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Cooper pairing in a soluble one-dimensional many-fermion model
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The dynamical similarities between the three-dimensional (3D) electron Quid "jellium" model and the
exactly soluble 1D fermion Auid with attractive 5-function pairwise potentials motivates solving the
Cooper-pair problem in this model for all couplings and/or densities. This is accomplished exactly in

graphical form. For weak coupling, the essential singularity characteristic of standard 3D low-

temperature superconductivity reemerges, and for infinite coupling, BCS theory reproduces the exact
ground-state system energy.

PACS number(s): 05.30.Fk, 74.20.Fg, 74.90.+n

I. INTRODUCTION

An assembly of N ( ))1) fermions of mass m enclosed
in a one-dimensional "box" of length L and interacting
via an attractive pairwise 5-function potential is de-
scribed by the Hamiltonian

g2 N d2 N—vo g 5(x; —xj), Uo)0. (1)

Given the number density p—=N/L, introducing the di-
mensionless coordinates x =px; leads to the dimension-
less Hamiltonian

ums (both He and He), nuclear and neutron matter,
etc. , where the pair interaction V( r) is short ranged at-
tractive and repulsive at even shorter range. Figure 1,
top panel, schematically displays the ground-state energy
per particle of liquid He or nuclear matter as a function
of number density p.

If the N-fermion system (1) consists of v distinct
species (e.g. , v=2 if we have up and down spins possible),
the Bethe ansatz [1] shows that (2) has only one bound
N-particle state which at zero density has a total energy
given [2] simply by

Eo(N) = —Eo(v),
d2 NH'—:mH/A p = —

—,
' g —

A, g 5(x,' —x'),
dxi

(2) where [N/v] is the nearest integer, from below, to N/v,
and

where A, =muo/fi p is a dimensionless coupling parame-
ter, and is clearly the only variable upon which the
ground-state properties of (2) can depend. Its range of
variation is 0 & A, ( ~, and the N-fermion system is seen
to have the peculiar dynamics whereby high- (low-) parti-
cle density is associated with weak (strong) interaction.
This is in marked contrast with many familiar three-
dimensional (3D) quantum Auids such as the liquid heli-

Eo(v):—mv o v( v —1)/—24fi (4a)

= —mvo/4A' =ED(2) for v=2 . (4b)

Equation (4b) gives the well-known elementary 1D
quantum-mechanical result for the (sole) ground-state en-

ergy of two particles of mass m (or one of reduced mass
m/2) interacting with an attractive 5-function potential
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of strength Uo. The result (4a) is also the exact total
ground-state energy of v ( ))1) bosons [3] with the Ham-
iltonian (1) where N is replaced by v. The energy per bo-
son is not extensive since it clearly collapses to —~ in
the thermodynamic limit v~ ~. Such a collapse is
prevented if the particles are fermions by the Pauli prin-
ciple. In 3D, however, this is not the case. A deter-
minant of plane waves (with wave vectors k occupying a

Fermi sphere in k space of radius kF ) used as a trial func-
tion readily gives for high density an expectation value of
(1) in 3D of the form N ( A ip —

—,
'
pun ), with A, a posi-

tive constant. This being a rigorous upper bound for the
exact Eo(N) (with p in fact a variational parameter that
can be taken arbitrarily large) proves that the exact
ground-state total energy collapses to negative infinity.

The N-fermion wave function is given [4] by

F(1,2, . . . , v)F(v+1, v+2, . . . , 2v) F(N+1 —v, . . . , N —1,N) A

where

F(1,2, . . . , v)—:g exp
P71UO

, ix, —x, i

Xg( (T ), (72, . . . , CT ) (6)

is totally antisymmetric, since y is an antisymmetric
"spin" function, and the space part is symmetric, each
under the exchange of two-particle indices from the set
1 ~i,j ~v.

Thus, for p=O (I,= ae ) the system consists of an ideal
gas of noninteracting [Nlv] "cluster" (composite) parti-
cles, each made up of v distinct fermion species. It is re-
markable that shortly before the word "soliton" was
coined [5], McGuire showed [2] by using S-matrix tech-
niques that the clusters of (6) have all the properties of
solitons, namely, when they are scattered one from
another their constituent fermions may rearrange, and
the clusters will be phase shifted, but otherwise they
emerge intact (i.e., there is no cluster "breakup" in col-
lisions).

