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Electron gas beyond the random-phase approximation: Algebraic screening
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Using the standard many-body perturbation theory at finite temperature, we exhibit diagrams, not in-
cluded in the usual random-phase-approximation ring summation, that lead to a 1/~x~' decay of the
charge-charge correlation. The quantum origin of this absence of exponential screening is clearly
displayed in a semiclassical representation of the electron gas by functional integration, where the
effective potential obtained by chain summation is of the dipolar type.
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I. INTRODUCTION

In a recent paper [1], it has been shown that the quan-
tum corrections to the classical equilibrium correlations
of a Coulomb fluid decay algebraically fast for all values
of the thermodynamical parameters. At high tempera-
ture, this is in sharp contrast with the exponential falloff
of the classical Coulombic correlations that has been
rigorously established in Refs. [2] and [3]. In particular,
consider the simplest model for an electron gas, the one-
component plasma; it is a system of identical point parti-
cles embedded in a continuous uniform rigid background
of the opposite charge that ensures overall neutrality. If
one expands the static density-density correlation func-
tion S(x) of the quantum one-component plasma in
powers of the Planck constant,

S(x)=S"(x)+f2S' '(x)+trt S' '(x)+

one finds that, at the order A,

(1.2)

where m is the mass of the electron and P is the inverse
temperature. The behavior (1.2) is equivalent with the
fact that the Fourier transform S(k) of S(x) is not ana-
lytic at k=O (it must have a ~k~ term in in its small-k ex-
pansion). The result (1.2) has been obtained by means of
the Wigner-Kirkwood expansion in a semiclassical re-
gime where the effects the Fermi statistics have been
neglected.

In the present work, we address the same problem
from the viewpoint of the standard many-body perturba-
tion theory at nonzero temperature, including now the
effects of the Fermi statistics. It is well known that the
usual random-phase approximation (RPA) leads to an
effective potential whose zero-frequency component is of
the Debye-Hiickel form, and therefore decreases in space
faster than any inverse power of the distance (see Sec.
III A). The same is true for the structure function calcu-
lated in this approximation, SRP&(x). Thus the RPA

theory fails to predict the algebraic decay of the correla-
tions. The purpose of this paper is to study in some de-
tails the simplest diagram, not included in the RPA ring
summation, which gives rise to a nonexponential decay.

We proceed as follows. In Sec. II we first relate the
effective potential and the structure factor to the proper
polarization according to the usual diagrammatic rules.
Moreover, in the small-k expansion of these quantities we
take into account the constraints imposed by the known
exact sum rules (second moment and compressibility sum
rules). Thus the problem is reduced to the investigation
of the small-k behavior of the proper polarization.

In Sec. IIIA we briefly recall the form of the proper
polarization which leads to the RPA effective potential.
Then, in Sec. IIIB, we consider the "prototype" graphs
in which the bare Coulomb interaction lines are replaced
by RPA interaction lines. The simplest prototype graph
that contributes to the proper polarization beyond RPA
involves the square of the RPA effective potential (see
Fig. 3). This graph leads to an I/~x~ decay of the zero-
frequency component of the full effective potential and to
a 1/~x~' (I/~x~ ) decay of the structure function (the in-
verse static dielectric function). Moreover we argue that
in the class of the ladder diagrams with N RPA interac-
tion lines (N~2), the above-mentioned graphs (corre-
sponding to N =2) gives rise to the slowest possible de-
cay. We therefore make the plausible conjecture that
these types of decay hold generally in the quantum elec-
tron gas.

In Sec. IV, we show how one can recover the semiclas-
sical result (1.2) by means of the Mayer diagrammatic ex-
pansion. For this we neglect again the Fermi statistics
and use the functional integral representation of the elec-
tron gas. In this representation the quantum system of
point electrons can be treated as an equivalent classical
gas of charged random filaments (Brownian bridges).
Here the random shape of the filaments, which originates
from the intrinsic quantum fluctuations, plays the role of
an internal degree of freedom. Thus we can apply the
usual approximation scheme developed for the statistical
mechanics of classical charged systems. In particular,
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the analogue of the Debye-Huckel approximation (the
chain summation) gives in this formalism a chain poten-
tial that can easily be related to the usual RPA effective
potential without Fermi statistics (see Appendix C). For
fixed filaments, this potential is of dipolar type: the pic-
ture is that two filaments with arbitrary shapes have a re-
sidual dipole-dipole interaction decreasing as 1/~ x

~

.
After averaging the shapes of the filaments, the chain po-
tential decreases exponentially, and again, the slowest
possible decay comes from the prototype graph involving
the square of this chain potential (Sec. IV A). If one re-
tains only the i' contributions to any graph (Sec. IV B),
the series can be exactly summed to produce the result
(1.2). Then we see how the classical Stillinger-Lovett sum
rule changes the 1/~x~ decay of the squared chain poten-
tial into an I/~ x

~

' behavior for the charge-charge corre-
lation function.

II. GENERAL FGRMALISM

temperature perturbation formalism are periodic with a
period of 2PA'. We define the r-Fourier transform by

f(co)= f d~e' 'f(r)= —f dse' i~f(s),1 n~, , 1

2PA' —pa 2

(2.7)

where, in the second equality of (2.7), f is written in
terms of the dimensionless variable s =r/PR. [Our
definition (2.7) differs from that of Ref. [4] by a factor of
Ph'. ] When the spatial Fourier transform is introduced as
in (2.5), the coefficients of the polarization in Fourier rep-
resentation are given by

1

II(k, n )=II(k, co~„)=—,
' ds e ' "'II(k,s)—1

1
e 2i n nsII (k

0

n =0,+1,+2, . . .

