D( —~ ).

We can now quantize the field by replacing each field
variable by the corresponding operator and defining the
equal-time commutator between the displacement D and
vector potential 2 operators as [5,6]

[D(r, t ), 3 (r ', t }]=i5T(r —r '), (2.12)

[D(z, t ),B(z', t ) ]= i 5'(z —z'), — (2.13)

where

5'(z —z') = 5(z —z')~ =d
dz

(2.14)

is the derivative of the 6 function.
At this point, there are two equivalent representations

within which the theory of quantum optics may be
developed: reciprocal or direct space. The conventional

where in our simple geometry the transverse 5 function
5T reduces to the ordinary 5 function. A further
simplification of the canonical commutation relation
(2.12) can be invoked in this paper, since we examine
one-dimensional propagation along the z direction, with
no transverse eft'ects: we may consider that there is al-
ways an implicit integration over the x and y directions,
so that the three-dimensional position vector r can be re-
placed by the coordinate z.

The vector potential 3 does not appear explicitly in
the Hamiltonian (2.10) and momentum (2.11) operators,
but rather in terms of its spatial derivative 8. In view of
this feature, the canonical commutator (2.12) may be ex-
pressed also in a form that is better suited to the use of
the magnetic-field operator. Using the relationship be-
tween the magnetic field and the vector potential (2.4b),
the canonical commutator may be rewritten in terms of
the magnetic field as

BD +DBD+D B
3

(2.15)

III. PROPAGATION IN DIRECT-SPACE
QUANTUM OPTICS

In classical optics, the problem of the propagation of
light through direct space is often addressed by consider-
ing the spatial structure of a wave whose time depen-
dence is specified beforehand, such as, for example, a
monochromatic wave oscillating in time. For such a
wave, the classical electromagnetic wave equation
reduces to a spatial diff'erential equation (such as the
Helmholtz equation of linear optics} whose solution gives
directly the spatial progression of the wave.

This relatively simple procedure, however, cannot be
directly transposed to quantum optics because this latter
theory, like every quantum-mechanical theory, is based
on the Hamiltonian formulation of mechanics, in which
the time variable plays a particular role. That is, the
standard quantization procedure, based on the equal-time
commutator (2.12), as outlined in Sec. II, requires that
the field be specified over all space at one instant of time
(e.g. , at t =0). In fact, it is this requirement that permits
integration of the energy and momentum densities over
all space in Eqs. (2.10) and (2.11). All the subsequent evo-
lution of the field may then be calculated by using the
Hamiltonian (2.10) which contains all the dynamical in-
formation on the field inside the medium. Thus, within
the Hamiltonian formulation of quantum optics, a treat-
ment of propagative phenomena in which the time depen-
dence of the field is specified beforehand (as in classical
optics) requires the introduction of a source term in the

theory of quantum optics adopts the reciprocal-space
representation by expanding the field operators in terms
of normal modes, thus defining modal (photon) creation
and annihilation operators. The reciprocal-space repre-
sentation is more appropriate for an eigenstate analysis of
the field. In this paper, on the other hand, we shall devel-
op a direct-space approach to quantum optics which
avoids the modal decomposition of the field and uses lo-
cal operators for the field observables. All calculations
involving these local operators can be carried out by use
of the direct-space commutator (2.12) on which is based
the quantization of the field. This approach is more con-
venient for examining the propagation of a short pulse of
light through a linear or nonlinear medium.

One last point we shall discuss in this section is the
question of operator ordering. Because of the introduc-
tion of the commutator (2.12), the definition of the
momentum operator given by Eq. (2.11) dilfers by an
infinite quantity from the momentum operator in which
8 and D are permuted. The same is true for any operator
that consists of a product of 3, D, E, or 8 operators. To
avoid this ambiguity, we shall consider any product of
noncommuting operators that appears in an expression as
being fully symmetrized (i.e., including all possible per-
mutations of the individual field operators), such as
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a
dt

=i[H, Q]=iH "Q, (3 1)

where Q is any field operator. We shall use hereafter the
Kubo notation [17] for the commutator, whereby the su-
perscript X denotes the commutation of the operator it
superscribes with everything that follows. One of the ad-
vantages of this compact notation is that it permits a sim-
ple formal solution of the Heisenberg equation (3.1), to
give the time evolution of the Q operator as

Q(t) =e" Q(0)

as it can be verified by expanding the exponential,

e" Q(0) =Q(0)+(it )H Q(0)

(3.2a)

Hamiltonian, such that it generates a time-varying (e.g.,
oscillating) field. The propagating electromagnetic field
would thus be treated as a driven system.

In this paper, we treat source-free propagation within
the Hamiltonian formalism, specifying the propagating
wave by its initial spatial distribution rather than by its
temporal characteristics. For a propagating short pulse
of light, this would correspond to a "snapshot" of its evo-
lution at one instant of time, for example, when the pulse
is located at the entrance of a nonlinear crystal. Propaga-
tion, then, consists of the subsequent time evolution of
the initial distribution of the field, under the Hamiltonian
relevant to the effective medium. Thus, this approach
can rely directly on the Hamiltonian of Eq. (2.10).

The Hamiltonian of the electromagnetic field relates
the spatial distribution of the field at t to its spatial distri-
bution at another instant t+dt later through the Heisen-
berg equation, which can be written as

momentum operator (3.3) is ignored. The reason is that
the modes are eigenstates of the momentum operator G,
and this makes the explicit use of the differential equation
(3.3) superfiuous, since its solution gives simply the spa-
tially dependent phase factor e' ' associated with the
delocalized modal operators. Within the direct-space ap-
proach, on the other hand, the momentum operator G is
necessary to express the temporal evolution of the field in
terms of its spatial progression: a direct-space field
operator, such as E(z, t), may be considered as a short
pulse that corresponds to a field distribution around the
point z at time t, and thus its time evolution involves a
translation of the pulse along the z axis, a feature that is
formalized in terms of the momentum operator G in Eq.
(3.4).

The Hamiltonian (2.10) and momentum (2.11) opera-
tors can relate the electric- and magnetic-field operators
to each other, through the direct-space commutator
(2.12). As shown in Appendix A, this relationship is ex-
pressed by two commutator equations,

G E=H B (3.5a)

and

GxB ~x (3.5b)

These two equations may be considered as the operatorial
equivalent of the Maxwell equations (2.1), since the H
and G commutators are directly related to the t and z
derivatives, according to the Heisenberg equations (3.1)
and (3.3). Using the fact that, in a homogeneous medi-
urn, the Harniltonian and momentum operators eomlnute
with each other, that is

+ (it) H "H "—g(0)+
2! G H=O (3.6)

=g(0)+(it)[H, Q(0)]

+—(it) [H, [H, Q(0)]]+2!

Eqs. (3.5) may be combined into the operatorial
equivalent of the electromagnetic wave equation,

iHtg ( 0 )
—iHt (3.2b) G G E=H H D (3.7)

Similarly, the momentum operator G relates the opera-
tor Q at a point on the z axis to another point at z+dz (at
the same instant of time) through the Heisenberg-like
equation involving the momentum

Q .gxg
Bz

(3.3)

This equation can be solved formally to describe the
translation of Q from the point zo to the point z in direct
space as

—i(z —zo)G
Q(z) =e ' Q(zo), (3.4)

in a manner analogous to the way that the Hamiltonian
gives the temporal evolution of Q.