On the other hand, for A. =O (p= ac ) the ground-state
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FIG. 1. Comparison of ground-state energy-per-particle vs
density curves, or equations of state (EOS), for a typical 3D Fer-
mi liquid (like He with two species, or nuclear matter with
four) and for the 1D many-fermion fluid defined by Eq. {1)or
{2).

FIG. 2. Exact ground-state EOS {in dimensionless units as
defined in Appendix A) of (1) or (2), full thick curve, obtained
numerically. Dashed curves refer to rigorous lower bounds [7];
thin full curves to the Hartree-Fock approximation [4,7], and to
the Thomas-Fermi calculation discussed in Appendix B.
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N-particle energy of (1) is just the ideal Fermi-gas limit TABLE II. Same as Table I but for "electrons. "

Eo(N) =N — =N
2 p3 2m 6m~

(7)
v (No. of species) Fermions

electrons dimers

Clusters

Cooper pairs (k—+0)

since the "Fermi sea" consists of the interval in 1D k
space given by [ —k~, kF ], and consequently

p =N /L =vkF I~. Figure 1, bottom panel, schematically
summarizes the expected energy per particle as function
of density for the 1D model Hamiltonian (1). The vari-
able A, '=A p/mvo has a very simple, direct physical

meaning: it is proportional to the ratio of the pair diame-
ter [which from (6) is just 4' /mvo] to the average inter-
particle separation.

For 0(A, ( Oo (implying ~ )p) 0) the ground-state
energy as a function of k can be obtained numerically by
solving the so-called Csaudin equations [6] (see Appendix
A). In Fig. 2 we plot the resulting dimensionless equation
of state (EOS) for the model (thick curve) for v=2
species. In Fig. 2 4=m = 1 was used so that the abscissa
refers to A, '. Dashed curves are rigorous lamer bounds
[7] to the energies of both the exact problem [Schrodinger
equation (1)] and to the lowest possible energy state in the
Hartree-Fock (HF) approximation. The three full thin
curves refer to various mean-field results, both Thomas
Fermi (see Appendix B) and Hartree Fock, the latter dis-
cussed in more detail in Refs. [4] and [7]. Note that both
rigorous bounds, the upper (HF) and the lower one, are
unsatisfactorily far from the exact (full thick curve) EOS
for intermediate values of k. Before proceeding, we men-
tion several known applications of the model.

A. Hadronic and nuclear physics

Table I summarizes some recent applications of the 1D
N-fermion model to hadronic [8] and nuclear [9] physics.
If the N-fermion system is composed of two species,
quark and antiquark (q, q) when A, =O (p= ao ), the result-
ing A, = ~ (p=O) clusters are mesons. If we begin with
three-color quarks (q„q2, q3) as ideal fermion-gas con-
stituents, color-neutral baryons form as coupling in-
creases. Finally, if the fermion gas is noninteracting nu-
clear matter with protons and neutrons, each of spin up
or down, then v=4 and alpha particles are formed as the
coupling is increased. The usefulness of the 1D N-
ferrnion model in hadronic physics is clear from the fact
that quark interactions also share with the soluble model
the same peculiar dyanmics, namely, they interact weakly
(strongly) when close together (far apart).

B. Solid-state physics

The simplest model of a 3D metal is the familiar jelli-
um model [10] consisting of N-point electrons moving in

TABLE I. Constituent fermions (A, =O; v0=0 and/or p= ~ )

and v-fermion clusters (A, =oo, vo= ~ and/or p=0) of the
many-body Hamiltonian (1) or (2).

Local pairs (k—+~ )

(bipolarons)

a rigid uniform background of positive charge. The
Hamiltonian is

g2
V; + Vbb+ Vb, + V„,

2m
(8)

g2 N N

V, + g'e Ir,
2m

i&j

(9)

where the prime on the second summation means that a
Fourier decomposition of the interaction e /r;J, the
zero-momentum component [the (diverging) volume in-
tegral of the pair interaction] is put equal to zero. Let-
ting p

=N/L:—[(—4m/3)ro], we can define dimension-
less coordinates (x',y', z')=(xlro, y/ro, z/ro) and
r'= r lro to int—roduce the dimensionless Hamiltonian

E N
H'= aor, H/e =———,

' g V, +r, g' r,'.
i=1 ' i=1

(10)

where ao= fi /me is —the Bohr radius, and the dimen-
sionless coupling parameter r, is defined as

1/3
4m0~r, =ro/ao=me /A p (11)( OO

Evidently, we again encounter the same dynamics as in
the 1D N-fermion model, namely, strong (weak) coupling
[large (small) e ] is associated with low (high) density p.
The 1D ¹fermion model may thus also be useful in trac-
ing the evolution [12] from weakly coupled, overlapping
"Cooper pairs" of electrons to the strong-coupling ex-
treme of tightly bound "local pairs" (or "bipolarons")
which appear to play an increasingly important role in re-
cent theories [13] of high-temperature superconductivity.
Table II summarizes this application of the model, first
considered by Takahashi [14], which we address in the
next section.

