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Following a recent work [Sevryuk and Lahiri, Phys. Lett. A 154, 104 (1991)], we study the bifurcation
of four-dimensional reversible maps in which the eigenvalues of the Jacobian of the map at a symmetric
fixed point move off the unit circle along a pair of conjugate rays as some parameter € crosses a threshold
value. We construct a perturbation scheme to show that, depending on a control parameter ¥, the bifur-
cation can be either “normal” or “inverted” in nature. In the former case, two one-parameter families of
elliptic invariant curves passing arbitrarily close to the fixed point (which coexist with Kolmogorov-
Arnold-Moser tori) merge together and move away from the fixed point. In the latter case, the families
of elliptic invariant curves meet a family of hyperbolic invariant curves. As € is varied, all these invari-
ant curves shrink to the fixed point and are annihilated. The problem of determining whether an invari-
ant curve is elliptic or hyperbolic is related to a tight-binding model on a linear quasiperiodic chain fa-
miliar in solid-state theory. Numerical evidence confirming these results is presented. A few areas for

further study are indicated.

PACS number(s): 05.45.+b

I. INTRODUCTION

Much is known by now about the phase-space struc-
tures around fixed points of area-preserving maps in two
dimensions [1]. By contrast, four-dimensional (4D)
volume-preserving maps are not well understood. Unlike
the 2D case, a 4D volume-preserving map is not, in gen-
eral, symplectic (i.e., not derivable in terms of a generat-
ing function) and one needs to distinguish between classes
of maps forming a sort of spectrum, starting with reversi-
ble maps at one end and terminating with symplectic
ones at the other. Reversible maps constitute the least
restrictive class in this spectrum, possessing at the same
time the interesting property that in the vicinity of sym-
metric (see below) invariant sets, they behave locally like
symplectic maps [2] (though in other regions of phase
space they can display dissipative behavior as well [3]).

Several studies on 4D reversible and symplectic maps
[4] indicate numerous novelties compared to 2D ones, the
oldest and most well-known example being, of course,
Arnold diffusion [5]. In this paper we shall be concerned,
in particular, with an interesting bifurcation
phenomenon, to which attention has only recently been
drawn [6] (see also an earlier work by Lahiri and Ghoshal
[7D. This bifurcation involves a 1:1 resonance near a
symmetric elliptic fixed point of a 4D reversible map, in
the vicinity of which families of closed invariant curves
make their appearance, constituting a special class of in-
variant sets immersed in families of Kolmogorov-
Arnold-Moser (KAM) surfaces which are in general 2-
tori. Analogous bifurcation phenomena are well known
in Hamiltonian flows (the ‘“Hamiltonian Hopf” bifurca-
tion [8] and in flows generated by reversible vector
fields—“reversible Hopf” [2,9]). In the following we
present a perturbation scheme for order-by-order calcula-
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tion of invariant curves (without addressing the small
denominator problem involved in the convergence of the
perturbation series) and, with reference to this perturba-
tion scheme, present numerical results concerning the
phase-space structure, confirming the picture outlined in
Ref. [6] by way of a conjecture.

In Sec. II below we introduce notations and summarize
the contents of Ref. [6]. The perturbative scheme for the
calculation of invariant curves is presented in Sec. III
where we relate its principal results with the conjecture
presented in Ref. [6]. Section IV contains the results of
numerical computations confirming the picture of bifur-
cation that emerges from Secs. II and III. Section V is de-
voted to discussions and concluding remarks.

II. INVARIANT CURVES AROUND SYMMETRIC
FIXED POINTS IN 4D REVERSIBLE MAPS

A map A is said to be reversible [10] if it satisfies
AG A =G for some involution G (GG=1), termed as the
reversing involution for 4. A well-known example is the
class of 2m-dimensional de Vogelaere maps [11]

R'=W(R)—S, (1a)
S'=R (1b)

A:

where R and S are m-dimensional vectors and W is a
vector-valued function. These are reversible with respect
to the involution

R'=S, (2a)
S’=R . (2b)

G:

In the following we set m =2 and express the map in the
more convenient twice iterated form
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R,+1—2R,tR,_=f(R,) 3)
in terms of successive iterates of a 2D vector
X
R =["
" Yn

and a vector-valued function f. Setting S,=R, _, and
W(R)=f(R)+2R, we get (1a) and (1b) from (3). Rever-
sible mappings arise in numerous physical and mathemat-
ical contexts [12].