(2.8)In this section, we analyze the general form of the stat-
ic density correlation function of the homogeneous elec-
tron gas

with co„=an/Pfi. Only the frequencies co2„ indexed by
even integers occur because, according to (2.3) and (2.6),
II(k, r) is periodic with a period Pi)i. Hence it follows
from (2.6) and from the definitions (2.1), (2.2), and (2.3)
that

S(x)= ( [&(x)—(&(x) ) ][&(0)—(&(0) ) ]), (2.1)

(2.9)S(k)=S(k, r=O)= — y 11(k,n)

and from (2.4) that

y(k) =e '(k) —1= II(k, n =0) . (2.10)

where (8'(x) ) denotes the grand canonical average of the
density operator &(x) at the inverse temperature P and
chemical potential p.

We briefly recall the perturbative structure of S(x) fol-
lowing the definitions of Ref. [4] (Sec. 32, p. 300). The
imaginary time evolved density is

g(x ) e&u PE)1ihfi(x)e—(8 /lk)7iA— —
(2.2)

S(x,r) = ( T [ [8'(x, r) —(8'(x, r) ) ]

X[8(0,0)—(R(0,0))]I & . (2.3)

The imaginary time correlation (2.3) is related to the stat-
ic susceptibility y(k) and dielectric function e(k) by

where 8 is the Hamiltonian and 8 is the particle number
operator in the Fock space. Then the basic quantity to be
considered is the ordered temperature function,

It is convenient to introduce the proper polarization
II'(x, ~), i.e., the set of all polarization parts which can-
not be separated into two polarization parts by cutting a
single interaction line. The total polarization and the to-
tal proper polarization are linked by a Dyson equation
which takes a simple algebraic form in the Fourier repre-
sentation

y(k ) =e '(k) —1 = —f d ~S(k, ~),4me 1

iii o
(2.4)

(2.1 1)

where e is the charge of the electron and S(k, r) is the
spatial Fourier transform of (2.3),

S(k, r)=—f dxe' '"S(x,~) . (2.5)

with

U.(k) = 4~ye'
(2.12)

Relation (2.4) expresses the linear response of the electron
gas to a static external charge. The basic link with per-
turbation theory is given by II(k, n ) =II*(k,n )+II'(k, n ) U' (k, n )II*(k,n ) (2.13)

The relation (2.11) can be put in an equivalent form in
terms of the effective potential U' (k, n)

S(x,r) = —II(x,~), (2.6) with

where II(x,~), the total polarization, consists of all the
connected diagram in which the points (x, r) and (0,0)
are joined by internal lines. [Relation (2.6) differs from
Eq. (32.20) of Ref. [4] by a factor A' which is included here
in the definition of II(x, r).]

All the ~-dependent functions f (r) in the finite-

Uo(k)U' (k, n)=
1 —Uo(k) II*(k,n )

(2.14)

In the sequel, we shall use the known exact sum rules
obeyed by S(k) to constrain the form of the small-k ex-
pansion of II(k, n ). It is indeed known that S(k) satisfies
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the following long-wavelength screening sum rule [5,6]:

13fico Pkco
lim S(k)= coth

Ial 0 Uo k 2
(2.15)

where co = (4—ape /m)'~ is the plasma frequency, p is
the number density, and I the mass of the electron.
Moreover, the compressibility sum rules states that [5]

B3(0)=0, B4(0)=— 1

4me AT
(2.23)

~k~'II(k, n )

~k~ +4m.Pe II(k, n)
(2.24)

To see the implications of (2.22) and (2.23) on (2.20), we
invert the Dyson relation (2.11),

4me AT
lim e(k)=1+ (2.16) Inserting (2.18) and (2.19) into (2.24) and expanding in

powers of ~k~ leads to the relations

1
lim S(k)= z

4m13e „= 1+4m n /(AaD )
(2.17)

where yT is the isothermal compressibility. Using the
series representation of coth, we may write relation (2.15)
as

Ao(0) =4me AT )0,
and for n =+1,+2, . . . ,

Ao(n)= A, (n)=0,

(2.25)

lim II(k, n)= —
2 z z

4vr13e 1+4~ n /(A, x. D )
(2.18)

Moreover, according to (2.10) the compressibility sum
rule (2.16) determines the zero-frequency component
II(k, n =0) up to the order ~k~,

where A, =fi&P/m is the de Broglie thermal wavelength
(up to a factor v 27r) and aD =(4nPpe )'~ is the inverse
Debye length. Thus, since II( —k, n) =—II(k, n ), we see
from (2.9) that

(RED )
A 2(n) = =4nPe.

4m n 4n. n
(2.26)

A, (0)
B~(0)=

[Ao(0)]
A3(0)

B,(O) = ', +O'"A, (0),
[ Ao(0)]

(2.27)

Moreover, one finds the following relations between the
coefficients of the odd powers of ~k~ for n =0 [since
Ao(0)%0]:

lim II(k, n=o)=—,~k~—
4~pe 4me AT

(2.19)
and for n =+1,+2, . . . [since A 2(n) )0],

Bo(n) =B,(n) =0,

B2(n) =
1+4nn/( AaD ). .

