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Amplitude equation for modulated Rayleigh-Benard convection
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Using a systematic perturbation expansion for slightly supercritical driving, the equation for the slow
spatiotemporal variation of the amplitude of convective rolls is derived when the temperatures of the
horizontal Quid boundaries are modulated harmonically in time. The modulation frequencies are con-
sidered to be large compared with the amplitude growth rate, but small enough to avoid the generation
of thermal Stokes layers. The marginally stable, time-dependent linear functions determining the fast
spatiotemporal periodic variations of the convective fields as well as all coefficients entering into the am-

plitude equation depend on the modulation and the Prandtl number. Analytic expressions for all these
quantities are given for small modulation amplitudes and idealized horizontal boundary conditions. The
time-dependent convective heat current is compared with previous results from few-mode Galerkin ap-
proximations.

PACS number(s): 47.25.Qv, 47.20.Ky, 47.20.Bp, 03.40.Gc

I. INTRODUCTION

The response of the fluid in the Rayleigh-Benard prob-
lem to a time-periodic modulation of the externally im-
posed temperature difFerence has recently been investigat-
ed theoretically and experimentally (see Refs. [1—15] and
works cited therein). Typical findings are the stabiliza-
tion of the conductive state by low-frequency modulation
with small modulation amplitude, the pattern competi-
tion between roll and hexagonal convective patterns, and
the modulation induced decrease of the initial slope of
the convective heat current for roll convection.

Theoretical work so far has used Galerkin decomposi-
tions of the convective fields into spatial normal modes,
thereby transforming the underlying hydrodynamic par-
tial difFerential equations into ordinary differential sys-
tems for the mode amplitudes [1,2,4—8, 10, 15]. Here we
present a natural extension of the nonlinear perturbation
method of Segel [16] and Newell and Whitehead [17] to
roll convection under time modulated Rayleigh numbers
to derive the amplitude equation for the slow spatiotem-
poral variation of the envelope of the convective roll
fields.

According to theoretical results [5,10,15] obtained for
laterally infinite layers a subcritical bifurcation to hexag-
onal patterns exists for time-dependent driving in addi-
tion to the supercritical bifurcation to roll patterns. The
pattern and stability competition between rolls and hexa-
gons was observed experimentally [14] in a cylindrical
cell. Additional experiments [11,18] showed that in cy-
lindrical cells with a side wall with thermal conductivity
different from the fluid the thermal mismatch between
the wall and the fluid generates for time-dependent heat-
ing horizontal currents [19,20] normal to the wall that in-
duce convective rolls oriented along the wall.

The experimental setup we have in mind is an annular
fluid layer heated from below that is confined between
two concentric cylinders of large radii with a radius ratio
close to 1 and a radial gap with a width of the order of

one to two times the height of the layer. Furthermore
the thermal conductivity of the cylindrical walls should
be close to that of the fluid to reduce the thermal
mismatch between fluid and walls and with it the modu-
lation induced radial heat currents normal to the walls.
Then (for modulation periods not much smaller than the
characteristic vertical thermal difFusion time and not too
large modulation amplitudes) we expect the convective
pattern to consist of radially oriented rolls, i.e., normal to
the walls. Due to the large radii they are practically
parallel to each other with a vertical cross section in the
middle of the gap that is similar to that in a pattern of
straight parallel rolls. Thus in such a setup one would
suppress hexagonal convection [5,10,14,15] as well as
vertical vorticity [21].

In this work we consider a vertical cross-section per-
pendicular to the roll axes through the fluid layer in the
idealized situation of straight, truly parallel rolls without
any field variation along the roll axes, i.e., a two-
dimensional system. Furthermore we impose for
mathematical convenience idealized free slip horizontal
boundary conditions at the top and bottom of the fluid
layer. The difference in the modulation induced effects
on roll convection between rigid and free slip horizontal
boundaries is well understood, at least within few-mode
Galerkin models [22].

We present a systematic nonlinear perturbation theory
of the hydrodynamic field equations using a Poincare-
Lindstedt technique combined with a multiple scale
analysis. That amounts to an expansion in powers of
(e —e, )'~, where e—e, is the appropriately reduced dis-
tance of the mean Rayleigh number from the critical one
for the onset of convection in the presence of temperature
modulation. We consider modulation frequencies that
are large compared with amplitude growth rates,
(c e)ir—

6—6, +(C07-,

where ~ is the characteristic time scale entering into the
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amplitude equation. On the other hand the modulation
period should not be very much smaller than the vertical
thermal diffusion time to avoid the "skin effect" of the
generation of a narrow thermal Stokes boundary layer
[4,9,12]. Note that this is not really a limitation on ex-
periments since the interesting modulation effects for
small amplitudes occur when the modulation period is of
the order of the thermal diffusion time. Also the condi-
tion (1.1) does not pose a problem for experiments —in
fact for the experimentally realized modulation frequen-
cies [6,8, 11,13,14] it is impossible not to fulfill (1.1) when
measuring close to the onset of convection. We should
like to stress again that we consider here the two time
scales r/(e —e, ) and 2irlco to be separated and not the
situation cur=@—e, . For the latter case Hall [23,24] has
derived an amplitude equation for modulated Taylor vor-
tex fiow, the form of which has also been used [7] in the
context of modulated convection.

Here we find to lowest order in the perturbation expan-
sion that, e.g. , the vertical velocity field has the form

w(x, z;t)= A(x, t)f, (x,z;t)+c.c.
Here

f, (x,z;t) =e ' &2si ( nor)f, (t)

(1.2)

(1.3)

is the marginal solution of the linearized equations at
threshold e=e, and f, (t) varies on the time scale of the
modulation. The complex amplitude A is the solution of
the Ginzburg-Landau amplitude equation

rd, A(x, t)= [( 8 +e—e, —g ~
A(x, t)~ ]A(x, t) . (1.4)

In contrast to f, (x,z;t) the amplitude A varies slowly,
i.e., on the scales w/(e —e, ) and g/(e —e, )'~ . All param-
eters k„e„w,g,g are functions of the modulation, in par-
ticular of the frequency and the modulation amplitude,
but otherwise the modulation operating on a time scale
that is fast relative to r/(e —e, ) does not enter into Eq.
(1.4) for the slowly varying amplitude.

As an aside we mention that the amplitude equation
for gravity modulation [25] has the same form with simi-
lar coefficients. However, gravity modulation is rather
dificult to be realized experimentally with sizable modu-
lation amplitudes. Hence, we do not address this case
here.

In Sec. II we define the problem on the basis of the
Oberbeck-Boussinesq equations. Since linear properties
play a key role in the investigation of weakly nonlinear
systems, we compile known linear results and complete
them by new ones. In Sec. III we derive the amplitude
equation and present the dependence of the coefficients
on frequency and modulation amplitudes. The applica-
tion of the amplitude equation to the determination of
the vertical convective heat current is presented in Sec.
IV. Appendixes A, B, and C contain details of the per-
turbation expansion.

II. TEMPERATURE MODUI. ATION

A. System

We investigate convection in the form of straight
parallel rolls in a laterally infinite horizontal Quid layer of

height d that is heated from below. We shall scale
lengths, times, temperatures, and pressures by d, d /it,
vx. /(ugd ), and pa /d, respectively. Here g is the gravi-
tational acceleration, p is the mean Quid density, a the
thermal expansion coe%cient, v the kinematic viscosity,
and ~ the thermal diffusivity.

The external driving force is modulated harmonically
in time by varying the temperatures of the lower and/or
the upper horizontal boundary

Ti(t) = T„+Ro [1+Eicos(cot )],
T„(t)= T„+Rob,„cos(cot —P) .

(2.1a)

(2.1b)

Then the Rayleigh number

R (t) = T, (t) —T„(t)=R,[1+6.cos(cot )] (2.2)

is modulated with relative amplitude 6 around its mean
Ro. Special cases are in-phase modulation (/ =0), includ-
ing bottom plate modulation (b.&=6„b,„=0); out-of-
phase modulation (P=~), including top plate modulation
(b, &=0, b,„=h) and modulation of both boundaries with
half amplitude (b,

&

= b,„=b, /2).
The system with Prandtl number o. =v/~ is described

by the nonlinear Oberbeck-Boussinesq equations

(8, +u B)u= BP+cr(8e—, +i) u),
(8, +u.B)8= udT„„d+—d 8,
a.u=o .