A fixed point of a reversible map which is simultane-
ously a fixed point of its reversing involution is termed as
a symmetric fixed point of 4. The eigenvalues of the
Jacobian matrix of the map at a fixed point will be termed
multipliers at that point. The multipliers at a symmetric
fixed point of a reversible map come in reciprocal pairs
[2] (A;,A7 1A A5 ), etc.)—the so-called reflexive proper-
ty. The de Vogelaere map (3) is characterized by the spe-
cial property that all its fixed points are symmetric.

Because of the special symmetry possessed by a reversi-
ble map, its phase space around a symmetric fixed point
may contain a Cantor family of invariant curves in accor-
dance with the following proposition.

Let a 2N-dimensional reversible map A possess, at a
symmetric fixed point O, a pair of multipliers exp(Li¢)
on the unit circle (the remaining 2N —2 multipliers may
also be of modulus unity). Then under certain genericity
(nondegeneracy and nonresonance) assumptions (which
we omit) the map A4 near O admits a one-parameter Can-
tor family of closed invariant curves. On approaching O,
the rotation numbers of these curves tend to ¢ /27 [13].

This proposition can be generalized [13] to the effect
that for m pairs of multipliers on the unit circle [the
remaining (N —m) pairs may also be of modulus unity]
the map A possesses near O an m-parameter family of in-
variant m tori on which A4 induces quasiperiodic motion.
Applying the above results to the case of a symmetric el-
liptic fixed point O of a 4D reversible map A (for which
there are two pairs of multipliers both on the unit circle)
we are led to the existence of two one-parameter Cantor
families of invariant curves immersed in a two-parameter
Cantor family of 2 tori. The question we now address is,
what happens to the families of invariant curves near a
1:1 resonance of the fixed point? More precisely, let 4,
depend smoothly on a parameter € such that for € <0,
€=0, and € >0 the dispositions of multipliers in the com-
plex plane are as in Figs. 1(a)-1(c), respectively. This
constitutes an alternative generic route through which
the fixed point becomes hyperbolic, compared to the oth-
er known cases where a pair of multipliers move off the
unit circle at —1 or +1. The bifurcation depicted in
Figs. 1(a)-1(c) is obviously ruled out in 2D maps. Our
main concern here is to inquire into the nature of this bi-
furcation.

As already mentioned, corresponding bifurcation phe-
nomena in Hamiltonian and reversible vector fields are
well studied. By invoking a correspondence between re-
versible maps and fixed time flow maps of reversible vec-
tor fields, the answer to the above question was put for-
ward in Ref. [6] in the form of a conjecture which we re-
state here as follows.
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(a) (b) (c)

FIG. 1. Disposition of the multipliers at a symmetric fixed
point corresponding to (a) € <0, (b) €=0, and (c) €> 0.

Let the multipliers of 4, about O be of the form
exp(tid,), exp(tid,), with ¢, ,(€) given by

¢ ,=wtk(—e)/>+0(e) @)

where 0 <w <, k>0, and the functions O(¢) are real
valued for € <0. Thus at €é=0 there correspond a Jordan
block of order 2 corresponding to each of the eigenvalues
exp(tiw). Then the nature of bifurcation at €=0 of in-
variant curves around O is determined by a certain pa-
rameter ¥ that can be determined from A, (see Sec. III)
and may be summarized as follows.

(a) Let ¥y >0 (superthreshold or normal bifurcation).
Then there exist two one-parameter Cantor families of el-
liptic invariant curves near O for € <0 with rotation num-
ber u <¢,/2m and u > ¢, /2w, respectively. At e=0 these
merge into a single family of invariant curves passing ar-
bitrarily close to O. As € becomes positive the (merged)
family of invariant curves moves away from O.