(2.22)

for all n =0,+1,+2, . . . , while (2.19) gives the following
extra information about the case n =0,

We now exhibit how these constraints on II(k, n) re-
strain the expansion of II'(k, n ) in powers of k. At this
level, we assume that both II*(k,n) and II(k, n) have
small k expansions, up to ~k~, of the following form (be-
cause of rotational invariance, these quantities depend
only on ~k~):

7
11*(k,n)= —

z g A, (n)lklJ+o(lkl ), (2.20)
4m pe J. =0

1II(k, n)=—,y B,.(n)~k( +o(~k~') . Q.21)
4m' J =o

These expansions up to ~k~ do not involve any logarith-
mic terms or other kinds of nonanalytic terms at k=0.
The occurrence of a term ~k~j, with j odd, or ~k~jln~k~,
with j even (j)0), corresponds to a spatial decay of the
type 1/~x~j+ . Thus the expansions (2.20) and (2.21) can
only lead to algebraic decays with even powers up to
1/~x' . [The type (2.20) and (2.21) of small-k expansions
is precisely the one obtained both from the analysis of the
diagram of Fig. 3 and the class of similar graphs exhibit-
ed in Sec. III B and from the semiclassical formalism of
Sec. IV.] The asymptotic behavior (2.18) imposes

A3(n)
B3(n)=

[A2(n)+1]
A~(n)

B (n)= +C~ ~A (n),
[A2(n)+1]

(2.28)

S "(k,n =O) = —rr"s(k, n =O) = A3(0)
4m.Pe [ Ao(0)]

leading to a 1/~x~ ' decay. Moreover, the zero-frequency
component of the effective potential (2.14) is nonanalytic
in k,

A7(n)
B7(n)= z+O' 'A~(n)+O' 'A3(n) .

[A2(n)+ I]
In (2.27) and (2.28), C'"'=1, ... , 4, are some more compli-
cated functions of the 3 's, the exact form of which will
not be relevant here.

In the following section we shall calculate the small k
contribution to the proper polarization of the diagram of
Fig. 3, the simplest graph beyond the usual RPA theory.
This contribution to A, (0) is equal to zero whereas the
contribution to A3(0) does not vanish, and we also show
that the whole class of the higher-order ladder graphs
(Fig 4with N. )3) does not contribute either to A, (0) or
to A3(0). We then find from (2.27) that S(k, n =0) has a
dominant nonanalytic term, S" (k, n =0), of order ~k~ as
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lim U' (k, n =0)= 4m. e

A, (0)+[1+A, (O)] II I'+ A, (0) ll I'
(2.30)

distribution
1

no(p) =
e (A. P /2 —PP ) + 1

(3.3)

A3(0)
k 5

[ Ao(0)]
(2.31)

andy(x) will decay as 1/~x~ .
As far as the non-zero-frequency terms are concerned,

the diagram of Fig. 3 gives A3(n)=A5(n)=0 but
A 7(n)%0 for n +0, and the higher-order ladder graphs of
Fig. 4 do not contribute to these coefficients. Conse-
quently, we will have B3(n) =B~(n) =0 but B7(n)%0 for
all n%0, so that the dominant nonanalytic term in
S(kn), is

S"s(k,n ) = —II"s(k, n )

A~(n)

4mPe [ Az(n)+1]

with a corresponding spatial decay as 1/~ x ~, whereas,
according to (2.26), the non-zero-frequency components
of the effective potential are not screened and remain
purely Coulombic. Finally, the small-k behavior of the
static susceptibility (2.10) will be

1+Az(0)
hm y(1)= —1+, 1k''+

4~e ~py T [ A o(0) ]'

Uo(k)

1 —U (k)II (k, n)
(3.4)

The diagrammatic representation of this definition is
shown in Fig. 1. Its small-k behavior is derived from the
expansion of IIO(k, n) to second order in k (see Appendix
A),

IIO(k, n)=5„0 2I 2+ A, k

—(1—5„O) A, k +0(k ),
4m n

(3.5)

where the coefficients I N are given by integrals over
derivatives of the Fermi distribution

and p is the chemical potential.
Since Go(p, s ) is infinitely differentiable in p, its inverse

Fourier transform decays faster than any inverse power
of ~x~ and so does IIo(x, s ). Therefore the small-k expan-
sion of IIRp~(k, n) involves only even powers of k:—~k~.

According to the Dyson relation (2.11) the same is true
for IIRp~(k, n) and SRp~(k). Thus, there is no singularity
at k =0 that might lead to an algebraic decay of SRPA(x).

The RPA effective potential will be used in Sec. III B.
According to (2.14), it is defined by

(2.32)

Thus, according to (2.9), (2.29) and (2.32) imply that S(x)
has a 1/~x~ ' decay.