(2.3a)

(2.3b)

(2.3c)

Here the Cartesian components of the velocity field
u(x, t) are u, U, and w and the temperature
T(x, t)=T„„d(z,t)+8(x, t) is decomposed in terms of the
conduction field T„„d and the contribution 8 due to con-
vection. The pressure P also refers to convection. The
position vector x has components x,y, z. The conduction
profile T„„d(z,t) obeys the heat diffusion equation and
fulfills the boundary conditions (2.1). It contains a linear
term in z and a contribution describing damped thermal
waves which propagate into the Quid layer. Note that the
modulation induced z and t dependence of the vertical
temperature profile implies a (z, t)-dependent heat current
(A4) entering into (2.3b).

For low frequencies T„„d deviates only slightly from a
linear profile. But for high-frequency modulation the
heat waves enter only into a narrow thermal Stokes
boundary layer [4,9,12], thus causing additional exponen-
tial spatial behavior. This thermal skin effect restricts the
applicability of an approximation used by us (cf. below)
to low-frequency modulation.

We consider free slip, perfectly heat conducting hor-
izontal boundaries [22]:

m=0, m=0=0 at z=0, 1 . (2.4)

Furthermore, we restrict ourselves to convective solu-
tions in the form of straight parallel rolls with wave vec-

We consider here the relative amplitudes 6& and 6„ to be
related by

(2.1c)
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tor k=(k, 0,0) by setting V=0 and discarding any y
dependence of the fields. In this way we suppress the
vertical vorticity that was shown [21] to arise close to the
onset in laterally infinite layers between free-slip boun-
daries. Convective rolls in the annular experimental set-
up described in the introduction seem to come closest to
our idealized system. Their cross section at midgap in an
annulus with large cylinder radii is roughly like a cross
section of straight parallel rolls without y variation.

In the following we use the reduced distance

Roe= —1 (2.5)
R stat

C

of the mean Rayleigh number R0 from the threshold
R,""=27m /4 for the onset of convection in the absence
of modulation as a control parameter.

B. Linear convective properties

Venezian [1] found the threshold for the onset of con-
vection for small modulation amplitudes,

R, (b„co) —1=a,(h, co) =6'e,"'(ni)+8(b,"),
C

(2.6)

by looking for a marginal, i.e., periodic solution of the
linearized differential equations. Here and also in all oth-
er temporal mean values of the present paper solely even
orders in the modulation amplitude 6 appear because the
transformation b, ~—b, in the drive (2.2) adds only a
phase shift of ~.

Modulation typically causes a stabilization of the con-
ductive state. The effect is strongest for Prandtl numbers
o. =1 and for low frequencies co. However, for high fre-
quencies a weak destabilization is possible for appropriate
Prandtl numbers. Because of the vertical dependence of
the conductive heat current each mode sin(nmz) of the
vertical expansion of temperature and velocity yields an
additive contribution [1] e',„)(co) to the threshold shift in
Order A2:

(0)2= 3~'
C

(2.9b)

Also the Lorenz model of Ahlers, Hohenberg, and Lucke
[7] yields the result (2.9). We derive all following results
for low frequencies. Then the mathematical problem is
crucially simplified by retaining the first linear unstable
mode, sin(m. z), only.

Temperature modulation affects also the critical wave
number

k, (b, , )=k,' '[I+5. k,' '( )+6(b, )] (2.10)

(see Fig. 1). Although the shift of the critical wave num-
ber is about one order smaller than the threshold shift in
order 6, a consistent treatment has to include it.
Venezian [1] first mentioned the expansion of the critical
wave number, but he did not give its dependence on co

and a. because k,' '(co) does not enter into the threshold
shift. Later papers [5—8, 10,15] on modulated convection
used k,'.

' as the critical wave number instead of (2.10)
thus neglecting a small correction. We note that the
present derivation [25] of the amplitude equation in Sec.
III needs the correct form [(2.10) and (2.11)].

Furthermore, we get from linear analysis the curvature

g (h, n~) = ,'dke(k, b„co)—k(h, )
(2.12)

of the stability curve e(k, b„n~) at the critical point (see

of the convection pattern. In order 6 it is slightly shift-
ed down from the value k,' '=ir/&2 for stationary drive
by

2

k, (ni) = ——1 co 0
4 ~(0)4 ( + 1)4

2

1+ 1+
(~+1)'q,")4 (2m )

(2.11)

E',2)(~)= y e,'2)(~) .
n=1

(2.7)

We consider only low frequencies and experimentally
relevant Prandtl numbers

0.00

0(co + 20 for 0. 1 ~ o. 5 1,
0( co ~ 2m. for o' =6(10),

(2.8a)

(2.8b)

where the problems associated with the Stokes layer are
negligible. Then Venezian [1] finds that the threshold
shift e', '(co) in order b, is well approximated by the con-
tribution e,', )(n~) of the mode sin(rlz ):

e' '(co) =E' '(co)

1 g
2 (o+1)

u

-0.0 1

I

20
I

40

2

1+
(2~)'

(2.9a)

FIG. 1. The shift (2.11) of the critical wave number
k, i b, co) =kIO'[1+ 6,'k,' '{co)] in order h~ caused by temperature
modulation with amplitude 5 is shown as a function of the fre-

quency co for different Prandtl numbers o..
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g stat

+1— (1+e )C(r) f (r)=0.
/k C

Qc e

(2.14)

The external modulation enters via the projection of
T«„d(z, t) onto the n =1 mode,

Fig. 2). We discuss this quantity in Sec. III in the frame-
work of the amplitude equation. We summarize the
above results in Fig. 2. Temperature modulation typical-
ly induces an upward shift of the marginal stability curve.
Convection sets in with a slightly enlarged spatial period-
icity due to the lowering of the critical wave number.
The curvature g of the neutral curve is increased.

Moreover one finds [1,25] that the time dependence of
the critical velocity field at threshold is dominated in the
low-frequency range by the contribution of the sin(n. z)
mode~

w(x, t }=Af, (t)e ' v2 sin(m.z) +cc.+h. m. (2.13)

Contributions from higher modes (h.m. ) sin(nn. z)(n +2)
are negligible. The temporal variation f, (t;b„ro) of the
first growing n = 1 mode obeys the differential equation

1 2 o+I 1&
t t

cTqq tr qq

The frequency dependence of the matrix element [(2.15c}
and (A24)] and its appearance in the form

~
I (co)

~
in the

shifts, (2.9a) and (2.11), is due to the nonlinearity of the
conductive temperature profile. Further dependences on
co and o arise from the eigenvalues of the unmodulated
differential operator in Eq. (2.14). Those contributions
within linear theory which vanish for infinite Prandtl
number, e.g., the convective threshold shift e,', '(co), can
be traced back to the second-order time derivative in
(2.14). The presence of this term in (2.14) for finite
Prandtl numbers complicates the analysis. We mention
that the damped Mathieu equation (2.14) can be inter-
preted in terms of a parametrically modulated damped
oscillator. Then the stabilization of the basic state by
modulation is caused by inertia in the language of the os-
cillator [7,26].

It is convenient to normalize the time-periodic solution
f, (t;b„co) of the linear equation (2.14) such that its tem-
poral average is 1. We have evaluated f, with a straight-
forward but lengthy expansion in terms of the modula-
tion amplitude b, inclusively up to order b, (see Appen-
dix C). For briefness, we only give the first two terms,

f, (t;h, co)=1+, , sin(a)t )

C ( r; b, co ) = 1+b,c ( t; co ),
c(t;co)= —,'I (co)e '"'+c.c. ,

1(a))= 1

1 i co/( 2—n).
Here

q, (h, co) =(k, (h, co), o, n.},
q, (b., co) =k, (h, to)+m

=q' ' [1+5, —,
'k' '(cu)+8(b, )]

(2.15a)

(2.15b)

(2.15c)

(2.16a)

(2.16b)

cos(2cot )+8(b, ),1 3

4 cov'0'
(2.17a)

1/r' '=q' ' crl(o +1) . (2.17b)

Here a small quantity in the 5 and 6 terms as well as
slight phase shifts are neglected.