VA'thin the conventional modal approach to quantum
optics, the Heisenberg equation involving the Hamiltoni-
an (3.1) is used alone in describing the dynamics of the
field, while the Heisenberg equation involving the

as is usually done for the classical Maxwell equations.
This operatorial wave equation is as general as the cor-

responding classical equation, and is at the root of the
formalism developed in this paper for the direct-space
description of light propagation: it provides a rule for re-
lating multiple powers of the Hamiltonian commutator in
the expansion of the time-evolution operator (3.2b) to
multiple powers of the momentum commutator. Thus it
permits a description of the temporal evolution of a short
light pulse in terms of its progression in direct space,
without requiring a modal analysis of the pulse. This ap-
proach for the description of propagation makes contact
between the operatorial methods of quantum optics and
the differential equations commonly used in classical op-
tics. In this way, the results of classical propagative op-
tics can readily be translated into an operatorial language
and applied to the treatment of propagation in the quan-
tized electromagnetic field.
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IV. PROPAGATION IN A LINEAR MEDIUM

(6 G eH—H )E=0, (4.1)

where a= 1+y'" is the dielectric function of the medium.
It is also convenient to define u = 1/&e, the velocity of an
electromagnetic wave in the refractive medium. For free
space, the wave equation is identical to Eq. (4.1), however
with @=1and v =c. In this section, for the sake of clari-

ty, we shall introduce explicitly c, the speed of light, in
order to identify light waves propagating in free space.

The electromagnetic field is defined over all space at

To illustrate the direct-space approach to quantum op-
tics, we shall examine here the problem of propagation of
a short light pulse in a linear (refractive) medium. To
make contact with the well-known results of classical
linear optics, we develop here the quantum-mechanical
formalism in terms of the electric and magnetic fields E
and B, rather than in terms of D and B which are the
canonical variables. For a linear medium, the operatorial
wave equation (3.7) reduces to

t =0 through the operators E(z, O) and B(z,O). At a
later time t, the electric field E(z, t ) is related to the elec-
tric field at the same point in space z but at an earlier
time (t =0) by

E(z, t)=e" E(z,O) . (4.2a)

This exponential can be expanded as

E(z, t ) =E(z,O)+(it )H E(z,O)

+—(it) H H E(z, O)2 X X

2!

+ (—it) H "H H E(z,O)+. . . (42b)3 X X X

3!

The wave equation for a, linear medium (4.1) permits us
to replace all pairs of H commutators in the expansion of
Eq. (4.2b) by an equal number of pairs of G commutators.
Similarly, the Maxwell equation (3.5b) permits us to
rewrite all odd powers of the expansion (4.2b) as G com-
mutators of the initial distribution of the magnetic field
B(z,O). Equation (4.2) thus becomes

E(z, t)=E(z, O)+ (iut) G—G E(z,O)+ (iut) 6—6 "6 G E(z,O)+. . .2 X X 4 X X X X

2! 4!

+(iut)uG B(z,O)+ —(iut) vG 6 G B(z,O)+1 3

3!

=cos(utG")E(z, O)+iv sin(utG )B(z,O) . (4.3)

(G 6 eH H" )B—=0, (4.4)

which gives

B(z, t)=cos(vtG )B(z,O)+ —sin(vtG )E(z, O) . (4.5)

Equations (4.3) and (4.5) indicate that the linear combina-
tion

W,+(z, t ) =E(z, t )+vB (z, t )

evolves in time as

(4.6)

8',+(z, t ) =e'" W,+(z, O) = W„+(z vt, O) . —(4.7)

That is, the operator W+ represents an electromagnetic
wave moving towards + ~ at a constant speed of
v =c /v'e, retaining its original form. Similarly, the
linear combination

W, (z, t)=E(z, t) —vB(z, t) (4.8)

Similarly for the magnetic field, the operatorial Maxwell
equations can be combined into a wave equation of the
form

and corresponds to a backward-moving wave (towards
—~) at the same speed. We note that, in this direct-
space description for the propagation of a short light
pulse inside a linear medium, no modal decomposition of
the field was necessary.

The problem of a vacuum-dielectric interface is ad-
dressed in a way very similar to that of classical optics, in
terms of the boundary conditions. To examine the prob-
lem of the interface, we now consider two half-spaces,
such that the z=( —~,0) half-space is empty (i.e., u =c)
while the z = (0, + ~ ) half-space consists of a transparent
linear dielectric (with v (c). We also consider a short
pulse which, at t =0, is contained completely in the emp-
ty half-space and has the form W,+(zo, 0) with zo (0. As
time evolves, this pulse propagates towards the interface.
Beyond the interface, in the refractive medium, the pulse
must assume the form W,+ with v (c. Continuity of the
electric and magnetic fields at the interface requires,
therefore, that a backward-going wave of the form W
must also be generated in the empty half-space. Match-
ing the amplitudes of the three waves across the inter-
face, we may obtain, as in classical optics, the transmis-
sion and refIection coefticients for the electric-field opera-
tor as

evolves as

W', (z, t)=e "' W„(z,O)= W, (z+ut, O) (4.9)
2&at= —,r=—

&e+I
&e—1

&e+I (4.10)
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It is relatively straightforward now to verify that the
equal-time commutator of the electric- and magnetic-field
operators is preserved at all times, if we consider the
transmitted and reAected waves. To this end, we consid-
er two very short electromagnetic pulses in the empty
half-space, W',+(zo, O) and W,+(zo, 0) described as distri-
butions of the variables zo and zo (zo, zo (0) at t =0. In
the empty half-space, at t =0, the electric and magnetic
fields satisfy the equal-time commutator

[E(zo,0)] 8(zo, 0)= —i5'(z o
—zo) . (4.11)

zo I

(4.12b)

is located in the empty half-space, while

Izo I

(4.12c)

is in the dielectric. A similar expression also holds for
the evolution of W, (zo, O).

Using the re1ationship between z and zo imposed by
propagation [Eq. (4.12b)] (and also between z' and zo) and
the commutator (3.10) applied to free space (i.e., with
D =E), we may calculate the equal-time commutator for
the electric and magnetic fields of the reAected waves as

[E(z, t )] B(z', t ) = i 5'(z —z—') = i 5'(zo —z—t ) . (4.13)

For the transmitted waves we have to use the equal-time
commutation relation between the displacement and the
magnetic fields inside the dielectric which is

At time t (r ) Izo I/c), the two pulses are partly transmit-
ted into the dielectric and partly reAected back into the
empty half-space, so that each pulse can be written as a
superposition of the two beams into which it is split.
That is, W,+(zo, O) evolves into

2&a + &e—1
W,+( g, r ) W—, (z, t ), (4.12a)

@+I @+I
where

[E(r ) ]XB(r )=,t [E(g, t ) ]"B(g',t ) j(&@+1)

V'e —1+ &e+ I

2

[[E(z,t)] B(z', t)I

= —i 5'(zo —zo ), (4.17)

which is identical to the commutator before beamsplit-
ting (4.11). Thus, consideration of the three waves, in-
cident, rejected, and transmitted, each evolving in time
under the Hamiltonian relevant to its medium, leads to
the preservation of the equal-time commutator of the
electromagnetic field for all time.

V. THK OPKRATORIAL
SLOWLY-VARYING-AMPLITUDE WAVE EQUATION

As in classical optics, the problem of propagation of a
short pulse in a nonlinear medium cannot be solved in the
general case. In most cases of interest, however, the ener-

gy associated with the nonlinear part of the Hamiltonian
(2.4) is much smaller than the energy of the linear part.
This implies that the efFect of the nonlinear polarization
on the time evolution of an electromagnetic wave can be
treated as a perturbation with respect to the variation of
the wave under the linear Hamiltonian and momentum
operators. In classical nonlinear optics, these considera-
tions give rise to the slowly-varying-amplitude (SVA) ap-
proximation [18] of the electromagnetic wave equation.
In this section we shall examine a perturbative treatment
of the time evolution of the field in a nonlinear medium,
that corresponds to propagation within the SVA approxi-
mation. To simplify the discussion we consider a non-
linear medium that displays only one order of nonlineari-
ty, characterized by a single nonlinear susceptibility g'"'.