II. COOPER PAIRING

where the first term is the ¹ lectron kinetic energy and
the three remaining terms are the (positive) background-
background repulsive potential energy Vbb, the (negative)
background-electron attraction Vb„and the (positive)
electron-electron repulsion V„=g~, e Ir; Th.e Ham-

i &j
iltonian (8) can be reduced [11]to only two terms

v (No. of species)
2
3
4

Fermions

q, q
three-color q's

nucleons

Clusters
meson s
baryons
alphas

A. BCS model interaction in 3D

The Cooper ferrnion-pair problem consists of solving
the Schrodinger equation (in the momentum representa-
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tion) for two fermions interacting via the potential V ( r),
and which cannot scatter by phonon exchange into
single-fermion states already occupied by the N —2 back-
ground fermions. The two fermions have opposite spins
and zero center-of-mass motion. Thus, if r =—r

&

—r2,
K—=k, +k2=0 so that k&= —k2 =—k, and the intrinsic
space wave function is P(r) = gi, Ci,e'"'. The
coefficients Ck then satisfy

2skCi, + $ Ci, Vi, i, =ECk,
k'

Ci, =—0 (k &k~),
(12)

where sk =—R k /2m, E is the pair energy eigenvalue and,
if L is the D-dimensional system volume, and we have
defined

V
—L Dfd Dre

——ik' r V( r)e
—ik r

7
(13)

Cooper [15]employed what is now called the "BCS mod-
el interaction": Vg g= —V if EI; &Ek, Ek. &EF+AcoD
and =0, otherwise, where AcoD is the maximum energy a
phonon can have, and V)0. This simplification leads
him to the eigenvalue equation

1

2c.', —E ' (14)

F 2E' E EF

where the prime on the summation sign means the k sum
is restricted so that E~ & cz &EF+Acoa. The sum can be
converted to an energy integral if the density of states
g(e) [=(L/2m) d k!—de] is introduced, so that (14) be-
comes

(14) we have

Uo~ 11= (17)

with the prime now meaning only that E„&ek & ~. If
this restriction were removed, then (17) becomes for
E&0

—1/2
1= C) de

L ' EF 2e —E (19)

where g(e)=C, e ' is the 1D density of states with
C i

=—&m /2L /m. h'. Introducing the dimensionless
E =E/2E+—, the integral in (19) gives

1 1—ln
V's if c.)0, (20)

1 1 m.
) 1

QE
if c. &0 . (21)

The Fermi energy EF——iri kF/2m is related to the number
density p=N/L =2k~/~, and since A, =mvo/R p the
prefactor in (19) is then just 2A, QEF /vr, so that (19)—(21)
lead to the two implicit transcendental equations for c,
namely,

thus giving the exact two-body Schrodinger result (4b) for
the eigenvalue E, as expected.

But in the corresponding Cooper problem, instead of
(15) we now have exactly

(15) ir &E/A, =ln if c.)0, (22)

where the last step follows in 3D from the empirical fact
that in metals %co~ &&E~. We note that this essentially
reduces the problem to a 2D one, where g (e) is a con-
stant independent of e. The remaining integral is elemen-
tary and gives

2AcoD
E =2E~- :2EF —2AcoDe~-o (16)

B. Attractive 5-potential model in iD

We wish to solve the same problem in 1D for the in-
teraction model (1), namely, V(r) = —u05(x), with vo) 0
and x —=xi —x2. Then, (13) gives uo/L and instead of—

where A, =g (E~)V/2.
Although in arriving at (16) we have started with the

problem in the 3D form, it can be shown [16] that the
essential singularity e ' at A, =O also emerges in 1D.
This means that it is unrelated to the 2D property
AcuD «E~ of the BCS interaction model —which restricts
the interaction to the immediate vicinity of the Fermi
surface —contrary to what might be expected from ordi-
nary 2D quantum binding [17] where a siinilar essential
singularity appears, and which seems to be the conven-
tional wisdom.