Figure 3 shows the full time dependence f, ( t ) obtained
by numerical integration of Eq. (2.14) for three combina-

c,(i),=0)
0.0 0.5

ut
2 7Y

1.0

k, ( h) k, (6=0)
k

FIG. 2. Schematic stability curve e(k, b, ) for temperature
modulation (the argument co is omitted) and for the stationary
case e(k, b =0) as a function of wave number k. Modulated
driving typically stabilizes the conductive state, decreases the
wave number of the convective pattern at onset, and increases
the curvature of the neutral curve at the critical point.

FIG. 3. One period of the critical time dependence f, (t;b, ,co)

of the vertical velocity field w due to the low-frequency mode
sin(mz) obtained by numerical integration of (2.14) for various
amplitudes 6 and frequencies cu. The Rayleigh number is
R(t)=R, (h, co)[1+icos(cot)] and the Prandtl number is o = l.
With increasing 6/(co~' ') the marginal response of the system
becomes more and more anharmonic. We use a normalization
such that the temporal average is identical to the unmodulated
case, (f, it;b„co)) =f, (b =0)=1 (arrow).
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tions of 6 and co at a Prandtl number o.= 1. The
response of the critical unstable mode is phase shifted by
about m/2 relative to the external cosine modulation
(2.2). In general, the anharmonicity of the time depen-
dence increases with growing 6/~: with increasing 6 the
drive reaches larger supercritical and subcritical values
while with decreasing cu the system is a longer time super-
critical and subcritical. Both e6ects increase the anhar-
moQ1clty. Only for

)
«1 (2.18)

can the higher harmonics be ignored. For fixed Prandtl
number o., this is realized either for weak modulation,
i.e., small 6, or by modulation with a moderately high
frequency in the range (2.8). Furthermore, the analytical
form (2.17a) for f, (t) shows that decreasing the modula-
tion frequency at fixed Prandtl number o has the same
eAect on the anharmonicity of the margina1 field response
f, (t) as increasing the diffusive relaxation rate 1/r' ~

(2.17b) at fixed co via increasing o. We checked that
analytical and numerical results agree in the validity
range of the expansion for small A.

III. DERIVATION OF THE AMPI. ITUDE EQUATION

~c='9~]+'9 ~2+ ' ' ' (3.1a)

To evaluate the convective fields and the convective
heat current a nonlinear analysis [16,17] is required to
determine the amplitude A in (1.2). This will be supplied
by the amplitude equation.

For slightly supercritical drive, i.e., e —e, «1, the
convective roll fields are small and grow continuously
with the distance e—e, from the critical point. This is
exploited within the framework of a Poincare-Lindstedt
expansion where the distance from threshold as well as
the fields are expanded in powers of a small parameter q.
The linear stability curve (Fig. 2) shows that above
threshold modes with wave numbers from a band around
the critical wave number k, can grow. The superposition
of the plane waves from this band produces a slow spatial
variation of an envelope. These linear unstable modes
grow initially with a rate —(e—e, )/r. If the latter is
small compared with the frequency of the modulation,
e —e, «co~, then the slow growth becomes independent
of the response to the periodic modulation. We take this
into account with the method of multiple scale analysis
by introducing slow length scales X, =q"x and slow time
scales T„=g"t in addition to the fast variations in x and
l'.

We combine the Poincare-Lindstedt expansion and the
multiple scale analysis,

Having evaluated the "coefficients" e„,u„,O„ the expan-
sion parameter il is then eliminated in (3.1). The logic is
to combine the functional dependence of (3.1a) and, say,
(3.1c) on il into the final desired form 8=8(e—e, ), for ex-
ample. In the present case of a roll pattern it turns out
(cf. further below) that the fields grow like (E E )'~ . We
consider the complex amplitude A of the convection rolls
as a function of the slow variables,

A(x, t)=il[A0(X, T)+rIA, (X, T)+ . ] . (3.3)

By inserting the Poincare-Lindstedt expansion and the
multiple scale analysis into the Oberbeck-Boussinesq
equations the nonlinear problem is decomposed in a se-
quence of linear equations with inhornogeneities depend-
ing in general nonlinearly on previous "coefficients. " We
thereby factorize the convection fields (3.lb) and (3.1c)
into a part reAecting the fast critical spatiotemporal
response and into a slowly varying amplitude. Integrals
over the rapidly varying functions enter into the solubili-
ty conditions, i.e., the amplitude equation. In Appendix
A we perform the calculation of the convective fields in
the first two g orders. Starting with the critical linear
solution, the same spatial normal modes are excited with
temperature modulation with moderately low frequency
as in the case of stationary heating, viz. , one linear mode
of the velocity field and two temperature modes, i.e., one
linear and one nonlinear mode. The temporally periodic
behavior of the slightly supercritical fields in order g fol-
lows from the periodic time dependence of the critical
mode of order g. These convective fields enter into the
Fredholm alternatives in order g and in order g . In-
tegrating over the fast variables x and t one guarantees
via solvability conditions the absence of secular growth.
That leads to partial differential equations in the slow
scales X and T. We need the variables X„X2 and T„T2
as well as the constants e, , ez.

For rolls the solvability condition in order g,
rdr Ao(X, T)=((V» +e, )AO(X, T), (3.4)

is linear in the amplitude Ao(X, T). Newell [27] and
Brand, I.omdahl, and Newell [28,29] determined for
time-independent drive relations between derivatives of
the linear growth exponent s(e, k ) of a wave train at the
stability curve e(k) and the linear coefficients of the am-
plitude equation. We generalize in Appendix B this
method of identification to the case of modulated driving.

The linear growth exponent s(e, k, A, co) (B12) deter-
mines the slow temporal variation of the amplitude of the
critical mode. In our case s vanishes at the convective
onset, i.e., it displays no imaginary part at threshold.
Also the group velocity vanishes at the critical point,

u(x, t)= [i)u( o, xXt, T) +r)u( ,xXt, T)+ . ], (3.1b)

(8xt)=q[ 8(0,xXt, T)+g8, (x,X, t, T)+ . ], (3.1c)
g= —iran k(se, kb. , co) =0 .

~c kc
(3.&)

X=[X„X2,. . . ], T=[T, , T2, . . . ] . (3.2)

denoting with X and T all slow length and time scales, re-
spectively, Then marginality entails via (3.4), as in the case of tem-

porally constant heating, that a finite amplitude Ao(X, T)
is independent of the slow scale T& =gt:
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a, A, (X,T)=0,
e)=0 .

(3.6)

(3.7)

To eliminate the slow auxiliary variables in favor of the
original x, t we multiply (3.8) with i) and use (3.1a), (3.3),
and (A10) and we obtain the amplitude equation

ra, A(x, t) = [g'a', +e—e, —g I A(x, t) I']A(x, t)

+6(e—e, ) (3.9)

for modulated convection. It is the generalization of the
Newell-Whitehead-Segel equation [16,17] in one spatial
dimension for externally modulated drive with small am-
plitude and low frequency. The amplitude equation of
Ginzburg-Landau —type describes the spatiotemporal dy-
namics of the slowly varying amplitude A (x, t) of the
convection rolls close to the critical point. It is exact at
threshold. The relaxation time r and the curvature g' of
the marginal curve in the critical point are results of
linear stability theory and enter into the amplitude equa-

Note that the above Fredholm alternative in order g,
Eq. (3.4), leads to two physical consequences. First, the
vanishing group velocity prevents variation of Ao on the
time scale T, . Secondly, the absence of a quadratic non-
linearity in order r), Eq. (3.4), enforces e) =0 so that the
amplitude of a roll pattern does not bifurcate linearly in
the distance e—e, from the critical point. This agrees
with previous results of Roppo, Davis, and Rosenblat [5]
and Ahlers, Hohenberg, and Liicke [7]. For hexagonal
(H) convection, on the other hand, Roppo, Davis, and
Rosenblat [5] and Hohenberg and Swift [10] found a
backwards bifurcation with a linear variation —Ie—e, I.
In view of their result we expect for hexagonal modes in
the g solvability condition the appearance of a quadratic
nonlinearity enforcing in b, a finite e)HWO.