In order to develop a perturbative treatment of non-
linear propagation, we consider that the optical non-
linearity of the medium is absent at t= —~ and is
turned-on adiabatically. At t = —~, in the absence of
the nonlinearity, the electric and magnetic fields in the
medium, Eo and Bo, as well as the displacement field
which is given by

[eE(g, t)] B(g', t)= i5'(g —g') . — (4.14)
Do =@ED, (5.1)

Again, introducing the relationship between g and zo
(and g' and zo) (4.12c), together with the property of the
derivative of the 5 function

propagate under the Hamiltonian

Bo'+D2o/e
Ho= dr (5.2a)

the commutator (4.14) becomes

(4.15) and momentum operators

Go= fBoDodr (5.2b)

[E(g, r)]~B(g', t)= i5'(z, ——z,') . (4.16)

Thus, by using the commutators for the rejected (4.13)
and refracted (4.16) waves, together with the expression
for the electromagnetic wave after beamsplitting (4.12),
we may calculate the overall equal-time commutator
after beamsplitting as

which include only the e6'ects of the linear polarization of
the medium and are, therefore, of zeroth order in the
nonlinear susceptibility y'"'. Thus Do and Bo vary in
scales of the order of the optical period and optical wave-
length and are the fields that would have existed in the
medium at finite t, if the nonlinearity were absent. We
note that these fields correspond to the traditional "in"
fields of scattering theory, and can thus serve as a basis
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for the perturbative treatment of the exact fields D and B,
interacting through the nonlinear susceptibility.

After the nonlinearity is "on," the zeroth-order Hamil-
tonian turns into the exact Hamiltonian (2.10) and the
displacement field D becomes a nonlinear function of the
exact electric field E given by Eqs. (2.2) or (2.8). Follow-
ing the standard perturbation theory [16], the exact field
operators in the nonlinear medium can be related to the
zeroth-order fields by the unitary transformation

H))vHo&0 . (5.8c)

The form of H, ~ and the choices that make it unique are
discussed in Appendix B. We note that all three opera-
tors H&, H, z, and H&& commute with the linear momen-
tum operator Go, as shown also in Appendix B. Using
Eqs. (5.8), the integral in the first-order term in (5.7) can
be written as

t' f d&[II)s(&)] Ho+t f d&[H))v{r)]"Ho

and

D(z, t ) = U '(t)Do(z, t ) U(t )

B(z,t)=U '(t)Bo(z, t)U(t) .

(5.3a)

(5.3b)

(5.9)

Thus the nonlinear Hamiltonian can be written in terms
of the linear-medium operators, up to first order in X as

The unitarity of U ensures that the commutation relation
(2.12) or (2.13) is preserved when the exact field operators
are expressed in terms of zeroth-order operators. The
transformation U is given by the time-ordered exponen-
tial

U(t) = T exp i A—f , H)(r)dr

where

Hi= 1 p( n)D n + ld r— 1 +(n)En + ldr
n+1 n+1

is the nonlinear interaction part of the Hamiltonian. We
note that, in Eq. (5.5), H, is written in terms of the
zeroth-order fields Do and Bo, rather than in terms of the
full interacting fields D and B, as it was in Eq. (2.10).
Thus H, is first order in the nonlinear susceptibility y'"'
(which give the energy scale associated with the nonlinear
polarization) and the time-ordered exponential represents
a perturbative expansion in successive powers of y'"'.
The dimensionless parameter A, has been introduced in
Eq. (5.4) for the bookkeeping of the successive orders of
the nonlinear coeKcient in the perturbative expansion.
The integrand of Eq. (5.4)

(5.6)

H=H()+AH)s+0(A, ) . (5.10)

Equation (5.10) is simply a generalization of the well-
known feature of first-order perturbation theory, whereby
the first-order correction to the energy consists of the di-
agonal elements of the perturbation. Here, rather than
consider as the "diagonal" part of H& only the part that
leaves the state of the field unchanged after it operates,
we include also the interactions that induce transitions
which change the zeroth-order state of the field without
however changing the (zeroth-order) energy.

The partition (5.8) may be easily related to more famil-
iar concepts, if we express the interaction Hamiltonian
H& in terms of the modes of Ho. In such a modal repre-
sentation, the stationary part H &z corresponds to the
rotating-wave-approximation (RWA) terms of the non-
linear interaction. That is, for an nth-order nonlinearity,
H&& consists of all the n +1-fold products of photon
creation and annihilation operators which conserve ener-
gy and describe all the resonant interactions among the
modes. For example, for a quadratic nonlinearity, as can
be verified by writing Eq. (B12a) in terms of modal
creation and annihilation operators, H&z consists of the
sum of all terms of the form

is the time evolution of the interaction Hamiltonian, un-
der the linear Hamiltonian Ho.

Expanding the exponential (5.4), we can express the ex-
act Hamiltonian (2.10) perturbatively, up to first order in
A. as

H=U )(t)[Ho+AH)(t)]U(t)

=Ho+A, H (t))+i f dr [H)(r)] H() +0(& ) .

(5.7)

To calculate the first-order term in Eq. {5.7), we partition
the interaction Hamiltonian H, into two parts,

b,'b,'b +b'b, b, (5.11a)

b~bl b +b bIb (5.11b)

such that co col=co a d + I=k . b and b are
the familiar creation and annihilation operators for the
jth mode of Ho. The nonstationary part H &&, on the oth-
er hand, includes all the non-RWA terms which corre-
spond to photon conversions that do not conserve energy
to zeroth order, and describe the nonresonant interac-
tions among the modes. In particular, for a quadratic
nonlinearity H» includes terms of the form

H) =H)~+H)~ (5.8a)

such that H, z commutes with the linear Hamiltonian Ho

(5.8b)

while H&& does not

with arbitrary frequency relations, as well as nonresonant
terms of the form (5.11a) such that co +co&Aoi

Within the perturbative treatment outlined above, the
time evolution of the displacement operator can be writ-
ten as
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D(z, t)=e" D(z, O)

it[HO +AH l~+O(A, )]

X [Do(z, O)+ AD, (z, 0)+0()(, )], (5.12)

where

XG X Do +AD i
—)(PNL(DO )

= (Ho H() +2kH o H, ~ )(Do+ kD) ),
where

D, (z, t)=i I dr[H)(r)] Do(z, t) (5.13)
P eP(n)D n —~(n)~ n

NL p p (5.16)

is the first-order correction to the displacement field. A
similar expression also holds for the magnetic-field opera-
tor. In principle, within a strict first-order perturbative
treatment, the exponential time-evolution operator in Eq.
(5.12) should be expanded and only the first-order term
retained. However, the amplitude of the first-order term
is proportional to t and, therefore, exhibits secular behav-
ior; that is, it grows without bounds at long times. Thus,
in long time scales (i.e., in time scales much longer than
the optical period and long enough that the efI'ect of the
optical nonlinearity is measurable macroscopically) it is a
better approximation to the overall time evolution to
keep all powers of His so that the amplitude of D can
remain bounded even at very long times. In other words,
from each order of the perturbative expansion of the ex-
ponential, only the term which is given by the nth power
of the first-order correction to the Hamiltonian is re-
tained. Within this approximation, Eq. (5.12) can be
written as

D(z, t)=[e ' Do(z, t)]+D, (z, t), (5.14)

whel e Dp aIld D ] evolve under the linear-medium Hamil-
tonian Hp, and thus vary in scales of the order of the op-
tical period and the optical wavelength. The approxima-
tion (5.14) in which the exponent of the time-evolution
operator is treated perturbatively to first order is
equivalent to making a first-order approximation on the
temporal derivative of D, and is thus suitable for a pertur-
bative treatment of the wave equation (3.7) which in-
volves such derivatives.