ir'&~E~/X=m —2tan ' if E&0.1
(23)

Both right-hand side (rhs) members behave like
2&~s~+O(~e~ ) for small ~E~, but (22) is concave up in e
while (23) is concave down in ~E~. Consequently, there
will be nontriuial ( ~E~ )0) solutions (NTS) whenever

0&A, &~ /2 for c)0,
~ /2&/ for g&0,

(24)

with the value k=~ /2 corresponding to v=0. Figure 3
illustrates the graphical solutions, where solid curves
refer to the rhs (thick curve) and left-hand side (lhs) (thin
curve) of (22), while dashed curves refer to the rhs (thick
dashed curve) and lhs (thin dashed curve) of (23). The
dot-dashed straight line is the asymptote 2&

~
E

~
of both

rhs members of (22) and (23) for small ~s~.
Consider the two "Leggett extremes" [12] of A, ~O+

and k~ ~ are, respectively, the weakly bound, strongly
overlapping Cooper-pair limit and the tightly bound
(point boson) "dimer" limit. Let b,:—2' Ebe the (pos-—
itive) binding energy of the weakly bound Cooper pair.
Defining 5:—b, /2', (22) can be expanded for
1 —a=5~0+ and yields m /A, = —ln(5/4) or
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FIG. 3. rhs and lhs of (22) (full curves) and of (23) (dashed curves), plotted against VQc. Intersections denote NTS for both posi-
tive and negative E=E/2E~—values. The dot-dashed line is the small v'Qs asymptote of the rhs of both (22) and (23).

5=4e-+" as X~o, (25} III. BCS GAP AND NUMBER EQUATIONS

meaning that
—m tip/ 22EF E:—b. =8E—Fe Aho+~ivo+~zvo+ ' ' '

(26)

The same type essential singularity in coupling (25) also
appears in the 3D Cooper-pair problem [15], in the 3D
many-electron BCS theory gap parameter and, finally, in
the BCS superconductive transition temperature [11].
On the other hand, A, =mvo/fi pekoe is equivalent to
finite vo and p (or E~)~0, and thus should correspond to
treating the two fermions in a vacuum. In this case (23)
becomes, since ~E~ =E/2E~~0o,

~'v'~s~/X=~ — + . or v'~s~ =X/~, (27)
2

which upon squaring again gives E =Eo(2) of (4b), as it
should.

The Leggett question [12] of "what happens to a Coop-
er pair as density is decreased" is here trivially but explic-
itly answered: it becomes a point bound dimer (or "bipo-
laron"). More significantly, this "dimerization" can also
be seen to occur when all N fermions (not just Cooper-
pair partners) are treated on an equal footing, as in the
BCS many-fermion theory to which we now turn.

~k = ~k ~DUO
0 (28)

where as before sk ——A k /2m. Setting gk ——ek —p, the
gap parameter 6 is defined as

g vk(1 —vk)'
L

(29)

where the occupation probability vk in a state k (for one
spin direction) is given by

vk
= ,'(1 4/Ek»———

Ek:"(/ ~'+k—t .

Thus, (29) simplifies to the gap equation

(30)

(31)

For the derivation of the two fundamental equations of
the BCS theory of an interacting many-fermion system in
any dimension we follow the notation of Fetter and
Walecka's text [11]. That discussion is more general than
most treatments in that it does not assume the chemical
potential p to coincide with the value EF (which depends
on p but not on v o ), a result occurring only for weak cou-
pling. For the Hamiltonian (1) the interaction matrix ele-
ments (k, kzl Vlk3k4) are simply (vo/L)5k +k k +k,
and the HF single-particle energies c.k then become

Uo ] Uo1= g —+ f dk
Ak
2m

'2
1

PUp P ++2

—1/2

(32)
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P
[(E )2+ g2]1/2

Simultaneously, the number equation (which determines p) becomes

N =2+ uk= g(l —g„/E„) f dk 1—
k k 2 lT

(33)

The two coupled, implicit equations (32) and (33) must be
solved (numerically, at worst) to determine both b, and p
as functions of the dimensionless coupling parameter A, .
This would ultimately allow the total energy per particle
(which for A, ~O is well known [11]to be quadratic in b, )

to be calculated in the BCS approximation for all
0&k& ~. This computation is in progress, but we re-
port the result for the two extremes X=0 and ~ which is
straightforward.