For roll convection, the first nonlinear amplitude com-
bination arises in the g solvability condition

rdr, Ao(X, T) =[g'Vx, +e~ —gl AO(X, T)I']Ao(X, T) .

(3.8)

I&—&, —g' Q 1«~r, IQI «k, (3.10)

with regard to the temporal and spatial variations, re-
spectively.

The coefficient g of the cubic nonlinearity measures the
nonlinear coupling between the sin(2mz ) temperature
modes and the vertical velocity field [(A19a), (A20a),
(A30b), (A34), and (C4)]. The nontrivial constant solu-
tion

e'x+ 6(e—e, ) (3.11)

of the amplitude equation, where g is any real phase,
shows that the convection fields at threshold grow pro-
portional to (e—e, )' . Since g is positive, the amplitude
equation exhibits the supercritical bifurcation that is
characteristic for convection rolls.

The form of the amplitude equation for weak tempera-
ture modulation is the same as for unmodulated drive.
But in the modulated case, the coefficients r, g, and g be-
come functions of modulation amplitude and frequency:

r( 5, co ) =r' ) [ I + b, r' )( co ) +8( b, )],
g2(g ) g2(0)[ 1+g2g2(2)( )+g(g4) ]

g(b„co)=g( )[1+6.g' )(co)+8(b, )] .

(3.12a)

(3.12b)

(3.12c)

The nonlinear coefticient depends on the definition of the
amplitude A, and all three coefficients reAect the normal-
ization used in the amplitude equation [(1.4) and (3.9)].
For stationary heating, b, =0, one has [16,17]

2 o. +1
3'

g2(0) — (0)—8 2
32 g 32 (3.13)

The order tI), shifts are (cf. Appendix C)

tion via multiple scale analysis. Whereas the response of
the system to the externally modulated drive occurs on
the time scale 2m. /co, the amplitude A (x, t) of the convec-
tion rolls with wave number k =k, +Q varies on the
longer time scale r/Ie —e, —g' Q I [(A41) and (A42)].
Hence, the amplitude equation (3.9) is valid for

0r(2)(~)—
(o+1) 2

1+
(2~)

2

1+ (o+I) q' '

1 7 co1+
2

1+
o- 6q,

'2 (3.14a)

g2(2)( ~ )—
2 (o+1)

2

1+—' " +3
3 (o+1) q' '

CO

(~+1)'q,""
(3.14b)

1+ 1+
((r+I) q' ' (2' )

g(2)(~) —y(2)(~)+g(2)(~)

where

(3.14c)
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y(&)(~)—
~2

2 (o.+1)

(0)4', +
(c7+1) 3cr q' '

L
C

2

1+ 1+
( +1)2 (0)4 (2'�)

(3.15a)

5' '(co)=s' '(co)+2e,', '(cu),

0(&)( )—
(cT+ 1)

1 3 cu
1 ——

2 8 (0)40 ~e
2

(3.15b)

(3.15c)

In the above coeKcients we recognize the contribution
~I (co)~ of the matrix element I (co) (2.15c) with the fre-
quency dependence of the nonlinear vertical conductive
temperature profile. Furthermore the linear operator in
(2.14) generates more complicated cu, cT dependences in
(3.14) and (3.15). In addition into g' '(co) there enters the
time dependence B(t) of the sin(27rz) temperature mode,
given by (A35).

We show r' ', g
' ', and g ' ' as a function of frequency

for some Prandtl numbers in Figs. 4 and 5. The validity
is restricted by (2.8) to low frequencies. Temperature
modulation increases the relaxation time ~ as well as the
curvature g similarly to the low-frequency convective
threshold shift. We find g

' '(cu) = 'e&'(co) and, for
Prandtl numbers cr= 1, r' '(co)=e'„'(co). Thus, the effect
of modulation is biggest for Prandtl numbers o. = 1. Fig-
ure 5 shows that temperature modulation increases g and
thereby decreases the amplitude 2 (3.11) of convection
rolls. In the frequency range of Fig. 5 we can approxi-
mate

(3.16)

Note that one has to ensure b, g' '(co) ((1 to guarantee
the validity of the small 6 expansion.

IV. MODULATED CONVECTION

The amplitude equation yields the exact solution of the
convective fields at threshold. For detailed formulas we
refer to Appendix A. Here we first consider the vertical
velocity field for the nonlinear saturated periodic state

1/2

w(x, t)= i(k x+y)f, (t)e ' &2 sin(mz )

+c.c. +6(e—e, ) . (4. 1)

In Fig. 6 we show the time dependence of the mode am-
plitude [(e e) lg ]

' —f, ( t ) for a modulation that is

slightly supercritical and allows us to neglect higher-
order terms —(e—e, ). The function f, (t) is numerically
obtained, whereas e, and g are taken from our analytical
results. The linear time dependence f, (t) was discussed
already in Fig. 3. Concerning the nonlinear result, Fig. 6
reveals that modulation decreases the temporal average

0.10—
3

3 0.05-
CV

40—

3
20—

U)

0.00
0 10 20 0

0

FICx. 4. The shifts of the relaxation time ~( 5,co)
=r' '[1+5 ~' '(co)] (solid lines) and of g (b„co)=g ' '[1
+6 P '(co)] {dashed lines) of the amplitude equation in order

by temperature modulation with frequency co for various
Prandtl numbers.

FIG. 5. Frequency dependence of the nonlinear coefficient
g(b, co) =g' '[1+6 g' '(co)] of the amphtude equation in order

for various Prandtl numbers. With increasing frequency g
decreases and the convection amplitude increases.
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FIG. 6. One period of the amplitude of the vertical velocity
field (4.1) for a Rayleigh number R (t 1 /R,""= ( 1+e)[ 1

+b, cos(rot )] such that e is slightly above e, (h, ro) Th.e Prandtl
number used is o.=1. Horizontal lines denote the correspond-
ing temporal averages. Note the modulation induced decrease
of the mean intensity in comparison with the unmodulated in-
tensity (arrow).

=2(e e, )SZ(t)+8(e e—, ) ~2, — (4.3)

where S and the function Z(t) are explained further
below. The time-averaged convective current is indepen-
dent of z:

(j„„„(z,t))=(j„„„(t))=2(e—e, )S+8(6 p )' '.
(4.4)

The initial slope S (C6) follows from the nonlinear
coefficient g of the amplitude equation. In Appendix C
we evaluate the slope for small modulation amplitude 6
in the low-frequency regime,

S(~,~)=1—a'S'"(~)+0(a') . (4.5)

The second-order coefficient S' ' enters into the shift g' '

[(3.12c) and (3.14c)] and is given by (3.15b), (3.15c), and
(2.9). Since S' ' is positive for finite Prandtl number a
temperature modulation decreases the slope (see Fig. 7).
Hence, modulation suppresses the growth of the tem-
porally averaged convective heat current above thresh-

of the vertical velocity field w; low-frequency modulation
yields the biggest effect.

In the following we evaluate the laterally averaged re-
duced vertical convective heat current (cf. Appendix A):

j„„„(z,t)=, , (w( xt)8( xt) —B,O(x, t)) . (4.2)
1

C

This quantity, into which the amplitude A enters qua-
dratically (A45), is experimentally accessible [6,8,11,
13,14]. With the constant solution (3.11) of the ampli-
tude equation the convective heat current at the lower
plate (A44) —(A48) reads

j,.„„(t)=j„„„(z=0, r)

FIG. 7. The second-order coe%cient of the modulation in-
duced shift of the slope S(h, co) = 1 —6 S' '(co) of the temporal-
ly averaged convective heat current (j„„„(t)) [(3.15b), (3.15c),
and (2.9)] is shown vs modulation frequency for several Prandtl
numbers o..

old. For a modulation amplitude 6=0.5 we calculate the
shift b, S' '(co) =0.08 for low frequencies co and for
Prandtl numbers o = l. Our result (4.5) for the slope
agrees with the Lorenz model of Ahlers, Hohenberg, and
Liicke [7] for free slip boundary conditions. The modula-
tion induced reduction of the slope found in the experi-
ments of Niemela and Donnelly [13], i.e., a system with
rigid boundaries, is considerably larger.