The first-order approximation to the time-evolution
operator discussed above can also be viewed in a way that
makes contact with the language of classical nonlinear

iH lsoptics. The time-evolution operator e ' operating on
Do in Eq. (5.14) may be regarded as a slowly varying en-

velope function imprinted by the nonlinear medium on
the fast varying ("carrier") wave Do in the course of its
propagation through the medium. This slow temporal
modulation gives rise to a modification of the spatial pro-
gression of the wave, manifested on a long spatial scale,
much longer than the optical wavelength and of the order
of the propagation length over which the nonlinear eftect
becomes macroscopically measurable.

The relation between the slow temporal modulation of
a wave propagating in a nonlinear medium and its long-
scale spatial variation can be obtained from the nonlinear
wave equation (3.7). By use of the unitary transformation
(5.3) and its perturbative expansion (5.4), the exact non-
linear wave equation (3.7) can be written up to first order
in k as

is the nonlinear polarization. Collecting terms that are of
the same order in k we can separate the exact nonlinear
wave equation into a perturbative hierarchy of partial
wave equations, one for each order of k.

To order A, , the nonlinear wave equation gives

(G G eH H —)D =0 (5.17)

identical to the linear wave equation that describes the
spatial progression of Dp as it evolves under the linear
Hamiltonian Hp. Thus Dp can be expressed as the sum
of a forward- and a backward-going electromagnetic
wave, as discussed in Sec. IV.

To order X' we have

The first-order wave equation can be put in a form that
makes contact with the classical SVA wave equation of
nonlinear optics, by introducing the definition (5.13) of
D]. However, rather than calculate explicitly the form of
D &, we can deduce its contribution to the wave equation
(5.18) through a simple argument: Since Do obeys the
zeroth-order wave equation (5.17), and since H)z com-
mutes both with Hp and with Gp, the term in the left-
hand side of Eq. (5.18) also obeys that zeroth-order wave
equation. This means that the sum of all the terms on the
right-hand side of Eq. (5.18) must also obey the zeroth-
order wave equation. We now separate PNL into two
parts, P)i and (PNL P)), ), such—that Pi), obeys the
zeroth-order wave equation

(G G eH H )P —=0 (5.19)

As discussed in Appendix B, this partition corresponds to
the elimination of all terms that couple opposite-going
waves in PNL. Clearly, then, the two terms that involve
D) in Eq. (5.18) serve to cancel (PNL P)) ), which co—n-
tains all the terms that consist of products of opposite-
going waves.

In view of the above discussion, then, the first-order
wave equation (5.18) can be written as

cap Hi'sDp= —Gp Gp (5.20)

This equation relates the variation of the slowly varying
envelope of a propagating wave (expressed by H, s) to the
nonlinear driving term. It is thus the operatorial
equivalent of the classical SVA wave equation, which is
usually written as

(5.21a)

2eHp H )~Dp = —eHp Hp D) +Gp Gp D, —Gp Gp PNL

(5.18)
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or, more often, in terms of the individual temporal
Fourier components of E and Pw as

(5.2 lb)

b~~+ bl b (5.22)

such that k +k, =(co, +coi)&e/c and k —k„=(co
—co„) V'e/c, as can be verified by expressing Eq. (B10a)
in terms of modal creation and annihilation operators.

where E is the envelope function of the electric field. We
note that in Eqs. (5.20) and (5.21) the roles of the tem-
poral and spatial derivatives are interchanged. Neverthe-
less, the two equations are equivalent, as can be seen by
comparing their right-hand sides: Since Pw obeys the
zeroth-order wave equation (5.19), its second spatial
derivative [in Eq. (5.20)] is proportional to its second
temporal derivative [in Eq. (5.21)]. The equivalence of
the left-hand sides, that is the relation of the temporal
evolution of the envelope function (characterized by H, s)
to its spatial progression, is discussed in Sec. VI.

Before closing this section we examine briefly the
structure of Pw. A more complete discussion, as well as
all the relevant calculations, appear in Appendix B.
Equation (5.19) implies that Pii, propagates in the same
way as a simple electromagnetic wave in the linear medi-
um, and consists of the "phase-matched" part of the non-
linear polarization. For example, for time-harmonic
plane waves Pw corresponds to a truncation of PNL in
which are retained only those terms of the nonlinear po-
larization that oscillate at the same frequency and have
the same wave vector as the propagating electromagnetic
wave that is driven by this polarization, and thus vary as

ex[pi c(ot
—z&e'/c)]. For a quadratic nonlinearity, Pii,

involves a sum of terms of the form

propagation corresponding to Ho.
The first problem can be remedied by reexpressing the

spatial dependence of the driving term Pw as a spatially
dependent interaction of Do with itself. This can be done
by defining an effective SVA "momentum" operator such
that it obeys

GsvADo Go Pw (6.1)

In this definition Gsv~ expresses the modification of the
spatial progression of D, because of the nonlinear interac-
tion that it undergoes in the course of its propagation.
The structure of G»~ is examined in detail in Appendix
B. Here we note simply that if we define an effective "in-
teraction" momentum operator as

Gi =
—,
' BOPNLdr

then this operator satisfies

(6.2)

Gi Do= pGO PNL (6.3)

and thus Gsv~ can be considered as the RWA part of G„
such that it commutes with Ho. The effective SVA
momentum operator, thus, can be considered as the spa-
tial equivalent of the stationary part of the interaction
Hamiltonian H, z and has a similar structure. Indeed, for
the case of a quadratic nonlinearity, Gsv~ consists of the
sum of all terms of the form

b bIb +b bib (6.4)

such that co +coI =co and k +k&=k, analogous to the
terms (S.l la), however with difterent coefficients from
those of H, z.

With the definition (6.1), the SVA wave equation (5.20)
can be written as

VI. PROPAGATION IN A NONLINEAR MEDIUM (Gsv&Go +eHisHo )Do=0 . (6.5)

Equations (5.17) and (5.20) are the two wave equations
that govern the propagation of the displacement field D
in the two temporal and spatial scales in which its varia-
tions occur. The linear wave equation (5.17) describes the
fast component (carrier wave) of the propagation of D,
while the quantum-mechanical SVA equation (5.20)
should permit a description of the spatial progression of
the modulation envelope which the nonlinear medium
impririts on the carrier wave.

We note, however, that while the zeroth-order wave
equation (5.17) provides a simple substitutional rule for

iHot .
converting the time-evolution operator e ' into a spatial

iGOZ
progression operator e ' (as discussed in Sec. IV), the
form of the quantum-mechanical SVA equation is not as
simple. Indeed, it presents two features that prevent such
a straightforward conversion of the slow temporal modu-

iHl~t .
lation operator e ' into a SVA spatial envelope. First,
the right-hand side of Eq. (5.20) is written in terms of the
spatial derivative of the nonlinear polarization Pw, rather
than in terms of the D field, as in the left-hand side.
Second, the slow modulation expressed by H, ~ on the
left-hand side, is "entangled" with the fast component of

V =D+&eB, — (6.6)

so that in the absence of the nonlinearity these waves
reduce to the corresponding electromagnetic waves in the
linear medium

In this form, the operatorial SVA equation relates direct-
ly the slow component of the temporal evolution of a
short pulse of the displacement field Do, to its spatial pro-
gression: Gsvz describes the long-scale spatially depen-
dent distortion of the pulse.