III. THK PROPER PQI.ARIZATIQN

dp
(2m )

1 dN —
][

(+—1)) dgN
—1 g+ 1)

(3.6)

A. Random-phase approximation

We recall here that the well-known RPA theory con-
sists in approximating II'(x, s ) by the proper polarization
diagram with the lowest order in the interaction

We note in particular that

(3.7)

(3.8)

IIRp~(x, s) =IIO(x, s) =2GO(x, s)GO( —x, —s), (3.1)

where Go(x, s) is the free propagator (see Ref. [4], Sec.
23) and the factor 2 comes from the summation over the
spin states. Go(x, s ) is the inverse Fourier transform of

Go(p, s)=e ' ~ ~ ~"'[no(p) —8(s)], (3.2)

where po is the density of the free-electron gas. Hence
the small-k behavior of URp~(k, n) is given by

lim URP&(k, n) =5„OUDH(k)+(1 —5„0)Uo(k)h (n),
k~O

(3 9)

with

where s=r/PA', —1 ~s ~ 1, 8(s) is the Heaviside func-
tion, and we have set p—:~p~. In (3.2) no(p) is the Fermi

h (n)= 1

1+(~ A, ) /4n n
(3.10)

FIG. 1. RPA effective potential URPA, diagrammatic representation of the de6nition (3.4). The potential URpA is denoted by a dot-
ted line. As usual, a wavy line is a bare Coulomb potential and a solid line a free propagator. Then, a fermionic loop II~pA IIo is
represented by a directed circle.
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where I~D
—=+4~Ppoe is the inverse Debye length calcu-

lated with the density po of the free-electron gas. In (3.9),
UDH(k) is a generalized Debye-Hiickel potential

U*„(k)=DH 2 2 (3.11)

with renormalized quantities

I3e*= 1 —(Ir A )
61

—1/2

and

FIG. 2. Diagrammatic representation of IIRpA according to
the relation (2.13). IIRpA is denoted by a hachured disk.

k for nAO in (3.5) is equal to —
poA, /4m n . According

to (2.26}, inserting (3.5) into the Dyson relation (2.11)
leads to (2.18) with p replaced by po: this shows that
SRp~(k) satisfies the sum rule (2.15) with the density p re-
placed by that of the noninteracting gas.

B. The proper polarization beyond the random-phase
approximation

We now turn to the contribution of higher-order dia-
grams to the proper polarization. First we perform a
partial resummation by replacing the bare interaction
lines by the dotted lines of Fig. 1 associated with the
RPA effective potential. As a first natural correction to
(3.1), we consider the proper polarization insertion
II& (k, n) with two RPA interaction lines, given by the
sum of the two topologically different diagrams displayed
in Fig. 3. According to the diagrammatic rules in
Fourier space (see Ref. [2] Sec. 25)

+ oo

II) (k, n) =4f g Uap~(q, v) Uzpp, (k q, & v)
(2n. )

~n =4n. pe ' p*, with p* =po0 (3.12)
X —,'[Ao(q, k —q, v, n —v)]

The point is that the zero-frequency component of
UR p~ ( k, n ) is screened as in the classical case, whereas
the non-zero-frequency components remain purely
Coulombic. The graphical representation of the relation
(2.13) between IIRp~ and URp~ is given in Fig. 2.

As a final remark, according to (3.8), the coeKcient of

(3.13)

where the factor 4 comes from the summation over the
spin states and Ao(q, k —q, v, n —v) is the following sym-
metrized quantity associated with the electron loops of
Fig. 3:

dp +"
Ao(q„q2, n&, nz)=

3 g Go(p, m)G (op +q&, m +n, )G (op+q& +q , 2m+n& +nz)
(2m. )

+ y GQ(p, m) G(op +q ,2m+n )2G (0p +q, +q ,2m+n] +n )2

m = —oo

(3.14)

Ao(q„q2, n„n2) is invariant under the simultaneous rota-
tions of the vectors q, and q2, symmetrical under the ex-
change 1~2, and it satisfies (see Appendix B)

+ oo

f 3
e URpp, (q), v)(2' )

Ao(q„q2, n „n2 ) =Ao(q„qz, n„n2 )— —(3.15)
dq2 —iq x

X
3

e URp~(q2 8 v)
(2n. )

We now investigate the long-distance behavior of
IIf (x, n ) and show that it decays algebraically. The
asymptotic behavior of II](x,n ) is revealed by an exam-
ination of the inverse Fourier transform of (3.13),

X [ A(oq&, q , 2vn —v)]z . (3.16}

The possible long-range part of II&(x,n) due to the

p+k, m+n
k-q, n-v

p'-k, m'-n p+k, m+n p'-k, m'-n

k,n
p+q)m+v p'-q m'-v

k,n k,n
p+q. g+v ~~p'-k+q, m'-n+v

p,m
q,v

p, m p,m p, m

FIG. 3. Proper polarization insertion II& with two URpA lines. H,* is the sum of the two topologically different diagrams shown in
the figure. The notations are those used in (3.13).
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A o(q i, q 2,
n i, n&) =A o(n i, n 2)+p 1(a„n,)lq 1'

+p, (n„n, )lq, l'

+A, (n„, n, }q, q, + (3.17)

where the ellipsis represents terms of higher order formed
with

I qi I, I q2 I, and q, qz. Any term occurring in

[A(q„q2, v, n —v)] with vAO and that has a power of
Iq, l

as a factor cancels the Coulombic singularity of
URpA(q„v). These terms do not contribute to the long-
distance behavior since they involve 61/lxl, which is lo-
cal. The same is true for the terms in

[Ao(q„q2, v, n —v)] with nAv and having a power of
Iq2I as a factor. Moreover, according to (3.9), any term
in [Ao(q„q2, v, n —v)] with v=O or v=n is associated in