For p —+0 (33) implies that ui, ~0 which from (29)
means that 6~0. The gap equation (32) then becomes
an implicit equation for p alone,

1= f dk(A' k /2m —p)
2& 0

(34)

which, if p= —
~ p~, gives the same type of integral as in

(18), so that we immediately find

mUD
2

i E = 1 —1E (2)2 2 4g2 2 0 (35)

i.e., p in this limit is one half the en-ergy of a single clus-
ter E0(2) as given by (4b). One can further see that the
exact p~O (A,~~ ) total-energy result (3) is fully repro-
duced in the BCS approximation. This comes from the
fact that the BCS p given by (35) is indeed the exact value
of p in this limit. The latter assertion follows from (3),
(A7), and the Hugenholtz-van Hove theorem [18] stating
that the ground-state energy per particle ED(N)/N of an
interacting many-fermion system at zero pressure
(P—:p B[E0(N)/N]/Bp=0) is identical with its chemical
potential p. (A result equivalent to the first equality in
(35) has been obtained [19]in the zero-density limit of the
BCS theory of a 2D fermion gas with arbitrary short-
ranged pair interactions. ) Finally, in the other (trivial)
extreme A, ~O, or uD —+0, from (29) b, again vanishes.
This reduces uk in (30) to the step function
B(p —

vari kF/2m), which in (33) with p= N/L =2k&/ir-
integrates to give p =Pi kF /2m =EF, as expected—.

IV. CONCLUSIONS

The exactly soluble many-fermion system with pairwise
attractive 6-function interactions in 1D possesses the
same qualitative dynamics as the 3D electron fluid jellium
model, and is found useful to study the highly correlated
electron fl.uid.

The Cooper-pair problem can be solved for the model
exactly for all coupling and density in graphical form.
The weak-coupling and/or high-density extreme is
characterized by the same type essential singularity of the
3D Cooper problem with the BCS model interaction, of
the many-electron BCS theory gap parameter and of the
BCS critical-temperature formula of low-temperature su-
perconductivity.

It will be interesting to solve, numerically if necessary,
the BCS theory equations to compute the ground-state
energy and compare with the exact results for all values
of coupling and/or density. However, one already notes
that perfect coincidence occurs at both extremes, namely
(a) of weakly bound, strongly overlapping Cooper pairs,
and (b) of tightly bound, point (bipolaronic) dimers.
Low-temperature superconductivity is characterized by
the large, overlapping pairs exemplified in extreme (a),
whereas high-temperature suprconductivity empirically
reveals the presence of much smaller pairs, approaching
extreme (b).
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APPENDIX A: GAUDIN EQUATIONS-
VIRIAL EXPANSION AND NUMERICAL SOLUTION

In the notation of Sec. I with e( A, ) =ED(N) /
[N/2] ~ED(2) ~, the exact ground-state energy per particle
for A, = ~ (p=O and/or u0= ~ ) in dimensionless form is
simply s( oo )= —1 (Fig. 2, lowest dot on ordinate axis).
The Gaudin [6] equations allow one to obtain c,(A, ) for
any 0 ~ A, & ac . In dimensionless form they are

F(x)=2——f dy
K i F(y)

1+K (x —y)

—=—f dy F(y),1 K
—1

(Al)

(A2)

E(X)= —1+ Kk f dy—y F(y),
7T —1

(A3)

=2——K+ K+—Kx+0(K ).4
7T 377 7T

(A4)

where K—:Q/u0 is a non-negative parameter to be elim-
inated from (A3) with the help of (Al) and (A2).

A "virial" (or low-density) expansion of E(A, ) can be
easily generated. For p~O (A,~~ ) (Al) gives F (x) +2. —
Since Q ~0 we can expand the integrand in (Al) with
F(y)=2 and get

F(x)=2— dy[1 K(x —y) + . .]-2E
—1
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TABLE III. Ground-state energy per particle of (1) or (2) in

dimensionless form, as defined in Appendix A, obtained by nu-

merical integration of Gaudin equations (A1)—(A3) (exact), and

by the low-density three-term expansion (A7) (virial). UH(x; ) = f dxJ u (x;,xi )p(xi ), (81)

does not depend upon spin variables, the local Hartr'ee
potential is

0.00
0.05
0.1

0.15
0.2
0.25
0.3
0.35
0.4
0.5
0.6
0.7
0.8
0.9
1

Exact 'E(k)

[Eq. (A3)]