(b) Next consider ¥ <0 (subthreshold or inverted bifur-
cation). In this case, for €<0, there exist two one-
parameter families of elliptic invariant curves, but now
with rotation numbers p satisfying ¢,/27 <p <¢,/27.
However, the situation here is slightly more involved.
There exist certain ¢, 5, ¢, <, <$; <@, such that the el-
liptic invariant curves mentioned above correspond to ro-
tation numbers @,/2Tm<u<¢,/27 and §,/2w
<p<¢;/27. In addition there exists a family of hyper-
bolic invariant curves with rotation numbers
#,/2m<u<¢,/2mw. All these invariant curves shrink to
O as €—0 and get annihilated at e=0 so that there exists
no invariant curve near O for € > 0.

We now present a perturbation scheme for order-by-
order construction of invariant curves and relate the re-
sults to the picture conjectured above.

III. PERTURBATIVE CONSTRUCTION
OF INVARIANT CURVES

We consider a class of maps given by Eq. (3) with

Xn

R =
Yn

n

It turns out that terms of degree three must be retained in
f(R,) to describe the bifurcation under consideration.
We choose for convenience a particularly simple form for
f such that (3) reduces to



S

X, 11— 2x,+tx, _=px,+y, , (5a)

Vo1~ Wnty,1=—ex,+py, taxl+Bx), (5b)

which expresses the 4D maps A4, in terms of two second-
order difference equations parametrized by p, «, B (in ad-
dition to €). The linear terms have been chosen such that
the Jacobian at origin O (which is a symmetric fixed point
and on which we shall henceforth concentrate our atten-
tion) has the required Jordan normal form. In addition,
the nonlinear terms have been so chosen that the map
can be expressed as a single fourth-order difference equa-
tion of sufficient simplicity

(X 42+ %, —2)=2(p +2)(x, 41+, ;)

+(p?+4p +6+e)x,=ax?+Bx> . (6)

This implies that trajectories of the map can be described
in terms of successive iterates of x, of a single coordinate.
It can be easily verified that, if p satisfies —4 <p <O the
multipliers of A, at the origin O for small |e| are ar-
ranged in the complex plane as in Figs. 1(a)-1(c) for
€ <0, e=0, and € > 0, respectively, and that, in particular,
for € <0 (subthreshold side of the bifurcation) the multi-

pliers are of the form exp(+i¢,), exp(+i¢,) with ¢, ,
given by Eq. (4) [14], where
w=cos " 1+p/2), (7a)
k=(2sinw)" ! . (7b)

The existence of an invariant curve with rotation number
p© is equivalent to the requirement that x, can be ex-
pressed as a Fourier series

x,=a+[bexpling)+c.c.]+[cexp(2ing)+c.c.]
+[d exp(3in¢d)+c.c.]+ - - - (8a)

where ¢=2mu. In the following we shall characterize the
members of the family of 1nvar1ant curves (wherever it
exists) in terms of a parameter ¢ such that ¢/27r denotes
the deviation of rotation number of the family measured
from w /27 [vide Eq. (7a)]. Consequently, our perturba-
tion scheme will include the small parameters € and ¢,
and is as follows.

We substitute (8a) into (6), equate coefficients of
exp(ing) (n=0,1,2,...) on both sides and try to solve
for the coefficients a,b,c, ..., seeking the solution for
each coefficient (say a) in the form of a series (a =3;4q;,
etc.) such that consecutive terms of the series are of suc-
cessively higher orders of smallness. A trivial solution
would, of course, be a =b =c = --- =0. But in certain
circumstances a second, b1furcatmg, solution (depending
parametrically on ¢) is found to exist. As an example re-

taining only the leading contributions (a,bq,c,) in a,b,¢

and ignoring the coefficients d onwards (which results in
a consistent approximation as may be verified from
below) we find

x, =~ay+2bycosnd—+2cycos2n (8b)
where

plag=2ab} , (8¢c)
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bol€e+4(cosp—cosw)?]=2alaphy+bocy)+3Bb3 ,

(8d)

co=ab3/[e+4(cos2¢—cosw)?] , (8e)
and

p=w+é . (8f)

So far as the invariant curve (rather than the actual tra-
jectory i.e., the successive iterates of x,, ) is concerned, the
phase of b, is redundant and we have chosen b, to be
real. As may be easily verified from (8c)—(8f), the non-
trivial solution for b, (existing under conditions to be
specified below) is given by