The temporal variation of the convective heat current
is given by the function Z(t), which solves the equation

1
, t), +I Z(r)=

(2m )
, &, +1 f,'(r) /( f,'(r) ),20/

(4.6)

where the time dependence f, (t) of the vertical velocity
field w follows from Eq. (2.14). We have evaluated Z(t)
both analytically and numerically. The results agree in
the validity range 6 ~

—,'co~' ' of the analytical expansion
for small modulation amplitude b. For low frequencies
one finds approximately

Z(r) =f,'(r)/( f,'(r) ), (4.7)

which yields together with (2.17) directly the small b, be-
havior.

The full time-dependent convective heat current
j, (ot) is shown in Figs. 8 and 9 over one period for some
values of 6, co, and e at a fixed Prandtl number o. =1.
The results are based on a numerical evaluation of Eqs.
(2.14), (A35), and (A36) as well as the analytical formulas
(2.6), (2.9), (4.5), (3.15b), and (3.15c). We note that Eqs.
(A35) and (A36) together with (A47) are equivalent to Eq.
(4.6). The plots present the equilibrated state after the
transients have died out. The temporal behavior of j„„,
being roughly governed by f, (t) has some features in
common with the velocity field: the phase shift to the
externally modulated drive slightly above threshold is
around m/2, and the temporal mean is lowered by in-
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FIG. 8. The vertical convective heat current (4.3) is present-
ed over one period of the temperature modulation
R (t)/R,'"=(1+e')[1+ icos(cot )] for o.= l. Increasing the
modulation amplitude —more precisely the ratio 6/(co~' ')—
increases the "anharmonicity" of the current and decreases its
temporal average (4.4) (horizontal lines) relative to the unmodu-
lated case (arrow).

creasing A. Furthermore j„„,-f, (t) becomes more
"anharmonic" when the quotient 6/(corI ') is increased
(cf. Sec. II B), which can be done by changing 6, cu, or rr

Finally, we compare in Fig. 9 the result of the time-
dependent convective heat current given by the ampli-
tude equation with the prediction of the Lorenz model of
Ahlers, Hohenberg, and Lucke [6,7]. Close to the thresh-
old e, quantitative agreement of both methods is found
by analytical as well as numerical evaluation. The
present amplitude equation yields the exact result in the
limit e~e, for small 6 and m, and the Lorenz model
reproduces it with the exception of the slight 6, ~, and o.

dependence of the critical wave number of the convection
rolls which has not been included [6,7]. While the
correction to the critical wave number k,' ' induced by
modulation is needed to derive the amplitude equation,
the difference that results from discarding it is not recog-
nizable on the plots of the convective heat current in
Figs. 8 and 9. The amplitude equation as well as the
Lorenz model give the convective heat current correctly
only to first order in e—e, . The e range in which higher
orders in e—e, resulting from higher modes are negligi-
ble is not obvious. We found that for e —e, =O(10 )

the agreement between Lorenz model [6,7] and amplitude
equation is perfect [25] but already for e —e, =6( 10 )

there are deviations [Fig. 9(a)] that grow with increasing
supercritical driving as shown in Fig. 9(b) for
e —e, =8(0.1).

V. CGNCLUSIQN

0.02

0.00

OAO
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0.0 1.0

FIG. 9. Comparison of the convective current (4.3) resulting
from our amplitude equation approach (solid lines) with the re-
sult of the Lorenz model [6,7] (dashed lines) for diff'erent param-
eters e and 6 of the temperature modulation
R (r)/R,""=(I+e)[1+5, cos(cot )]. In each case co= 1 and
o.=1. In (a) for a=0.01 with the two different modulation am-
plitudes 6 shown we expect the convective heat current to be
quantitatively correct. Increasing e in (b) for fixed 6=0. 1

higher orders in the distance from threshold are no longer negli-
gible. Note the different ordinate scales in (a) and (b).

With a systematic perturbation theory of the hydro-
dynamic field equations we have derived an amplitude
equation to study the inAuence of harmonic temperature
modulation on the thermal instability in the Rayleigh-
Benard problem for stress-free boundary conditions.
This method determines the convection fields of a
straight roll pattern at threshold exactly.

Our results are restricted to modulation with
moderately low frequencies. This case is interesting be-
cause the effects of modulation are strongest if the period
of the drive is of the order of the vertical diffusion time.
On the other hand, the modulation period is short com-
pared to the amplitude growth time r/(e —e, ) so that
these two time scales are well separated.

Temperature modulation shifts the convective thresh-
old, the critical wave number, the curvature of the stabili-
ty curve in the critical point, the relaxation time of the
amplitude, and, via nonlinear interaction, the slope of the
convective heat current. The temporally periodic
response of the vertical velocity field and of the convec-
tive heat current is discussed.

The purpose of the present paper is motivated theoreti-
cally rather than experimentally. The main idea was to
develop an appropriate amplitude equation description
for the parametrically modulated Rayleigh-Benard prob-
lem when the pattern formation involves fast as well as
slow time scales being well separated. To elucidate the
method, we have used some idealizations and approxima-
tions to simplify the system under investigation. Howev-
er, we should like to note that the results of the ampli-
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tude equation agree with the Lorenz model of Ahlers,
Hohenberg, and Liicke [6—8] for free boundaries, and
also qualitatively with measurements [6,8, 13].

The following extensions, which are aimed at incor-
porating the experimental setup more quantitatively, are
partly applied in other theories and are able to improve
agreement with experiments. Rigid boundary conditions
[2,7,8, 10,15] complicate the vertical dependence of the
velocity field and inAuence both linear and nonlinear re-
sults in a quantitative manner. Side walls of the cell lead
to an imperfect bifurcation and force convection
[6—8, 11,13,18]. Deterministic and stochastic effects
[11,19] emerge during the pattern formation. Since ex-
periments [6,8, 11,13,14] often realize stronger supercriti-
cal drives and larger modulation amplitudes, it is ulti-
mately desirable to include higher orders in the perturba-
tion theory.

APPENDIX A: NONLINEAR PERTURBATION THEORY

Here we give formulas to clarify the perturbation pro-
cedure leading to the amplitude equation for the convec-
tive fields of a roll pattern.

1. System of equations

Eliminating the pressure from the momentum balance
(2.3a) and combining it with the heat balance (2.3b) we
transform the Oberbeck-Boussinesq equations into the
system

N= —a, [(u.a)8]+—(a, —a')e, ax Iax[(u a)u]J .1

Temperature modulation affects the heat balance [(2.3b)
and (Alb)], thus entering (Ala) also, via the z- and t
dependent vertical conductive heat current

J,.„,(z, t) = —a, T,.„,(z, t) =R,C(z, t)

with

C(z, t) =1+Ac(z, t),
bc(z, t) =

—,
' [b

&
"(z)—b, „:-(1—z )e'~]e '"'+c.c. , (A4c)

cos[&ico(1 z)—]z — l co
sin(V'iso)

It describes a wavelike profile and follows the external
drive with the same frequency co. To solve the system
(Al) —(A4), we expand the convection fields u=(u, O, w)
and 0 into normal modes. In bra and ket notation, which
we find advantageous for evaluating scalar products, we
use plane waves with wave number k

lk ) ikx

for the lateral expansion and trigonometric functions

S(n n ) ) = '& Zsi n(n mz )

for the vertical expansion. The above spatial variations
are combined in the form

Xw=X,
(a, a)H=—R C(z, t)w —(u a)9,
B.u=O .