Coulombic singularities of URpA(q, v) for vAO is
governed by the behavior of the integrand of (3.16) in the
neighborhood of q, =q2=0. Thus we have to expand

Ao(qi, q2, n „n2 ) for small q„q2. The symmetries of
Ao(qi, q2, n „n2 ) imply that this quantity is necessarily of
the following form:

(3.16) with a Debye-Hiickel potential or its derivatives.
Hence these terms do not lead to an algebraic decay ei-
ther. Therefore, the only part of Ao(q„qz, v, n —v) that
contributes to the algebraic decay of II*(x,n ) is

Ao's(q„q2, v, n —v)= g A,, (v, n —v)(q, qz)',
j&0

(3.18)

I2
Ao(v, —v) =0, A, , (v, —v) =A,

4~ v

and, if n WO, v&0 and n —vAO,

(3.19)

Ao(v, n —v) =0, Xi(v, n —v) =0,
2I')2I )

A,2(v, n —v) =A, + . (3.20)
47r n 47r nv 47r n(n —v)

Therefore the dominant algebraic contribution to
II1 (x, ri ) ls

with v&0 and van.
According to the results (B8) of Appendix B, one has,

if n =0 and vAO,

and, for n&0,

q, q;, , , „q, qd d ; + ., ( )'

(27r ) (27r ) I qi I'I q2I'

6 1
a3(0)(4~)' lxl'

(3.21)

(2~)' (2~)'
I qi I'I q&l' 2 (4~}'

(3.22)

with

a3(0)=2(47rPe ) g h (v)A, , (v, —v),
v&0

(3.23)

(3.24)

a7(n)=2(47rPe ) g h(v)h(n —v)Az(v, n —v),

A 7 ( n ) of the expansion (2.20); hence the conclusions
(2.29)—(2.32) of the preceding section are true, as far as
the graph of Fig. 3 is concerned.

We now comment on a larger class of graphs, the
ladder graphs, which are the generalization of Fig. 3 with
X efFective interaction lines (see Fig. 4). Up to a numeri-
cal factor, the contribution of such a graph to II"(x, n)
has the following form [similar to (3.16)].

where h(v) is defined in (3.10). Hence, by using the
Fourier transforms (7r /12)lkl and (27r /8!)Ikl of xl
and Ixl ', we find that the dominant nonanalytic part of
Ili (k, n ) for small k is

II*,"s(k, n ) =5„o—,', a3(0) Ikl

n I ) y ng
ni+. . .+n~=n

3
e URpA(qi

(27r )

d q+ —iq&.x
X

(27r )
URPA(qN nN }

+(1—5„o) a7(n) Ikl
1

(3.25)
2X [Ao('ql 'qN n 1 ' ' nN }]

(3.26)
Since the coefficients a3(0} and a7(n) are obviously
different from zero, we see that the graph of Fig. 3 gives
nonvanishing contributions to the coefficients A3(0) and

Ao(qi, . . . , qN, n „.. . , nN ) is the contribution of the fer-
mionic loops of Fig. 4,

Ao(qi . qN iii ' riN) f 3 X Go pm Gop q m+rif' dp
(27r )

XGo(p+q + . . +q, m+n + . +n ), (3.27)
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k,n

graphs obtained by

insertion points of the

effective potential

permutations of the

k

([g'(S, )] [g(S2)]P) = JD(g)[g'(S, )] [g(S2)]p

Si(1—S2) if Si $2
=5~& S2(1—Si) if S2&s, ,

(4.1)

FIG. 4. Ladder graph: proper polarization insertion with N
URpA lines.

where II& is the group of the permutations of
[1, . . . , N]. The most singular part of the integrand of
(3.26) comes again from the non-zero-frequency terms in
the neighborhood of q1 = =qz =0. Expanding
A0(q„. . . , qN, n „.. . , nN ) for small q1, . . . , qN, we
show in Appendix C that A 0(sq„. . . , q Nn„. . . , n N),

the only part of A0(q„. . . , qN, n„. . . , nN) that contrib-
utes to the algebraic decay of (3.26), has the following
structure for N ~ 3:

alg&0 (qi qN ~1 ' ~N) ~0~ 0 ~ 0N~

+gq; qA, ,(n;, n )

x ~s„,+
kwi, j

(3.28)

where the ellipsis represents terms of higher order formed
with the q, q 's. So, if N~3, the nonzero frequencies
may simultaneously occur only at the eighth order in the
expansion of [A 0(qs„. . . , q Nn„. . . , nN)] . Then, by a
simple scaling argument, we see that (3.26) decays at least
as 1/~x~ + . Hence, for N~ 3, these ladder diagrams
give no contribution either to the coefficients A, (0) and
A3(0) or to the coefficients A3(n), A~(n), and A7(n) for
n&0 in the small-k expansion of II*(k,n ). We conclude
that the behaviors (2.29) —(2.32) remain the same when all
the ladder diagrams are taken into account. Of course, to
establish the full validity of the behaviors (2.29)—(2.32), it
would be necessary to examine all the higher-order prop-
er polarization parts, a fairly complex task. In the fol-
lowing section, we investigate the same problem in the
simpler semiclassical regime where the effects of the Fer-
mi statistics are neglected.