We now come to the problem of the "entanglement" of
the fast and slow components of propagation, which is
expressed in Eq. (6.5) by the fact that H, z and Gsv~
occur each in a product with Ho and Go, respectively.
This arises because the electric-field wave (represented by
Do) alternates between the electric and magnetic fields in
the course of its propagation under the linear Hamiltoni-
an, as seen in Eq. (4.3). Thus, in order to disentangle the
fast and slow variations, it is necessary to consider at the
same time the SVA equation for the magnetic field, as in
Sec. IV. To this end, define forward (+) and backward
(
—

) polarization waves in the nonlinear medium as



S10 I. ABRAM AND E. COHEN

Vo =Do+&eB0 =eW„ (6.7a)

W,*=Eo+UBo- (6.7b)

with 8',+ and 8, defined in a way analogous to Eqs.
(4.6) and (4.8), in terms of Eo and Bo; that is,

Equations (6.13) provide a simple rule for substituting
H, s by vGsvA to convert the temporal evolution of the
modulation envelope into a spatial progression. That is,
the overall propagation of a polarization wave in a non-
linear medium can be written within the SVA approxima-
tion as

The factor &e in Eq. (6.6) ensures that the e8'ects of the
linear polarization are treated exactly in the propagation
of V—+, while the effects of the nonlinear polarization can
be treated perturbatively. Using the first-order treatment
developed in Sec. V, the temporal evolution of the V+
can be written as

and

=e.[e ' "W;+(z —vt, O)]+ V,+(z, t)

V+(z, t ) =e[e "'W,+(z, t )]+V,+ (z, t )

(6.14a)

V+(z, t ) = [e "eW+(z, t )]+V i+ (z, t ), (6.8)
V (z, t)=e[e '

W, (z+vt, O)]+V, (z, t) . (6.14b)

where V&+ is the first-order correction to V given by an
equation analogous to (5.13). The wave equation involv-
ing the polarization wave,

(6 &eH ) V—+ = —6 P' (6.9)

(6 —&eH ) W+ =0 (6.10)

which is the equation for a forward-going electromagnet-
ic wave in a linear medium, while to first order we have

&eH' W+= &eH —V++6 V+ —6'P (6.1 1)

As discussed in Eq. (5.20), the contribution of the D i part
of V, reduces PN~ to P~, so that the right-hand side of
Eq. (6.11) can be written as

(60 —&eH0 )f H i (Do+&eBo)dr —60 PNi

=(60 &eHO )f H i"—(&eBO)dr Go P~ . —

(6.12a)

Using the definition of the effective SVA momentum (6.1)
and expressing Do in terms of W,+ and W, , Eq. (6.12a)
can be rewritten as

(Go —&eHO" )f Hi (v'eBO)dr Gsvz(W, + W—, ) .

(6.12b)

We note that the left-hand side of the first-order wave
equation (6.11) is a solution of the zeroth-order forward-
wave equation (6.10), which implies that the right-hand
side of Eq. (6.11) must also satisfy that zeroth-order
forward-wave equation. Thus the first-order correction
to the magnetic-field operator in Eq. (6.12b) serves essen-
tially to cancel the contribution of the backward-going
wave W, , so that the first-order wave equation (6.11)
reduces to

can then be treated perturbatively to give a hierarchy of
partial wave equations. Thus, to zeroth order in the opti-
cal nonlinearity, we have

(6.15a)

and

W, (z, t)=e "W, (z, t)=e "'W, (z, t) . (6.15b)

Equations (6.14) indicate that a short light pulse,
W;—(z, t), that propagates in a nonlinear medium, moves
in space under the linear momentum operator while at
the same time it undergoes a spatially dependent non-
linear distortion, expressed by the SVA momentum
operator.

We note that in the quantum-mechanical formulation
of nonlinear optics, because of the structure of the canon-
ical conjugate variables, it is more convenient to describe
the propagation of a polarization wave (characterized by
D and B) in the nonlinear medium, rather than of an elec-
tromagnetic wave (characterized by E and B) as is often
done in classical nonlinear optics. However, in most pro-
pagative experiments, light originates in free space,
traverses a nonlinear medium, and is subsequently detect-
ed in free space. In such a situation, the electric and
magnetic fields are continuous across the interface be-
tween two media, and are the quantities that are mea-
sured in free space. Thus, to describe a propagative ex-
periment, the first-order polarization wave (6.8) or (6.14)
should be expressed in terms of the E and 8 fields, so that
the continuity relation can be applied between the
different media to give nonlinear transmission and
reAection formulas analogous to those discussed by
Bloembergen and Pershan [19]. In this respect, the first-
order term V& plays an important role in that it incorpo-
rates the coupling to the wave going in the opposite
direction and thus gives rise to the nonlinear reAection.
In most practical situations, however, the modification of
the transmission and reflection formulas by the optical
nonlinearity can be neglected, and the propagating elec-
tromagnetic wave in the nonlinear medium is approxi-
mated by the first term in Eqs. (6.8) or (6.14) which
neglects all coupling to the opposite-going wave as

W, (z, t)=e "W+(z, t)=e

&eH W+= —6" W'
1S v SVA U

Similarly, for the backward-going wave we have

&eH is WU =Gsv~W,

(6.13a)

(6.13b)

Before closing this section we shall briefly discuss the
exPressions for the SVA momentum oPerator GsvA that
are explicitly calculated in Appendix B for different non-
linear media. To make contact with the language of clas-
sical nonlinear oPtics, we shall exPress GsvA in terms of
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the electric field, keeping in mind, ho~ever, that Gsv~ is
subject to the linear-medium commutator between Do
and Bo. In each medium, Gsv& can be written in a form
that is readily understood in terms of the well-known
manifestations of the optical nonlinearity of the medium.
For example, for the case of a medium with quadratic op-
tical nonlinearity, the quadratic SVA momentum opera-
tor [Eq. (817a)] can be written as

eEO+Bo

(6.16)

The integrand in the first term involves a free-field-like
momentum density B0E0, whose "coefficient" (i.e.,
y' 'E0/6) can be regarded as an effective susceptibility
that contributes to the refractive index. Thus the refrac-
tive index experienced by a pulse has a component that is
proportional to the applied electric field, a feature re-
ferred to classically as the electro-optic (Pockels) effect.

Similarly, the second term in Eq. (6.16) can be interpreted
as accounting for magneto-optic phenomena. Similarly,
in the Presence of a cubic nonlinearity GsvA [Eq. (B17b)]
can be written as

In the calculations developed in this paper, we do not
consider dispersion e6'ects explicitly. However, disper-
sion is introduced implicitly by assuming that the elec-
tromagnetic field excitations can be grouped into two
nonoverlapping narrow frequency bands, "pump" and
"signal, " coupled to each other by y' ', an assumption
that simulates the spectral se1ectivity imposed by the
phase-matching conditions of a birefringent crystal that
is tuned to optimize degenerate parametric amplification.
This assumption is used quite widely [11]at present. The
pump pulse is assumed to be very strong compared with
the parametric pulse and the distance of propagation in
the nonlinear crystal is assumed to be short enough so
that the pump is undepleted throughout the nonlinear
process, as is the case in most experiments. The results of
this section follow closely the results of the direct-space
approach of Refs. [11]and [12].

As discussed in Sec. VI, an electromagnetic wave 8'+
propagating along the positive z axis inside a nonlinear
medium over a distance z =vt acquires a spatia1 modula-
tion envelope due to the optical nonlinearity. The full
modulated wave 8'can be written in terms of the carrier
wave 8'as

W(z, t)=e ' "W(z, t)
E'Eo +B0

(6.17) GSVA )
W(z, t ),

n=0 n!
(7.1)

That is, the integrand of the third-order SVA momentum
operator consists of the product of two operators: the
linear energy density (eE0+B0)/2 and a free-field-like
momentum density BoEO. This form of the third-order
SVA momentum operator corresponds quite well to the
classical view for the treatment of the propagation of a
light pulse in a Kerr medium: The nonlinear refractive
index experienced by the pulse at each point (i.e., the
coe%cient in front of the product BoEO in the SVA
momentum operator) is proportional to the pulse intensi-
ty at that point (i.e., to its local energy density).