The linear differential operator is defined by

X=(a, —a') —a, —a' a' —R,C(z, t)a.',1

and the convective nonlinearities read

(A lb)

(A 1c)

(A2)

Furthermore we express the real temporally periodic
functions of period 2~/co in terms of the Fourier series:

f(t) =
—,
' g f„e '""'+c.c. (A8)
p=p

To formulate mode projections and solvability conditions
and to calculate averages, we use the standard scalar
product for finite periodic functions V and 8':

( Vl 8') = lim f dx f dz lim f dt V*( tx)IV( tx) .
L 1 . $ T

L~oo 2L —L 0 T~oo 2T —T
(A9)

2. Perturbation expansion X g~ & T (A 1 1 )

The introduction of slow length and time scales in the
framework of the multiple scale analysis generates the ex-
pansion

Inserting the Poincare-Lindstedt expansion and the mul-
tiple scale analysis into (Ala) the successive orders in g
yield the equations

a. o.+qv +~'v +

8'g ~Bt +'QBT +'g BT +

(A10a)

(A10b)

LOWo =0

&owi+»wo =Xo

Lpwp +L ~w ~ +X2wp =X~

Here the linear operator L is decomposed into

(A12a)

(A12b)

(A12c)
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X=XO+i}X,+i}X2+

X,=(a, —a') —a, —a' a' —R,""(1+@,)C(z, t)a„',1

(A13)

(A14a)

z, = —a, — a aa, + (a, —a) —a, —a
2 0+1 2 2 2 1

8, —2B 8 28 V

—R,""C(z,t) [(1+e, )2a V +e,a„], (A14b)

2—a—
2 0

a+1 2 a'a„+2a. V a, +a' —'a', — +'2a. V a,
2 1 1 0 1 g 1 1

+ (a, —a ) —a, —a
1

0
+'

a, —2a' a' (v' +2a„v )— 3g2 4g2V2

R;"'C—(z, t)[(1+~,)(V' +2a.V )+~,2a. V +~,a„'],

and the related nonlinear inhomogeneities

N=rI (No+rlN, . . . )

I ead

N = —a„[(u .a)8 ]+—(a, —a )e, .a X [aX [(u .a)u ]],1

(A14c)

(A15)

(A16a)

N, = —a [( .a}8,+ OV» 8 +(u, .a)8 ]—2a„V [(,a)8, ]

+—(a, —a )e, (aX [aX[(u .a)u, +uoV uo+(u, .a)uo]+e„XV» [(uo a)uo]]

+e„XV [aX[(u a)uo]]}+—(az —2a V» )e, .aX jaX[(uo.a)uo]] .1
(A16b)

e and e, are unit vectors. We note that the arrangement
of the derivatives with respect to fast and slow variables
in the operators X& and X2, together with the ansatz of
convection rolls [(A19a), (A20a), (A30a), and (A31a)], al-
lows an identification of the linear coefficients r, g, and g
of the amplitude equation according to Eqs. (Cl) —(C3),
(CS), and (C7).

For a roll pattern under low-frequency modulation the
convective momentum transport drops out, and only the
contribution of the convective heat transfer (uo a)8i in
order i} survives in the nonlinear decomposition [(A15)
and (A16)], as in the case of stationary drive. The first
two i}orders of Eq. (A lb) for the temperature field read

wo(x, X, t, T) =wo(X, t, T)g(q, )+c.c. ,

8O(x, X, t, T) =8O(X, t, T)$(q, )+c.c. ,

(A19a)

(A19b)

w( oXt, T)= Ao(X, T)f,(t),
80(X, t, T)=Ho(X, T)y, (t) .

(A20a)

(A20b)

with uo following via incompressibility (Alga). The fast
time dependence of the critical functions and the slow
spatiotemporal variations of the amplitude are factorized:

(a, —a )8o=R,""(1+@,)C(z, t)wo,

(a, —a')8, +(a, —2a, v )8,

=R,""C(z,t)[(1+@,)w, +e,wo] —(uo a)80 .

(A17a)

(A17b)

The fast critical response f, (t) of the velocity field fol-
lows from Eq. (2.14), rewritten in the form

X,(a„t )f, (t) =0 (A21)

with the linear differential operator at threshold

The nonlinear behavior discussed in this work arises from
the term (uo a)80 in the heat balance in order i} (A17b).
The equation of continuity (Alc) is decomposed into

8 up=0,

8 u1+ Vg Qp =0
1

(Alga)

(A18b)

In order g the Oberbeck-Boussinesq equations are solved
by the critical fields for roll convection,

( oat ) = —q, (a, +q, ) —a, +q,

+k R""(1+@,)C(t),

2

y, (t)= —a, +q, f, (t)
C

(A22)

(A23)
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is the marginal temporal variation of the temperature
field. Here C(t) (2.15) is the relevant part of the time-
dependence of the conductive heat current (A4) as given
by the matrix element of C(z, t) between the first vertical
free slip mode

C(t) = ( S(~) l C(z, t)
l
S(~)), .

We also have to solve the adjoint equation

r,'w,' =o,

(A24)

(A25)

with the adjoint linear operator

r', =(a +a') —a, +a' a' —R'"(I+a )C(z, t)B'1

by

wo(x, t)=f, (t)$(q, ) .

(A26)

(A27)

Here Xo is defined by the scalar product (A9) with
respect to finite periodic functions whose z dependence is
expressed into normal modes S(nor) (A6).

3. Results in order g and g

Since To=0, the Fredholm alternative in order g is
linear in the fields:

~c

k,
f, (t)1P(t)= —8, +q,

C

2 —8, +q, h(t)
9'e 1

C

(A33)

is not needed in detail for results discussed here. The
operator X»(d„t) is introduced by Eq. (C7b).

The convective nonlinearity produces the cubic non-
linearity in the amplitude equation [(1.4) and (3.9)] and
enters into the convective heat current [(A45) and (A46)].
Its fast time dependence 8(t) is defined so that

8, 2(X, t, T)=lAO(X, T)l B(t) (A34)

8, ,(X, t, T)= A, (X, T)y, (t)+2ik, V» Ao(X, T)g(t),
(A31b)

consist of a homogeneous contribution A i(X, T) and an
inhomogeneity connected with V'» Ao(X, T) due to multi-

]

pie scale analysis. Apart from the response of the system
to the modulated drive with the fast time scale t, the field
structure of (A30) and (A31) corresponds to that of the
stationary problem. From the coupling of the external
modulation to the inhomogeneity only the solution h (t)
of the equation

X,(d„t }h (t) =q,""X»(B„t)f, (t)

has to be determined because it turns up in the curvature
(C3), while

(wool%, lw, ) =0 .

It is transformed into

(
—rBz. +(V» +e, )AO(X, T)=0,

(A28)

(A29)

and obeys the equation

1

, 0, +1 8(t) =JV(t),(2' )' (A35)

with the relaxation time r and the quantity g defined in
the Eqs. (Cl) and (C2), respectively, in terms of scalar
products of f, (t) and the adjoint f, (t) together with
the linear operators and functions [(C7a), (C7b), and
(C7d)] induced by multiple scale analysis. Our treatment
in Appendix B then shows the simplification of Eqs. (3.4)
and (A29) to (3.5)—(3.7).

Equations (A12b) and (A17b) in order il are solved by

To evaluate the nonlinear solvability condition in order
7j 7

( wo lX&W~ +X2WO X~ ) =0 (A37)

with an inhomogeneity
2

W(t)= f, (t)q, (t—)= —B, +2q, f, (t) . (A36)
1 1 ~ 1

2m k~ o.

w, ( x,X, t, T ) = w, (X, t, T )S(q, ) +c.c. ,

8, (x,X, t, T)=[8»(X,t, T)$(q, )+c.c. ]

—8, 2(X, t, T) —S(2~)

(A30a)

(A30b)

we collect the fields in order g and in order g . The non-
linearity arises from the contribution of the $(2') mode
of the temperature field to the expression (uo B)8, in
(A16b). One finds

rdr A, (X, T)+—[ —rBr +g V'»

and u i follows from u o and w
&

via incompressibility
(A18b}. The part varying with S(q, ) arises from the
linear terms in the differential equations. The convective
nonlinearity (uo B)8o of the heat balance equation (A17b)
contributes with the vertical dependence sin(2~z) to the
temperature field. In the linear portion the rapid tem-
poral variations and the slow dependences of space and
time,

(Xw, t, T)= A, (X, T)f, (t) 2ik, V» Ao(X, T)h (t—),
(A31a)

8 A, (X,T)=0 (A39)

so that Eq. (A38) reduces to (3.8). The relaxation time r,
the curvature g'~ of the stability curve, and the nonlinear
coefficient g are defined in (Cl), (C3), and (C4), respective-

+ e2 —g I Ao(X, T) I'] Ao(X, T) =0 .