=%[e+(4 sin%w)$?] (9a)

corresponding values of a,,cy being obtained by substitu-
tion in Egs. (8c) and (8e), respectively, where

_2[142(p+3P] 5 4 9b
pip+ar P 0

and where we have assumed the nonresonance condition

(cos2w—cosw)? >>€

to hold (i.e., » should be sufficiently away from 27 /3)
since otherwise ¢y, would not be small compared to b,
causing the perturbation scheme to break down. Equa-
tions (9a) and (9b) provide us with surprisingly rich infor-
mation concerning the bifurcation, most of which is ob-
tained from the simple requirement that the right-hand
side of (9a) is to be positive for the invariant curve to ex-
ist.

Consider first the case y >0. Equation (9a) implies
that, for € <0, invariant curves exist for ¢ satisfying [vide
(7a) and (7b)] < —k (—e)'/?, k(—e)'/?< $, i.e., for ro-
tation number u precisely satlsfymg the COndlthIlS stated
in (a), Sec. II. We also note that in thls case b3 can be
made arbitrarily small by choosing ¢ close enough to
—k2e. At e=0 the upper and lower limits of the rotation
number for the two families coincide. For €>0 on the
other hand, we have a single family of invariant curves
corresponding to arbitrary (but small enough) values of ¢
and, for any given €, there is a minimum value of
boz(e/y)l/ 2, i.e., the family of invariant curves moves
away from O with increasing e.

Next we consider ¥ <0. Then (9a) shows that, for € >0
no nontrivial solution for b, exists while for € <0, there
again exists a family of invariant curves, but now with ¢
lying in the range —k(—e)'2<$<k(—e)'7?, ie., with
rotation numbers p satisfying precisely the condition
¢, /2w <pu<¢,/2m as conjectured in (b), Sec. II. We fur-
ther note that as e—0 from below, b,—0 for all & in the
above range, i.e., all the invariant curves shrink to O,
again verifying the conjecture presented in the preceding
sectlon Not all the invariant curves obtained by varying
¢ in the above range are, however, of the same nature. In
fact, they are demarcated into two families of elliptic and
another family of hyperbolic invariant curves. We shall
present below a rough estimate for the transition values
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(51,2) of $ marking the transition from elliptic to hyper-
bolic invariant curves, but before that several other ob-
servations are in order.

The results presented above have been obtained by ig-
noring the third and higher harmonics in the Fourier ex-
pansion of x, and even the coefficients of the lower har-
monics have been evaluated in the leading order only.
This defect can be removed, in principle, by calculating
terms up to any harmonics and any finite order, though
at the cost of rapidly escalating complexity of calculation.
Considerable simplification is achieved by taking a=0,
noting at the same time that the quadratic term (ax?) in
(5b) is not essential in characterizing the bifurcation.
Indeed, as we have seen, the nature of the bifurcation is
governed by the signature of y. As seen from (9b), we
cannot change the signature of y by taking f=0 and
changing a, while the reverse is certainly true. This is en-
tirely analogous to the situation obtaining in reversible
Hopf bifurcation for vector fields where the normal form
for the bifurcation does not contain quadratic terms [2,6].

With =0 in (5b) we can, with much greater ease, ex-
tend our calculations to include higher harmonics and up
to higher orders of smallness. Indeed, an exact result in
this case is that the coefficients of all even harmonics
exp(2ikn¢) (k=0,1,2,...) vanish, i.e., a=c= -+ =0
to all orders of smallness. As an example, ignoring the
fifth and higher harmonics in the expansion (8a) we find

x,~2(by+b,)cosnd+2d,cos3ngd (10a)

where we have retained the first nonleading contribution
in b and only the leading contribution in d (which may
easily be seen to be a consistent approximation) and
where

b2=(e+4sin’wd®) /38, (10b)
dy=PBb} /4(cos3w—cosw)? , (10c)
by=—1d, . (10d)

Equations (10a)-(10d) constitute an order of magnitude
refinement over (8b)—(8e), (9a), and (9b) in so far as /Ehe
computation of an invariant curve for given € and ¢ is
concerned. However, the expression (9b) for y is exact
(even for a¥0) since the bifurcation actually involves the
limit e—0. An alternative derivation for y leading to the
same result is to be found in Ref. [6].