IV. BOLZTMANN ELECTRON GAS

(2z)N+'
PT(1,2)= g IN(1, 2)N (4 4)

where the factor 2 comes from the summation over the
spin states and I0(1,2) =f(1,2) while, for N ~ 1,

I (1,2)= g J d3. . .d(N+2) +f(i,j) .
GeIN

(4.5)

In (4.4) and (4.5), i =(x;,g';) denotes the filament vari-
ables and di—: dx; D,. is the corresponding phase-

space integration. The sum runs on the set I & of all the
labeled connected graphs with two root points 1,2 and N
internal points. Each pair of points is linked by at most
one f bond,

iz, p=1,2, 3, where [g'(s, )] is the a component of g'(s1).
The pair interaction between two electrons (x;,g; ) at Po-
sition x,. and with path g, (i =1,2) is given by the )'-
dependent potential

1

P(x, —x2, $„$2)= ds U0(x1 —x2+Xg', (s) —A/2(s )),
0

(4.2)

where U0(x)=pe /~x~ is equal to p times the Coulomb
potential (as in Sec. II) and A, =alii/p/m is the de Broglie
thermal wavelength. One can thus visualize the quantum
system of point electrons as an equivalent classical gas of
charged random filaments, and apply to it the methods of
classical statistical mechanics. The state of a filament is
specified by its position x and by the internal degree of
freedoin g' associated with its shape. Two filaments in-
teract by means of the potential (4.2), and integrations
over phase space run on all positions and internal degrees
of freedom with the measure D(g). Moreover a filament
has two spin states, but, since the interaction does not de-
pend on them, they will only lead to a degeneracy factor
equal to 2.

From this point on, we can proceed exactly as in the
Mayer graph summation for a classical plasma [8,9]. The
grand canonical truncated pair correlation function reads

PT(x1 x2) JD(kl)D(42)PT(xl&41&x2&k2) & (4 3)

where PT(x, , g, , x2, (2) can be expressed as the usual sum
of cluster integrals

A. Statistical mechanical system of charged 6laments f (i,j)—=e 1 '~' —1, (4.6)

The most convenient way to study the correlations of a
quantum Coulomb gas with Boltzmann statistics is by the
functional integration formalism [7,1]. In this represen-
tation, to each quantum charge is associated a closed ran-
dom path g'(s), 0 ~ s ~ 1, g(0) =g'(1) =0 (a Brownian
bridge) having a Gaussian probability measure D(g') nor-
malized to one, with a zero mean and a covariance equal

f (1,j)= g (
—I )"pk(i, j)

k=1

with

(4.7)

where p(i, j) is the potential (4.2). As in classical physics,
the activity z is related to the chemical potential p by
z =ei "/(2~A2)3~ . The f bonds can be expanded into Pk
bonds
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0k(& J):—
1

[0(& J)] (4.8)

A Pk bond is represented by k potential lines joining i
and j as shown in Fig. 5. The difference between graphs
composed of f bonds and Pk bonds is that in the latter
case an arbitrary number of potential lines between each
pair of points is permitted.

Then one defines the quantum effective potential
p' (x, —xz, g'„g'2) by the chain summation of p, bonds
represented in Fig. 6:

FICx. 5. Pk bond (4.8) with k P=P, lines (4.2). The potential

P is denoted by a solid line and its arguments i =(y;,a;) and

j=(y~, a,. ), where both the x's and the a s are to be integrated-
over, by black points.

(xi x2~41~02) 4(xi x2~41~42)

+ g ( 2z) —fdy, . . .dyN fD(rz, ). . .D(rzN)
N=1

XP(xi —
yi k ~»4(yi —

y2 ~1 ~2) 0(yN x2 ~N Cz)

The main properties of p (xz —xz, g'„g'2) are established in Appendix C. In particular, its Fourier transform is given by
(C12)

P' (k, g„g'2)= f ds, f dsze

= f dsi f dsze

—iAk. I. p&(s
&

) —$2(s& )] —e
RPAk ~$1 $2 )

&2~ (~l &1 ~2 &2 ) ~ —ized'n &1 &2 efFe U GAPA k " (4.10)

where U RPA(k, n), defined in (Cl 1), is the limit of URPA(k, n ) when the Fermi statistics is suppressed. Subsequently
p' (x, gi, g'2) can be split as O'RPA( xn) into a short-range part corresponding to the n =0 term in (4.10) and a long-

range part [n %0 terms in (4.10)],

(x Cl Cz) 0s (x 41 42)+PL (x kl kz) (4.11)

The short-range part decays faster than any inverse power of the distance, while, for fixed g, and g'2 the long-range part
behaves as a dipolar potential [see (C20)],

lim iI)L (x, g'„g'2) = Ape —f ds, f dszh (s, —sz)[g', (si ).V][gz(sz) V]
/x/ ~ a) 0 0 x

(4.12)

where

h(s)=
nAO

e
—zinnsh ( n )

are again short ranged (see the end of Appendix C).
In particular, the correlation calculated with the chain

approximation

A"""(xi xz)—= —Po fD(ki) fD(k)4"(xi —x»ki 4)
and h(n) is given by (C17). However, after integrating
over either g', or gz, one finds that the potentials

(t)' (x,gi)—:fD(gz)p' (x,4i,gz)'
and

p' (x, gz)
—= fD(4i)p' (x,gi, gz)'

(4.13)

is rapidly decreasing. [In (4.13) po=2z is the density of
the system of noninteracting filaments with Boltzmann
statistics. ] Another way of proving this fast decay is to
note that S'"""(k)—=po+ p'T"""(k) coincides with SRPA(k),
the limit of the RPA structure factor when the Fermi

(xi, gi) (xz, ( )

G

(y, , ni)

2z

(yi, ~i) (yz az)

W

2z 2z
+ ~ ~ ~

FICx. 6. Effective potential P' obtained by the chain summation of P bonds defined in (4.9). An effective interaction P is denoted

by a wiggly line and a root point (x;,g';), where only g; is to be integrated over, by a white point, A weight 2z is associated with each

black point.
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statistics are suppressed.