(A38)

Since Ao is independent of T, according to (3.6), the am-
plitude A, (X, T) does not show secular growth if
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Eliminating the technical auxiliary variables from
(A19), (A20), (A30), (A31), and (A34), the convection
fields read

w(x, t)=S(q, )[f,(t) —h(t)2ik, B„]A(x, t)

+c.c. +6(e—e, ) (A40a)

ly. Their evaluation for weak modulation is provided by
Appendix C with a perturbation expansion in the modu-
lation amplitude h.

4. Convection fields

8(x, t)= IS(q, )[qr, (t)+g(t)2ik, B ]A(x, t)+c c. j.

—
i 2 (x, t) i 6(r) g(2m. )+6(e—e, )'i

(A40b)

Here A (x, t), being the solution of (3.9) with boundary
and initial conditions that are still to be specified, is of or-
der (e e, )' —with corrections 6(e—e, ): Consider for
the sake of simplicity, e.g. , the special case of a spatially
periodic solution,

3 (x, t)=
e —e, —g Q

~
A (r =0)~A(t);(g„+z)

I(e—e, —g Q )/g+~ A (t =0)~ [A (t) —l]j'~ (A41)

that relaxes globally with exponential time dependence J„„„(z,r)

A(t)=exp (e—e, —
g Q )—2 2 t

'T
(A42)

E E 1=2' 1+ sin (~z)B, il(t)+6(e p, )
3~—~

2~2

toward [(e—e,.
—

g Q )/g]'~ e'~"+z'. Here Q=k —k,
is the distance of the wave number k from the critical
value k, . For this solution the contributions 8 A(x, t)
and

~
A(x, t)~ in (A40) are of order e—e, . Thus, the fast

temporal response of iU, O (A40) is dominated by f, (t) and

y, (t). In the middle of the band, i.e., for Q=0, the am-
plitude (A41) is spatially constant. For this case the
long-time behavior of the fields is given by

for k =k, . Introducing

Z(t) =&(&)/(&(t) ) (A47)

1

C

(A48)

and using the relation (C6) of the nonlinear coefficient g
of the amplitude equation to the slope S of the convective
heat current, the results (4.2) —(4.4) follow in the normali-
zation

(utx)
8( tx)

j. /2

e'z
( )

S(q)

+c.c.+6(e—e, ) .

5. Vertical heat current

(A43)

Analytical solutions of the time dependences f, (t), h (t),
8(t), and Z (t) involved in the convective fields and in the
convective heat current are given in (2.17) and in Appen-
dix C as far as they enter into the coefticients of the am-
plitude equation and into the slope of the convective heat
current.

Finally, we compile the formulas for the laterally aver-
aged vertical convective heat current

J„„„(z,t) = ( w(x, r )T(x, t ) —B,O(x, t ) ) (A44)

For the fields (A40) and (A41) the conductive part of the
temperature field drops out, and using (A35) and (A36)
we get

J„„„(,t)=2 ~&(t)~ 1+ Sl '( )a, a(t)1

2~2

+6(e ~, )' (A45)

with
~
A(t)~ denoting the absolute square of (A41). In

the equilibrated state one finds the z-dependent current

L ( d„r;e(k), k )F(t;k ) =0 (B1)

at the stability threshold e(k) =e(k, b, , co), with the opera-
tor

APPENDIX 8: EXTENSION OF THE METHOD
OF NEWELL et al. [27—29] TO MODULATED HEATING

In this appendix we present an additional linear theory
[30] for e slightly above the convective threshold e(k) It.
allows us to identify the quantities r, g, and g entering
the solvability conditions with derivatives of the linear
growth rate s(e, k), on the one hand, and with matrix ele-
ments of linear operators between marginal linear period-
ic functions, on the other hand.

First, the marginal periodic state function
F(t;k)=F(t;k, b, , ro) of the S(q) mode (A7) of the verti-
cal velocity field w solves the equation
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q =k+m
+k 8""(I+e)C(t),

E(d„t;e,k)= q—(d, +q ) —8, +q1

(82a)

(82b)

LT(d, ; k ) =
T

1 2 2 O+1
C

kL,(t;k)=,
,

C(t) .
k (0)2

(8 1 lb)

resulting from linear field equations. We note that the
Eqs. (2.14), (A21), and (A22) represent (Bl) and (82) at
the critical point

Solving the quadratic equation [(810) and (Bl la)] for the
characteristic growth exponent s(e, k) of the amplitude
of the S(q) mode we obtain

s(e, k, h, co) = —sz-(k, b, , co)+ [ [E e(k—, b, , co)]s,(k, b, , co)

k=k, , e(k, )=e, . (83) +s,'(k, ~,~)I'" .
Thus, the critical time dependence f,(t) is given by the
marginal function for k =k„

f,(t)=F(t;k, ),
and the critical linear operator (A22) is related with (82a)
by

Xo(r}„t)=E(B„t;e„k,) . (85)

ft(t)=Ft(t;k, ) . (86)

Then, we consider the exponential growth behavior of the
amplitude

A(t;e, k)= Ae"""
of the S(q) mode described by s(e, k)=s(e, k, b„co).
From our linear equation

Furthermore, the function Ft(t;k)=F (t;k, bto) obeys
Eqs. (Bl) and (82), replacing 8, by —B„so that

In this expression there enter besides the stability curve
e(k, b„co) also the temporal averages

(0)6

s (k)= —,'o, (F'(t;k)lL (a, ;k)lF(t;k) &,
q2 sF k

(813a)
(0)6

s,(k)=~ ', — „(F'(t;k)lr.,(t;k)lF(t;k)&,
q2 sF k

(813b)

sz(k) = (Ft(t;k ) lF(t;k ) & (813c)

over marginal stable time-periodic functions, where we
have omitted the arguments 6 and m again. Next we
consider the total derivatives of the matrix element (89)
of the linear operator L(s(e, k)+r}„t;e,k), (82a), be-
tween the marginal functions Ft(t; k ) and F(t;k), with
respect to e and k,

O=L(B„t;e,k)[A (t;e, k )F(t;k)]
= A(t;e, k)E(s(e, k)+B„t;E,k)F(t;k)

L(s(e, k ),e, k ) =0,

L(s(e, k ), e, k ) =0,

(814a)

(814b)

the solubility condition requires the disappearance of the
time average

L (s(G, k ),e, k )= (F (t;k )lf (s(e', k )

+a„t;~,k)lF(t;k) & =0,

d L(s(e, k ), e, k) =0,
dk

(814c)

and the total differential of the neutral state equation
(81),

[L(B„t;e(k),k)F(t;k)]=0 . (815)

L(s(e, k), e, k)

=(F (t;k)lL(B„t;s(&,k), E, k)lF(t;k) & =0,
with

2

L(c}„t;s(e,k ), e, k ) = — s (e, k )

(810)

q,' '
I s(e, k )Lz—(Bt'k )

—[e—e( k)]L,( t; k)J,

(8 1 la)

which determines the linear growth exponent s(e, k ). Us-
ing (Bl) and (82), we simplify (89) to the expression

Equations (814) and (815) are exploited at the critical
point (83) in particular. There, the above total deriva-
tives involve partial derivatives of the linear differential
operator L(s(e, k)+B„t;e,k), (82a), relative to s, e, and
k, derivatives of the growth exponent s(e, k ), as well as k
derivatives of F(t;k) and F (t;k), all taken at the
minimum of the stability curve (83). Furthermore we
need the relation

d„F(t;k ) =2k, h(t)
C

between the k derivative of the marginal time dependence
F(t;k) at the critical point and the temporal variation
h (t) of the vertical velocity field io in order il [(A31a),
(A32), and (C10)].
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Then, with this method we identify the relations be-
tween the characteristic exponent (812) and the linear
coefficients r, g, and g (Cl) —(C3), of the solvability con-
ditions in order g and in order g, thus, of the amplitude
equation [(1.4) and (3.9)]: the relaxation time

proportional to the vanishing group velocity, the curva-
ture

1

t3p(&, k ) c„k,

of the amplitude, the quantity

(817)
+(f, (t)l4k,'X (B„t)lh(t))] (C3)

of the stability curve in the critical point, and the non-
linear coefficient

i rB—„s(e,k ) p, k

and the coefficient

(818)