VII. AN EXAMPLE OF NONLINEAR PROPAGATION:
TRAVELING-WAVE PARAMETRIC

DOWN-CONVERSION

To illustrate the operatorial formalism for propagative
nonlinear-optical phenomena, we shall examine the treat-
ment of degenerate parametric down-conversion of a
short pump pulse propagating in a medium that exhibits
a second-order optical nonlinearity. This situation is
quite often realized in experiments [20—22] on traveling-
wave squeezed-light generation, whereby intense pulses
from a mode-locked laser traverse a nonlinear crystal in a
single-pass configuration to produce pulses of subhar-
monic (squeezed) light. For the case of a classical pump,
this problem was treated quite early through a modal
analysis by Tucker and Walls [10], and later by Lane
et al. [23]. More recently, to overcome the shortcomings
of the modal approach, Yurke et al. [11]and Caves and
Crouch [12] treated this problem by using spatial
difFerential equations on appropriately defined photon
creation and annihilation operators.

(2)
6(2) X B D2+B3

SVA (7.2)

Its commutator with the electric-field operator may thus
be written, after a little algebra, as

Do6 svA

(2) E2 +B2 /+X Gx
E 2

(2)
X ~x(B E )

(7.3a)

while its commutator with the magnetic field is

(2) Eo+8() /eGx B X Gx(B E ) ~(2)Hx

(7.3b)

so that in terms of the propagation of the electromagnetic
wave W Eqs. (7.3) can be combined to give

1 (2) (2)
GX ~ X OX~2 X HX~2

SVA 2 e 0 2 i/ 0 (7.4)

where we have omitted the subscript v and the super-
script + to simplify the notation. Thus, from a practical
viewpoint, the description of nonlinear propagation in-
volves essentia11y the calculation of multiple commuta-
tors of GsvA with the (linear) displacement and
magnetic-field operators of the carrier wave.

For a medium that exhibits a second-order nonlineari-
ty, the SVA momentum operator that governs the non-
linear spatial progression is calculated in Appendix 8 as
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The advantage of expressing the commutator of the SVA
momentum operator in terms of the temporal derivative
of the carrier wave is that the temporal evolution of the
8' is identical to that of the incident field and is thus
specified by the experimental conditions. In calculating
the temporal derivatives, it is convenient to separate the
field into its positive and negative frequency parts

m=2(E(+)+E( '), (7.5a)

m=2(E( '+E' '), (7.5b)

where the positive and negative frequencies refer to the
one-particle eigenvalues of the full Hamiltonian of the
field in the nonlinear medium. In our first-order pertur-
bative treatment, the correction to the eigenvalues is
small compared with the optical frequencies. Thus, when
dealing with the propagation of optical radiation, the ei-
genvalues (i.e., the optical frequencies) retain the same
sign and Eq. (6.15) may be written as

E'+'(z t)=e "E'+'(z t)=e "E'+'(z t)

with a similar equation holding for the negative-
frequency part.

We now introduce the two fields involved in paramet-
ric down-conversion: the pump field, whose components
oscillate at frequencies in the vicinity of the central pump
frequency ~p, and the signal field, that groups all com-
ponents that oscillate at approximately co& such that
~s=~p/2. The pump field consists of a short pulse
whose duration Tp is much longer than the optical period
2m/cop. This implies that the temporal derivatives of the
field operators can be calculated as expansions in the
small parameter 1,1=2~/( Tt, cot ) && 1. That is,

HxE'+'= —co E'+' —X ~ E'+'
0 P ~P P &~P P& (7.7a)

where the term of order X& is the derivative of the en-
velope function of the pulse, while the term of order A, , is
the derivative of the carrier wave of the pulse. Similarly,
for the negative-frequency part we have

where the factor of 2 is introduced so that the amplitude
of E' ' and E' ' used in Eq. (7.4) coincides with that of
the conventional positive- and negative-frequency
electric-field operators [24]. It arises because, in our
definition (4.6), 8'includes both the electric and magnetic
fields. %'e note that since 8'is defined as a zeroth-order
field operator, the positive and negative frequencies that
enter in the separation of Eq. (7.5) refer to the one-
particle eigenvalues of Ho. We can similarly separate the
modulated wave solution 8' into its positive- and
negative-frequency parts,

tion (7.4) for the signal field thus becomes

G x E(+)= ~E(+)E( )
SVA 5 + P (7.8a)

while for the negative-frequency component we have

G E( —) —~E( —)E(+ ) (7.8b)

where sc=y' '~s/&e. Similarly, for the pump field we
have

G x E(+ } E(+}E(+}
SVA P, S 5 (7.8c)

and

G sv AEp =vE& E& (7.8d)

&2(E(—)E(+))E(+ )
P P S (7.9a)

and, more generally, the even-order commutators are

(G x )2 E(+n)
( 2)n[(E( —

) )n(E(+ ) )n]E(+ )

while for the odd-order commutators we have

( G x )2 n+1 E(+ )
( 2)n[(E( —

) )n(E(+ ) )n]

(7.9b)

X (
—~E,(+))E(-), (7.9c)

where we have used normal ordering for the positive- and
negative-frequency components of the same central fre-
quency (cop). We note that the factor inside the square
brackets in the 2n and (2n +1-)-order commutator is re-
lated to the equal-time normally ordered correlation
function g'"' for the pump field, familiar from the theory
of photon coincidences and photon-counting statistics
[24]. This shows that the quantum statistics of the pump
field conditions the propagation of the parametric signal
inside the medium.

Equations (7.9) permit us to express formally the non-
linear spatial progression equation (7.1) as

Since the momentum commutator is related to the spatial
derivative by a Heisenberg-like equation (3.3), Eqs. (7.8)
have the same form as the familiar classical first-order
differential equations that describe the spatial progression
of the field in a quadratic medium, within the SVA ap-
proximation [18].

In calculating the multiple commutators of GSVA, we
note that, for a strong undepleted pump and a weak sig-
nal field, the multiple commutators should be calculated
exactly in the pump field operators, but only up to second
order in the signal field operators. Thus, within the un-
depleted pump approximation, we have

G sv AG sv AE~ = —~Ep G svAEs
x x (+) (+) x

Ho Ep —epEP +XicopEpi (7.7b)

Similar equations can also be derived for the other
positive- and negative-frequency operators. Usually, the
bandwidth of the light pulses is of the same order (or
even smaller) as the gain bandwidth of the parametric
process. Thus, in the calculation of the SVA momentum
commutator (7.4) we only need to consider the temporal
derivative of the field operators up to order A, (, '. Equa-

tzGsvA )Es+ '(z, t ) = g, Es(+) (z, t )
n=0 nI

=cosh~[)rz +It, (z, t ) ]Es+'(z, t )

E,'+'(z, t )+i sinh&[~zQ zI(z, t)]
QIp(z, t )

xE,'-'(z, t ), (7.10a)
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where

I~(z, t)=EP '(z, t)EP+'(z, t) (7.10b)

from z =0 to L and generates a signal pulse in the course
of its propagation. At the point z (z)0), the resulting
state of the field (pump plus signal) may be written as

is essentially the "intensity" operator for the pump field,
and cosh& and sinh& are normally ordered operator func-
tions: when they or their products are expanded in a
power series, the positive- and negative-frequency opera-
tors must be ordered as in Eq. (7.9).