Schain( k )
—S (4.14)

where IIp(k, s) is the Boltzmann limit of IIp(k, s) studied
in Appendix C. Inserting the expression of (C5) and
(Cll) into (4.15), we easily verify (4.14). Then, since
SRpA(x) is rapidly decreasing, so do SRpA(") a"d
pT"""(x). Finally, we note that in the classical limit
SRpA(k) reduces to the Debye-Hiickel form SDH(k),

llm SRpA(k)=SDH(k)=pp ppUDH(k)
A~O

(4.16)

Indeed, in this limit IIp(k, s) tends to —
Pp for any s [see

(C7) when A. ~O] while URpA(k, n =0)=$' (k, n =0)
goes to UDH(k) given by (C21) and (4.15) becomes equal
to SDH(k).

However the representation of the quantum electron
gas in terms of classical charged random filaments en-

Indeed, according to (2.9), (2.13), and (3.1), SRpA(k) reads

SRpA(k) = IIll(k s =0)
1 1—f ds, f ds II (k,s, )

0 0

X U RpA(k, s, —s2)IIp(k, —s2),
(4.15)

ables us to clearly exhibit the dipolar nature of the sys-
tem. When all chain resummations have been performed,
the cluster expansion of pT(1, 2) is restricted to the so-
called prototype graphs [8,9], where all lines correspond
now to the effective potential (4.9). Prototype graphs are
characterized by the fact that at least three effective po-
tential lines are attached to every point, except possibly
to the root points. The simplest diagram showing an
algebraic decay due to the underlying effective dipolar
forces (4.12) is the two bond graph shown in Fig. 7. The
contribution of this graph to (4.4) is equal [up to a factor
(2z) ] to

V2(xl x2»fl» f2) =I[( (xl x2» 41» 42) ]

According to (4.11),

V2(x)= fD(g, )fD(g'2)V2(x, g'„g'2)

(4.17)

behaves asymptotically as

lim V2(x)= —,
' fD(g, )fD(g'2)[pl (x, —x2, g'„g'2)]

)x(~m

(4.18)

Using (4.12) and the rules of Cxaussian measures (4.1), we
get V2' (x), the dominant term in the asymptotic behav-
ior of V2(x),

2

V2's(x)—:A, fD(g, )fD(g'2) f ds, f ds2h(s, —s2)[g', (s, ) V][g'2(s2) V]

2
h (v) t) 1

„(4~2v2)2
&

Bx Bx& lxl
vXO

2

(4.19)

In (4.19) we have used the properties h ( v =0) =0,
h(v)=h( —v), and

then

V"s(x)= B
(4.20)

f ds, f ds', ( [g', (s, )]„[g(s',)] ~ )e' "' " =5
0 0 4m v where B is a positive coefficient,

if v%0 and v'%0. Since

6

2
P2e2 + m h 2(v)

(47r v )
»2.

v&0

(4.21)

Equivalently, Vz's(k), the dominant nonanalytic part of
the Fourier transform of V2(x), behaves as lkl3,

V"s(k) =a
12

(4.22)

(x, , (, )
(x2, E2)

We note that if the Fermi statistics are neglected, the
lkl term in the expression (3.25) of II 1

"s(k, n =0) agrees
with (4.22), i.e.,

II a als( k n 0 )
—

p 2 V als
( k ) (4.23)

FICx. 7. V2 bond (=pz bond) with two p' lines (4.9).
Indeed, let us consider the limit of the Boltzmann statis-
tics for II1(k,n=0) defined in (3.13). In this regime
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II '"s(kn, = 0)=p 0
X4

'2
h (v)

(4m v )
~0

dq (4nPe )
[ (k )]2

(2~)' q (k —q)'

(4.24)

which is identical to (4.19) in Fourier space (up to a fac-
tor p o}.

Moreover, the algebraic decay (4.20) occurs at the or-
der A . Therefore, to calculate B at this order, it suffices
to replace h(v) by its classical value 1 (obtained by set-
ting AK D =0 in (C17)]. Since g+= I /(4m v )

= 1/(8)(90),

fi (Pe ) (4.25)

which is exactly the formula (7.27) of Ref. [1].
At this point, we could study the effect of the insertion

of the diagram of Fig. 7 on the asymptotic behavior of pT
in the Boltzmann regime, as we treated the effect of the
proper polarization insertion of Fig. 3 on S in the quan-
tum many-body perturbation theory (see Sec. II). We
rather show that the single diagram of Fig. 7 determines
the exact asymptotic behavior of pT in the semiclassical
limit (i.e., at the order iri in the Planck constant).