The validity of the above perturbation scheme up to
any finite order is subject to nonresonance conditions, as
we have already seen in our leading-order calculations.
The choice =0 does away with the first nonresonant
condition (cos2w7cosw) but the next one, cos3w7cosw
is essential for the validity of (10a)-(10d) since otherwise
the third harmonic would compete with the first. In gen-
eral with a=0, the formal validity of the perturbation
series requires the nonresonant conditions

cos(2k +1)w7#cosw
with k=1,2,3,..., i.e.,

(11a)

w#%w (p <gq; p,q, positive integers) (11b)
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[recall that we have already required w to lie in the range
0 <w < 1r; notice also that w727 /3 is included in (11b)
though cos2w#cosw has been made redundant by the
choice a=0].

However, two questions remain even when the non-
resonant conditions are taken into consideration. The
first, of course, concerns the problem of small denomina-
tors. Even when w/# is irrational, an invariant curve
with irrational rotation number u for which the perturba-
tion series is formally defined may in fact be nonexistent
owing to the predominance of some sufficiently large har-
monics that vitiates the convergence of the series. In the
absence of a formal criterion of convergence we restate
the conjecture, put forward in Ref. [6] with a supporting
plausibility argument, that only the invariant curves with
“strongly irrational” [6] rotation numbers exist, the rota-
tion numbers having a Cantor-set-like structure on the
real line.

This brings up the second question, namely, that of the
nature of trajectories in the resonant gaps. This is anoth-
er area of the problem we leave unexplored in the present
paper, presenting in Sec. IV some preliminary numerical
evidence for island formation in low-order resonances. A
few more observations on the above two questions con-
cerning resonant gaps will be included in the concluding
section.

We now turn to the problem of estimating the values
(51,2) of ¢ marking the transition from elliptic to hyper-
bolic invariant curves on the subthreshold side (e <0) for
the inverted bifurcation (¥ <0). For this we again take
a=0 and ignore b,,d, in (10a)-(10d). Denoting the tra-
jectory (10a) by X,, we linearize (6) about this trajectory
by taking

Xn =fn+§n ’ (12a)

which gives
(Ent2tEn—2)—2(p +2)(E, 1 HE—1)
+(p?+4p +6+€—3Bx})E, =0 .
(12b)

Equation (12b) can be fruitfully discussed in terms of the
tight-binding model [15] (TBM) well-known in solid-state
theory. In the present paper we confine ourselves to a
rough estimate in which we replace 38%. by (a) its max-
imum value, namely, 128b3 [refer to Eq. (8b) in which we
put ap=cy =0 corresponding to a=0] and (b) its average
value, namely, 683b %. The condition for the invariant
curve being elliptic may be shown to reduce in the above
two cases [for each of which Eq. (12b) corresponds to a
linear chain with constant on-site potentials and second-
nearest-neighbor hopping] to

(a) $2>3e| /(4sinw)?
and
(b) $2>2|e| /(4sinw)?,

respectively. As seen in numerical experiments (see Sec.
1V), these two estimates do give us useful information
about the transition from elliptic to hyperbolic invariant
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curves in the case of the inverted bifurcation. More de-
tailed numerical work on (12b) treated as a tight-binding
model with quasiperiodic on-site potential is planned to
be reported in a forthcoming communication. We men-
tion here that all the principal features of the bifurcation
presented in Secs. II and III parallel closely the known
features in reversible Hopf and Hamiltonian Hopf bifur-
cations in vector fields [8,9].

IV. NUMERICAL EVIDENCE

All the results and conclusions of the preceding section
are completely borne out in numerical iterations of Eq.
(6). In each numerical experiment, €, p, a, and 8 were
given preassigned values (with € small, and p in the range
—4 <p <0) and iterations were performed for a series of
initial conditions. Each initial condition in the series
consisted of four successive values x f (j=1,2,3,4) chosen
suitably. The results of the iterations were plotted as a
two-dimensional projection of the 4D trajectories with
u,(=x,—x,_,) plotted against x,. In most of our ex-
periments we chose a=0. An initial set of iterations
were performed by referring to the leading order of per-
turbation results [Egs. (8b)-(9b)], and x; were taken as