—1.0000
—0.9978
—0.9909
—0.9784
—0.9595
—0.9333
—0.8989
—0.8551
—0.8011
—0.6588
—0.4653
—0.2159
+0.0929
+0.4633
+0.8970

Virial 'E(A, )

[Eq. (A7)]

—1.0000
—0.9978
—0.9910
—0.9787
—0.9605
—0.9357
—0.9038
—0.8640
—0.8158
—0.6916
—0.5263
—0.3149
—0.0525
+0.2658
+0.6449

and the averaged exchange potential can be written as

u (x, ,x,. )p'(x, ,x, )
U,„(x;)= — dxj

p xr
(82)

vkF .
p(x;, xj )= jo(kp[x x, ])

P

where kz =irp/v and v is the number of distinct fermion
species. Using the Thomas-Fermi approach for the diag-
onal density, (81) becomes

where p(x~) and p(x;, x ) are the diagonal and the off-

diagonal parts of the density matrix. Following Refs.
[22] and [23], (Bl} can be solved self-consistently using
the semiclassical approach for the diagonal matter densi-
ty (to order A' giving Thomas Fermi, or to order. iii~ giving
the Wigner-Kirkwood approximation). For the oA'-

diagonal density we use the Slater approximation and this
allows us to express p(x;, x ) in terms of the diagonal den-

sity p(x; }. For the one-dimensional case this yields

Substituting this in (A2) gives

1 4K 2K+ 4 3 +O(~6)
7T 7T 3'

or

1
s(A. ) = —1+

12 A2

2 1

24 g3
+O(1/X')

K — + +O(1/A, ) .4k 8&~

Inserting (A6) into (A4) and (A3) gives

(A5)

(A6)

(A7)

X+
UH"+"(x;)= f dx u (x;,x~ )

X [2m [p'"' —U'"'(x )]]' (83)

where x+ and x are the two turning points, the index n

refers to the order of iteration, and p'"' is the chemical
potential at the nth iteration, calculated by requiring that
the integral of p(x~ ) gives the correct number of particles.
In order to find the self-consistent mean field we iterate
up to self-consistency.

If the two-body interaction is a 5 potential as in (1) the
self-consistent mean field is given by

since A, =muo/A' p is a series in powers of p beginning
with p .

The Gaudin equations (A 1)—(A3) were integrated nu-
merically to obtain 'E(A, ) (full thick curve in Fig. 2}. This
was accomplished by discretizing the integrals and solv-
ing the ensuing algebraic equations. The parameter K
was adjusted iteratively until the desired value of A, was
reproduced. Table III lists some values of the exact 'E(A, ),
some of which are plotted in Fig. 2 (full thick curve).
Also given are values of the virial expansion (A7), which
is seen to be quite adequate up to about A. '=0.3. (Exact
values listed in the table replace erroneous numbers re-
ported and graphed in Ref. 4, although both sets of data
being qualitatively similar would not alter the con-
clusions there. )

APPENDIX B: SEMICLASSICAL MEAN-FIELD
APPROXIMATION —THOMAS-FERMI SOLUTION

Following the method proposed by Dagens [20] and
developed in Refs. [21] and [22] one can solve the Hamil-
tonian (1) in a self-consistent mean-field approximation
using a semiclassical expansion in powers of A. In coordi-
nate space, for a two-body interaction u(x;, x ) which

U = —uop(1 —1/v), (84)

and the chemical potential is then

f2 p2p= —uup(1 —1/v) .
8m ~~

(85)

The total energy for a system of N particles is given by

(p /2m ) = f (p —U) ~ dx .
6Mm

Thus the total energy per particle is

E(P) fi n. P "op
(1

6m v~

(86)

(87)

which in the limit p —+ ~ coincides with the ideal Fermi-
gas average energy fi kF/6m. As expected, the Thomas-
Fermi result (87}coincides with the Hartree-Pock plane-
wave (HFPW) solution for an infinite system (curve la-

(p /2m )+—U,
2

where the first term is the Thomas-Fermi kinetic energy,
namely,
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beled HFPW in Fig. 2).
In some cases it is possible to solve (B3) using the

Wigner-Kirkwood approach for the density, going to or-
der A' in the semiclassical approach [21,22]. However, if
the two-body interaction is 5(x, —xj ) the mean field is al-

ways proportional to the density of the ground state to all
orders in A ". Then, as shown in [21], the matter density
to order i}t "(n ~ 1) is a distribution in the mathematical
sense and can only be used in computing expectation
values.
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