(C4)

r ,'t3„—s(e—,k )
c kc

(819) with the normalization by

It turns out that in our case no group velocity arises from
the growth exponent (812):

c)ks(e, k) =0 .e, k
(820)

+(k —k, )'-,'a'„]s(~,k ) +e(~—~, )'"
c' c

(821)

of the growth exponent (812) close to the critical point
with the initial behavior (A42) of a time-dependent solu-
tion of the amplitude equation

Hence, the term g of (3.4) and (A29) vanishes leading to
(3.5) and (C2), so that the amplitude Ao(X, T) does not
vary on the time scale T, = rtt (3.6), and the parameter e,
of the Poincare-Lindstedt expansion drops out (3.7).
Moreover, (819) is reduced to the curvature of the stabili-
ty curve at the critical point (2.12).

Finally, we mention that the comparison of the Taylor
expansion

E = (f, (t)l&,(t)lf, (t) & (C5)

The slope S of the convective heat current and the non-
linear coefficient g of the amplitude equation are related
by

(&(t) &

g stat gc

(f, (t)lc(t)l f, (t) )

(f,'(t)lz(t)lf, (t)) ' (C6)

(C7a)

where we make use of (A47). The above scalar products
arise after integrating the fast spatial coordinates x and z
away so that the evaluation of averages on the time scale
t remains. Whereas the linear coefficients r, g, and g are
given by matrix elements of critical operators between
critical fields, the nonlinear coefficient g and the slope S
result from the coupling of the S(2m ) mode of the tem-
perature field to the vertical velocity field. Therefore, g
and S are generated by temporal averages over these
modes. In the definitions of the coefficients of the ampli-
tude equation we introduce the following linear operators
at the critical point e„k,:

T

1 2 2 cr+1+T( t ) to)6 tIc ~t + tIc
q

0' 0

s(e, k)=[@—e, —(k —k, ) g ]—+6(e e, )
i—22 1

(822)

shows the consistency of the expressions (817), (819), and
(820) directly.

APPENDIX C: COEFFICIENTS OF THE AMPLITUDE
EQUATION AND SLOPE OF THE CONVECTIVE

HEAT CURRENT: SMALL-h, EXPANSION
2(Bt)=

2

8,""(I+a, )C(t)
~c

1 2 ca+1
qc

(0)6 0 t qc

(C7b)

(C7c)

=—(f,t(t)l& (t), )lf, (t) & (Cl)

of the slowly varying amplitude, the term

g= —(f, (t) lX~(B„t) lf,(t) )2ik, =0 (C2)

In the solvability condition in order ri [(3.4) and (A29)]
and in order g [(3.8) and (A38)] leading to the amplitude
equation [(1.4) and (3.9)] the following coefficients appear:
the relaxation time

k,
X,(t)= „„C(t).

k (0)2 (Cjd)

The definitions (C1)—(C3) of the linear coefficients r, g,
and g are consistent with (817)—(819) and (2.12) ob-
tained by an argumentation starting from the linear
growth rate (812). Since /=0, we outline in the follow-
ing the evaluation of r, g', g, and S.

To this end we solve the differential equations govern-
ing the temporal response of the low-frequency modes of
the vertical velocity field m and of the temperature field 0,



AMPLITUDE EQUATION FOR MODULATED RAYLEIGH-BENARI 5001

i.e., we seek the periodic solutions f, (t), f, (t), h(t), and
8(t) of (A21), (A22), (A25) —(A27), (A32), and (A35). For
weak modulation we expand into powers of the modula-
tion amplitude h. Then the critical time dependence
f,(t) of the velocity field w reads

f, (t; b, ) =1+bf"'(t)+b, 'f "'(t)+ i(.'f "'(t)+8(h'),
(C8)

where

The second-order coefficient 80( ' is given in (3.15a). Fur-
ther coefficients of f,(t) and Z(t) are calculated in Ref.
[25] to discuss the time dependence with higher accuracy
including order 6 .

We decompose the scalar products contained in r, g,
g, and S by

(f, (t)l& ((},) f, (t) )

f(1)(t) ) f (1)e —icoi+c c

f(2)(t) (f(2)e —2icui+

f(3)(t) (f(3) —3icui+ ) f (3)e —irui+c
2

e

(C9a)

(C9b)

(C9c)

1+6 E +—k' '
1

so that (f'")(t))=0. The expansion of the adjoint func-
tion f, (t) is analogous. The function h (t) in the form

h (t h)=ah"'(t)+b, h' '(t)+6 h' '(t)+8(b ), (f, (t)l& (c},)lf, (t))

(C15a)

(C10) k
[I+6, (E,+ —', k,' '+ 3r' 'E2)+—8(b, )],

with h ' "(t), h' '(t), and h' '(t) similar to (C9), is an effect
of modulation —h(b, =0)=0. Finally, we need the ex-
pansion of 8(t) in the nonlinear part of the temperature
field 0, (f,'. (t) & (&„t)lh(t))

(C15b)

a(t;6)=a' '[1+ha"'(t) +b, 8' '(t)

+6 '8'"(t)+ 8(h )],
with 6'"(t) and 8' '(t) as (C9a) and (C9c) and

(Cl 1)
E —8k"' +8(S')

(0)2k (0)2 3 gVc c

(C15c)
~ stat

l c(0)—
(o)2
c

y(2)(t) —) y(2)+ ( y(2)e 2icui+c —
co

(C12a)

(C12b)

(f, (t) l&,(t) l f, (t) )

k

k (0)2„'„&f,'(t) lc(t) lf, (t) & (C15cl)

The time dependence Z(t) of the convective heat current
(4.3) follows then from (A47) and shows the form (C8)
and (C9). The functions f, (t), f, (t), h (t), B(t), and Z(t)
display a superposition of basic and higher harmonics of
the external drive. The following first-order coefficients
depending on the frequency co enter into the 6 shifts of
the coefficients r, g, and g of the amplitude equation and
of the slope S of the convective heat current:

k, [1+6 (E, —2e' ')+8(b,")]
C

= I+~'(E —2~"'+ 2k "')+8(~')

(f, (t) &(t)lf, (t))
=19' '[1+6,'(19'"+E,+S"')+8(h }],

(C15e)

(C15f}

(C15g)
f())—

~(&)f—
J' ]

i I (co)

d'or( ' p(co)

i I (co)
cor( ' p*(co)

(C13a)
(f, (t)lZ(t) f, (t)) =I+6, (E, +s( ))+8(b, ), (C15h)

where we identify the time averages

h (i) 2i o. I (co ) 1

co o+1 P(co) 2P(co)

(() (() 2i b(co)I (co)
cor' ' P(co)d(co)

where 1 (co) is defined in Eq. (2.15c) and

(oy ' ( )=
(0)z(~+ 1 )~(0)2 '

2 (0)2

l 6)
d(co) = 1—

(2'�)'

(C13c)

(C13cl)

(C14)

E)= (f '" (t)
lf"'(t)),

E,= &f""(t)l~, lf'"(t) &,
—e"'= (f" (t)lc(t) ) = (c(t)l f"'(t) ),

(C16a)

(C16b)

(C16c)

(C16cl)

(C16e)

(C16f)
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over functions of first order in 6 so that only E&, E2, E4,
and s' ' remain to be calculated. With (3.12) and (4.5) we
find the b, =0 results (3.13) and the b, shifts [(3.14) and
(3.15)] of the coe%cients of the amplitude equation and of

the slope of the convective heat current induced by the
modulation. These shifts r' '(co), g

' '(co), g' '(ni), and
S' '(co) are discussed in Secs. III and IV and illustrated in
Figs. 4, 5, and 7.
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