[vide Eq. (7a)]
xj=2b0cos[j(a)+$)] ,
bo=|(e+4sin’wd?)/3B|'/?,

(13a)
(13b)

(j=1,2,3,4), where $ was given suitable values to
represent different initial conditions. For those values of
€, B, and $ for which the perturbation theory predicts the
existence of invariant curves, Eq. (13) corresponds to ini-
tial conditions chosen on the theoretically predicted
curve, and the validity of the theory requires that the
subsequent iterates do actually lie on the predicted curve.
In reality, however, this is expected to happen only when
the curve concerned is elliptic; for hyperbolic curves the
accumulating numerical errors in iteration would lead the
computed trajectory away from the curve. For values of
the parameters for which no invariant curve is predicted
in the perturbation theory we expect that trajectories
started from the initial conditions (13) may either blow
up or wind upon KAM 2 tori depending on cir-
cumstances (see below).

Actual trajectories in our experiments with initial con-
ditions given by (13) did indeed conform to the above ex-
pectations. However, the expected invariant curves were
found to have a slight spread owing to the fact that
(8b)—(8e), (9a), and (9b) do not constitute a good enough
approximation to the actual curves.

In the next set of experiments we chose x j (j=1,2,3,4)
as in (10a), with b, given by (13b) [for the sake of numeri-
cal iterations, we replaced sinzaxff2 by the more accurate
expression (cos¢ —cosw)?], dg,b;, as in (10c) and (10d),
and ¢=w+$. It was found that the spread of the invari-
ant curves mentioned above vanished abruptly and the ex-
pected invariant curves did appear as 1D objects in our
2D (u, versus x,) projections even up to more than 10’
iterations (all our numerics were performed in double
precision with an accuracy ~107!%). This observation
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showed that our next-to-leading-order calculations do
constitute a reasonably good approximation to study the
phase-space structure. We now exhibit a few computed
trajectories by way of illustration.

Figure 2(a) shows a typical set of invariant curves with
B>0, €>0 (normal bifurcation, superthreshold side)
which are found to exist for all sufficiently small $
Though the origin is a hyperbolic fixed point in this case,
KAM 2 tori are preserved in the phase space in regions
slightly away from the origin, and invariant curves are
sort of immersed in the 2 tori. Figure 2(b) shows the pro-
jection of three of the invariant curves of 2(a) together
with the projection of one such KAM torus. The initial
condition for the latter was chosen with x g (j=2,3,4) as
in (13a) and (13b) with a particular value of $, but with a
slightly shifted x .

Figure 3 shows a family of invariant curves on the sub-
threshold side in the normal bifurcation for a set of
values for § satisfying $ >k (—e)!’?2, together with the re-
sults of iterating with two other initial conditions satisfy-

(a)

0.1+

-0

-0.05 Xn 005

0.2

01

Un |-

-0+

-0.1 Xn 0.1

FIG. 2. (a) Projection [u,(=x,—x,_;) vs x,,] of a set of in-
variant curves on the superthreshold side in normal bifurcation,
€=0.001 with a=0, B=1 and rotation number
Ho=w/2m=(3.313579)"! corresponding to five values of &
equally spaced between 0.0005 and 0.0025. (b) The three inner-
most invariant curves of (a) immersed in a KAM torus, obtained
with slightly different initial conditions (see text).
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0.05

Un}

-0.05f

-0.05 Xn 0.05

FIG. 3. Invariant curves on the subthreshold side,
€= —0.001, for three values of $ between 0.02 and 0.03, other
parameters being the same as in Figs. 2(a) and 2(b). Also shown
are iterates for two other values of ¢ (0.010, 0.015) for which
there are no invariant curves and the trajectories open up into 2
tori.