We are now in a position to describe a traveling-wave
experiment of degenerate parametric down-conversion.
In such an experiment, a pump pulse, expressed by the
state lP(z, t) &, traverses a nonlinear crystal that extends

lP+S(z, t)&=e ' lP(z, t)& . (7.11)

At the exit of the crystal, at z =L, a filter separates the
pump and signal pulses and the characteristics of the sig-
nal pulse may be determined by performing different
types of measurements, each expressed by the appropri-
ate correlation function. For example, a measurement of
the intensity profile of the signal pulse can be expressed
by the equal-time function

Is(t)=(P+S(L, t)lE~~ '(L, t)E~ '(L, t)lP+S(L, t)&

=(P(O, t') e e " Es '(L, t)Es+'(L, t)e " e lP(O, t')&, (7.12a)

where

t'=t L/u . — (7.12b)

The unitary operators that describe propagation, i.e., the
carrier-wave propagation operator exp( —iGoz) and the
nonlinear modulation operator exp( —iGsv&z), permit us

to relate the measurement of the signal field at the exit of
the crystal at (L, t ) to the characteristics of the incident
(pump) field at the entrance of the crystal, z =0, and at
the earlier time t'=t L/u. The —eff'ect of the nonlinear
envelope on the signal-field operators that describe the
measurement at z=L is given by an equation similar to
Eq. (7.10). Thus, introducing this expression into Eq.
(7.12), we can obtain an operatorial equation for the in-

tensity profile of the signal pulse, measured at the exit of
the crystal, in terms of the higher-order correlation func-
tions (or photon-coincidence rates) for the pump wave,
evaluated at the entrance of the crystal:

Is(t)=(P(0, t' l)si nh~[~ LQIp(0, t')]lP(O, t') &

X&OIE'+'E,' 'IO& . (7.13)

This equation can be calculated for any pump wave for
which the photon statistics and the temporal evolution
can be modeled at the entrance of the crystal by an
operatorial (nonclassical) expression. The same con-
siderations also hold for spectral measurements that are
described by the Fourier transform of the two-time corre-
lation function

g'"'=
&
P+Sl(E'-')"(E'+')" lP+S & (7.15)

A particularly simple situation occurs when the pump
field corresponds to a classical (coherent) state that
presents a nonzero expectation value for the electric field
operator Ep, such as a laser pulse. For a laser pulse that
has an amplitude profile Ap(t') at z=O, the nth-order
photon-coincidence rate is

g"'(t„t, )=(P+SlE' '(L, t, )E'+'(L, t, )lP+S &

(7.14)

or for the nth-order photon-coincidence rate for the sig-
nal pulse, which is given by an equation of the form

g'"'(t')=(P(O, t')l[E' '(O, t')]"[E'+'(O, t')]"lP(O, t') &
= A„'"(t') . (7.16)

Thus, according to Eq. (7.10), after the pump pulse traverses a length z in the nonlinear crystal, the signal field is
characterized by the operator

Ez+'(z, t)=[cosh[vzAp(t')]Es+'(O, t')+i sinh[IrzAP(t')]Es '(O, t')]e (7.17)

which is the operator corresponding to a short pulse of
squeezed light [11,12]. Introducing this expression into
Eq. (7.13), we obtain the intensity profile of the squeezed
signal pulse measured at the exit of the crystal (z =L ) as

Iz(L, t ) =sinh [JALAP(t L/u)] . —(7.18)

Thus the signal pulse shape is directly related to the
pump pulse profile, but this relationship changes in the
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1.0

-2 0
TINE (units of T )

P

FIG. 1. Solid line, temporal profile of the intensity of a para-
metric signal pulse, calculated for different values of the propa-
gation parameter e=xA~(0)z. Dashed line, intensity profile of
laser pulse. Intensity is normalized to I(0)=1 at the peak of
each curve. Time is in units of the half width at half maximum
of the laser pulse.

VIII. CONCLUSIONS

course of propagative parametric generation. The signal
pulse is amplified as it copropagates with the pump pulse
over a distance z: its peak intensity increases practically
exponentially as a function of z, while at the same time its
duration decreases. The shortening of the parametric sig-
nal pulse upon propagation is illustrated in Fig. 1, where
we have calculated the temporal profile of the intensity of
a short pulse of parametric light produced by the degen-
erate down-conversion of a short laser pulse of Gaussian
shape for different values of the propagation parameter
a=i~A&(0)z. Similarly, by calculating the Fourier trans-
form of the two-time first-order correlation function of
the signal pulse (7.14) it can be shown that the spectrum
of the signal pulse broadens as it propagates in the course
of its generation in the crystal.

We shall not pursue here any further the analysis of
traveling-wave down-conversion of a laser pulse, as our
purpose was only to illustrate that the direct-space
momentum-based approach to quantum optics readily
permits an analysis of temporal (or spectral) information
in traveling-wave experiments, as a function of spatial
progression of the electromagnetic wave.

electric- and magnetic-field operators in direct space. In
this way, it can provide a quantum-mechanical treatment
of the propagation of a short light pulse through a trans-
parent nonlinear medium. The direct-space formulation
of quantum optics uses the momentum operator of the
electromagnetic field for the calculation of the spatial
progression of light, in addition to the Hamiltonian that
describes the temporal evolution.

A key feature of the direct-space approach to quantum
optics is the derivation of the operatorial equivalent of
the Maxwell equations. These equations can be com-
bined into a single operatorial equation, analogous to the
electromagnetic wave equation of classical optics. The
operatorial wave equation provides a relationship be-
tween the Hamiltonian and momentum operators of the
field in a (linear or nonlinear) medium, and thus permits
us to describe the temporal evolution of a pulse in terms
of its progression through direct space, without a modal
analysis of the pulse.

Inside a nonlinear medium, the relative strength of the
linear and nonlinear polarizations permits us to adopt a
perturbative viewpoint and to consider the effects of the
nonlinearity as a slow modulation imprinted by the medi-
um on a fast varying carrier wave. The perturbative
analysis of the operatorial wave equation up to first order
yields the operatorial equivalent to the slowly-varying-
amplitude equation on which is based the theory of classi-
cal nonlinear optics. This equation permits the calcula-
tion of an effective nonlinear momentum operator which
can treat explicitly the spatial progression of the slow
modulation envelope imprinted by the nonlinear medium
on a propagating short light pulse.

Thus, the direct-space approach to quantum optics,
developed in this paper, can treat nonlinear traveling-
wave problems in which the quantum statistics of the
propagating electromagnetic wave are important, such as
the propagative parametric down-conversion of a short
light pulse, or the propagation of a pulse of nonclassical
light through a nonlinear medium.
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APPENDIX A: DERIVATION
OF THE OPERATORIAL MAXWELL EQUATIONS

The conventional theory of quantum optics deals with
the spatial progression of light in an effective nonlinear
medium through modal analysis, a relatively cumbersome
technique for describing the nonlinear propagation of
short pulses. In this paper we developed a reformulation
of the effective theory of quantum optics which does not
rely on a modal decomposition for the electromagnetic
field, but examines directly the variation of the local

[D (z, & ) ] B(z', r )= i 5'(z —z')— (A 1)

we can calculate the commutator of the Hamiltonian
(2.9) with the magnetic-field operator as

Using the equal-time commutator (2.13) between the
displacement and magnetic fields
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H B(z, t ) = g p'"' f dz'D "(z', t ) [ [D (z', t ) ] B(z, t ) I

= —
1 y p'"' f dz'D "(z', t)6'(z' z—)

[n) n=i g p'"'D "(z,t)=i E(z, t) . (A2)

Using the Heisenberg-like equation that involves the
momentum operator (3.3) Eq. (A2) may be rewritten as

el. In other words, within the effective theory any given
order of y'"' should not be renormalized by the effects of
the other orders.