]
(a)
0.04+ .
002+ .
Up | N
=002 .
-004f 4
-0.02 Xn 0.02
- : - : )
021 -
.
Unl Py B
{
-0.2 E
-02 -01 Xn 01

FIG. 4. (a) Elliptic invariant curves on the subthreshold side
of inverted bifurcation e= —0.001, B= —1, for three values of $
between 0.0010 and 0.0015; also shown is trajectory with
$=0.001 75, opening up into a torus. (b) A hyperbolic invariant
curve for e=—0.001, B=—1 for ¢ (=0.008) below the transi-
tion value (see text).
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ing || <k (—e)'/2. Our perturbation theory tells us that
no invariant curves are to exist in the latter case and we
indeed find the trajectories to open up into two KAM
tori. All the invariant curves shown in Figs. 2 and 3 are
elliptic.

Figure 4(a) illustrates a family of elliptic invariant
curves on the subthreshold side of the inverted bifurca-
tion (€ <0, B<0) obtained with a set of ¢ values satisfy-
ing |¢| <k (—e)”? together with a KAM torus obtained
with |¢| > k(—e)l”? for which the perturbation theory
tells us that no invariant curve is to exist. Figure 4(b), on
the other hand, provides evidence for a hyperbolic invari-
ant curve [with |$| < k(—e)!/?] where we notice that the
trajectory gradually deviates from some closed curve and
then moves off due to the unstable nature of the curve.
In all our iterations we found that there exists some é
such that the transitional values ( ¢1 ,) of ¢ mentioned in
(b), Sec. IT are given by ¢1 ,==*@, and #* is of the same
order of magnitude as the values estimated at the end of
Sec. II1.

All iterations on the superthreshold side (e >0) of the

(a)

Unl

-05 X 05

(b)

Unl

-1+ 4

FIG. 5. (a) Decay of a torus resulting in breakup into four is-
lands due to a large perturbation [€e=0.04, a=0, =0.25,
1o=1(4)"" corresponding to p = —2, x; (j=2,3,4) chosen as in
Egs. (13a) and (13b) with $=0.05 and x; shifted by 0.05]. (b)
One of the four islands of (a).
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inverted bifurcation resulted in the trajectories quickly
escaping away from the origin, showing that there exist
neither invariant curves nor KAM tori in the vicinity of

the fixed point.
Figure 5(a) illustrates the breakup of an invariant curve
at a resonance, namely, o=m/2 (p = —2) where a trajec-

tory initiated with x; (j=2,3,4) as in (13a) and (13b) but
with x, different is seen to result in a highly distorted
pattern with a 1:4 island structure. In Fig. 5(b) we show
one of the four islands separately by plotting every fourth
iterate and deleting the three succeeding ones. This
strong resonance effect is, however, restricted to a rather
narrow gap A¢=~0 (|e|'/?) away from which our pertur-
bation calculations are found to give remarkably good re-
sults.

V. CONCLUDING REMARKS

In summary, we have presented a perturbation scheme
for the order-by-order construction of invariant curves
near a “reversible Hopf” bifurcation in 4D maps, the re-
sults of which support the conjectures made in Ref. [6],
and have exhibited numerical evidence confirming these
results.

As already mentioned, we have not obtained criteria
for convergence of the perturbation series that can sup-
port the conjecture that the invariant curves are organ-
ized in Cantor families. Indeed, as mentioned in Sec. II,
the family of maps represented by (3) appears to be inter-
mediate between reversible and symplectic ones in that
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the linearization about any fixed point leads to multipliers
occurring in reciprocal pairs (since all fixed points are
symmetric ones) and so the invariant curves may possibly
be organized more densely than a Cantor family with
reference to rotation numbers. However, the fact that
resonant gaps exist almost everywhere is empirically ob-
served in numerical experiments where even a slight vari-
ation in ¢ results in a reversal of the direction in which
an invariant curve is described during iteration.

Another area left unexplored in the present paper is
that of direct confirmation of the existence of hyperbolic
invariant curves for €<0, ¥ <0 and that of accurately
identifying the transitional values @, , [see (b), Sec. II].
Work in this regard is in progress along the line indicated
in Ref. [6] and that mentioned at the end of the preceding
section.

Finally, we mention that on the superthreshold side of
the inverted bifurcation (€> 0, ¥ <0) the phenomenon of
intermittency is likely to be encountered. Intermittency
in 2D reversible maps has been studied in Refs. [16],
where exact solutions to the relevant RG equations have
been obtained. Intermittency in the present case is ex-
pected to present new features. Results of investigations
are planned to be reported in a future paper.
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