Since the wave equation (Bl) is a relationship between
the temporal and spatial derivatives of P~, we shall seek
a partition of PNL (i.e., a linear combination of B(EO )

such that its commutator with the linear-medium Hamil-
tonian Ho gives an exact spatial differential. To calculate
this commutator, we write the operatorial Maxwell equa-
tions for a linear medium in the form

HxB GxE (A3) Ho Bo Go Eo &Eo (B2a)

Similarly, for the commutator of the Hamiltonian with
the displacement field we have

H D(z, t)= f dz'B(z', t)[[B(z',t)] D(z, t)J

= —i dz'B(z', t )5'(z' —z ) =i B(z, t ),= a
Z

(A4)

H Eo= —G B = —Bo
1 i

(B2b)

Ho (Bgo) =i(qB1( 'EOEO+ BQOE—O

'
)

where the prime denotes the spatial derivative, e.g. ,
E'=re/Bz, etc. The commutator of B(EO with the
linear-medium Hamiltonian Ho can then be calculated as

which, by use of Eq. (3.3), gives

Hxa G xB (A5)
B~

—1( Er +1 )I
p +1

Equations (A3) and (A5) are the operatorial equivalent of
the classical Maxwell equations (2.1).

APPENDIX B: THE OPERATORS
OF THE SLOWLY-VARYING-AMPLITUDE

APPROXIMATION

In this appendix we calculate the operators that enter
in the SVA treatment of the nonlinear wave equation,
that is, the operators introduced in Eqs. (5.8), (5.19), and
(6.1). We first calculate the wavelike part of the non-
linear polarization P~, and then obtain the stationary
part of the nonlinear interaction Hamiltonian H, z as well
as the effective SVA "momentum" operator GsvA. We
express all operators in terms of the "zeroth-order"
electric- and magnetic-field operators Eo and Bo which
follow the linear-medium wave equation.

As discussed in Sec. V, we seek to partition the nth-
order nonlinear polarization PNL =p Eo into two parts,
Pii, and (PNL P11,), by addin—g or subtracting terms of
the form BQO, such that one part (Pii ) is a solution of
the zeroth-order (linear) wave equation (5.19)

n/2 nr—2
—n+1 y n'

&
—mB2mEn —2m

0 (n —2m)!2m!
(B4a)

and thus corresponds to the sum of all products B(EO
that include all possible even powers of Bo. The factor
2 "+' is introduced for normalization and is equal to the
inverse of the total number of terms in the sum that com-
poses S„. With this normalization S„can be written as

S„=(W„+/2)" +( W„ /2)", (B4b)

where W,+ and W, are the forward and backward elec-
tromagnetic waves defined in Eqs. (4.6) and (4.8), respec-
tively. Its commutator with Ho can then be written as

(B5)

(B~+1 )ATE)
I

q+1
It is now relatively easy to calculate the linear combina-
tion of B(EO terms which upon commutation with Ho
gives an exact spatial differential. The linear combination
which has Eo as the first term is

(Go Go —
WHO Ho )P~=0, (B1)

where
with Ho and Go being the linear-medium Hamiltonian
and momentum operators, defined by Eqs. (5.2). Clearly,
this partition is not unique, since any term that satisfies
the zeroth-order wave equation (Bl) (for example, the
electric field Eo) can be added to Pii, and subtracted from

PNL —P~ to give a new partition. To make the partition
unique, we must add the requirement of "homogeneity, "
that is, that all terms added or subtracted must be of or-
der n in the field operators. Thus all terms should be of
the form Bg'0 with q+r=n This requ. irement arises
from the fact that the Lagrangian density (2.3) is an
effective theory that can be used exclusively at a tree lev-

n/2 —i nr
R =2 E 0

—mB2~ + $

(n —2m —1)!(2m + 1)!

X En 2m
0

=&a[( W,+ /2)" —( W, /2)" ]

Ho R„=GO S„=i(S„)'. (B7)

and thus consists of the sum of all products B(EO q with

all possible odd powers of Bo. It can be easily verified

that, in addition to Eq. (B5), R„and S„satisfy also
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We note that with this choice the truncation can be writ-
ten as

Eo=(8;+/2+ 8; /2)" —(Eo)tt,

=( W, /2)" +(W, /2)" (89)

Comparing Eqs. (85) and (87) with Eqs. (82), we note
that S„and R, transform into each other under the
Maxwell equations in the same way as the electric and
magnetic fields. Indeed, S1

=E0 and 8 1
=B0. Thus,

combining Eqs. (85) and (87) it can be shown that both
S„and R„satisfy the zeroth-order wave equation (81).
In principle, then, I'w should be expressed as a linear
combination of S, and 8, . However, since the overall
polarization is a product of E fields, we choose the linear
combination that itself behaves as an electric field, that is,

p(n) ~ (n

()En ) ~in)S

x(")
n+1 (814a)

because of the periodic boundary condition, which im-
poses that R„(—~ )=R„(~). It can be shown, similar-
ly that His commutes with G0. The same is true also for
any operator that can be expressed as an integral over all
space:

It is relatively straightforward to show that His com-
mutes with both Ho and Go, as required by Eqs. (5.8).
For H0 we have

(n)
H H = — — H S dz0 1S +1 0 n+1

( ) —f (R„+i)'dzn+1

and thus corresponds to eliminating from Pz„all terms
that couple opposite-going waves, as noted by Shen [18].
Thus the wavelike part of the second-order nonlinear po-
larization can be written according to Eq. (84) as

(n)
G~H = —+ G~S dz0 1S +1 0 n+1

~(n) ~(n)
i f (S„+,)'dz= — lS„+in+1 n+1

=0

(p(2)) ~(2) 1E2+ g21
W 2 0 2 0

while for the third-order term we have

(p(3)) ~(3) ) E3 + g2E3
W 4 0 4 0 0

(810a)

(810b)

(814b)

Gs'v~(«o) =
—,
' Go'Pw . (815)

because of the periodic boundary condition.
We may similarly calculate the effective SVA "momen-

tum" operator, defined by Eq. (6.1) as

We now look at the partition of the nonlinear interac-
tion Hamiltonian (5.5)

(n)
H'n' = — E"+'dr

n+1 (811)

(n)
H'n'= —— + S dr1S „+1

+1 (812)

so that for the case of a medium with quadratic non-
linearity we have

into a stationary and a nonstationary part, as discussed in
Eqs. (5.8). By adding and subtracting terms of the form
B0E0 with q +r =n + 1 for homogeneity, the stationary
part of the interaction Hamiltonian H1s can be written as

Using the partition of pNL that corresponds to Eqs. (88)
and (89), for the case of a medium with an nth-order non-
linearity, GsvA can be written as

(n)
G(n) Xsv~= +1 f~~ i«+n+1 (816)

as can be readily verified by introducing Eq. (816) into
Eq. (815) and using the explicit expressions for S„and
8„, (84) and (86), respectively. Clearly, Gsv)& given by
Eq. (816) commutes with both Ht3 and Go, as can be
shown in a way analogous to Eqs. (814).

For the particular case of a medium with a quadratic
nonlinearity, Eq. (816) gives

(2)
H(&) — X & E3 + B2~1S 3 4 0 4 0 0 (813a)

(2)
1G'' = BE+ BsvA 4 0 0 3 0 (817a)

while for a medium with a cubic nonlinearity we have

(3)H"'= —~ f -'E'+ a~22+ a4 dr . (813b)15 4 8 0 8 0
8 2 0 Gsv'A= &oEo+ &oEo «. —

8
(817b)

while for a medium with a cubic nonlinearity we have
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