U Rp~(q, v) =P' (q, v) and, if v+0, its small-q behavior is

lim P'~(q, v)=h(v)UO(q)
Iql~O

[see (C15)], while, according to (C13), A, i(v, —v) given by
(3.19) tends to —

—,'poA, /4m v . Hence, in this limit the
dominant nonanalytic part of the small-k behavior of
II;(k, n =0) is

(4.26)

+ oo

In particular, P' (i,j)=P; (i,j)= g A'"g@"'(i,j) and so
n=0

gnyeF(n)( ~ j}
n=0

(4.27)

41 (x kl k2) UDH(x}

and the term in p (x, gi, g'2) which is linear in i' is

ye@1)(

1/2

(4.28)

We call (ih'", k) bond (or simply fi" bond) the contribution
(4.26) of order ih'" to a pk bond (i,j) Th. e bonds g+ ' of
order zero are called classical. Then, in order to examine
the behavior of a prototype graph at a given order m, it
suffices to consider all the ways of placing A" bonds,
O~n ~m, in such a way that the overall power of A is
precisely equal to m. For instance, a prototype graph at
order A is the sum of all the contributions of the same
prototype graph having exactly either one A bond or two
A bonds.

We say that a i'" bond is fast if g "'(xi —x2, $„$2) de-
cays faster than any inverse power of the distance
~xi —x2~. We also say that a fi" bond (i,j) has a classical
end if the point i (or j) is such that all other effective po-
tential lines attached to it are classical and so do not de-
pend on g'; (or g'J ), as it will be checked in (4.28).

We first consider the (ih'", I) bonds. Expanding the
effective potential in powers of iii, one obtains from (C21)
and (C22) that the classical limit of p' (x, g'„g2) is equal
to the Debye-Hiickel potential (independent of g, and $2)
associated with the density po,

B. Exact summation in the semiclassical limit f ds [41(s)—C2(s) ] ~ UDH(x) .
0

(4.29)

In this subsection, we calculate the exact asymptotic
behavior of the pair correlation (4.3) at the order h in
the Planck constant. The general strategy is as follows.
We first expand the + bond occurring in prototype
graphs in powers of A

Thus, the (iii", 1) bonds are fast for n =0, 1. On the other
hand, (4.12) shows that the (A'", 1) bonds, n & 2 may have
a dipolar asymptotic behavior. In particular, the asymp-
totic form of (ih', 1) bonds is given by (4.12) where h (s) is
replaced by its classical limit 5(s) —1[see (C17)],

lim P; '(x, g'»g'2)= — f ds, f ds2[5(s, —s2) —1][g',(s, ).V][g'2(s2).V]em2i P e 1

~x(~~ m O O x
(4.30)

However, all the (A'", 1) bonds are fast when integrated on
at least one of the internal variables g', of g2, as a conse-
quence of the same property for the full effective poten-
tial p' (x,g„g2) (see the final remark of Appendix C).

The properties of the (iri", k) bonds for k ~2 follow
directly from the expansion of (4.27) combined with the
fact that the bonds (4.28) and (4.29) are fast. When k ~ 2
and n ~4, one finds that all (i'", k ) bonds except for the
(ir2, 2) bond are fast, because all these bonds involve at
least one of the rapidly decreasing quantities (4.28) or
(4.29) as a factor. The (iri, 2) bond in turn is algebraic.

The dominant algebraic decay of Pz (i,j)=
—,
' [P' (i,j}] at

the order A comes from the square of the term of order
fi in (4.12), i.e.,

»m 4z "'(»ki k) =
2 [0i "(»ki 4)]' .

IxI
(4.31)

Note that, according to the definitions (4.17) and (4.26),
p2 (i,j)=V2(i,j) and the dominant algebraic decay of
pz@ ' is equal to V2's' '(x, gi, g'2), the term of order R in
V2's(x, g'„g'2) defined in (4.19),
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lim ]]] P' '(x g g )=&" ' '(x g g )
)x)~~

2

2 m

i 1 1f ds, f ds2[5(s, —s2) —l][g'](s] ).V][g'2(s2).V]
0 0 /x/

2

(4.32)

With this information, we can study the semiclassical
properties of a prototype graph (integrated on all the g
variables, including those of the root points). We first
note that the A expansion of a prototype graph is neces-
sarily even. Indeed, an odd term can only originate from

l kk'[p&($
&

) $2($2 ) ]the expansion of e ' ' ' ' in the effective poten-
tial (4.10). This term is necessarily also odd in g', and so
vanishes after integration in g because of the symmetry
D ( g) =D ( —g'). Consider now the fi" contributions
n =0,2, 4, of a prototype graph. Its classical value (n =0)
is rapidly decreasing since all bonds are fast (this is in fact
the standard classical Debye-Hiickel theory). The A' con-
tribution results from the occurrence of one A bond or
two A bonds, all other bonds being classical. In the first
case, the fi bond has necessarily classical ends and hence
will be integrated on its g' variables (since classical poten-
tial lines are independent of the g' variables). Therefore
the corresponding decay will be fast [see the remark after
(4.30)]. In the second case the decay is also rapid since all
(fi, k) bonds are fast. We thus conclude that at the order

all graphs are rapidly decreasing. We now turn to the
contribution of a prototype graph; this contribution

can result from the following situations.
(i) Four A' bonds: this gives a rapid decay since all A'

bonds are fast.
(ii) Two fi bonds: each of them must have at least one

classical end, and so will be integrated on one of its g
variables. This leads to a rapid decay.

(iii) One A' bonds and one ]]1 bond: the decay is fast for
the same reasons as in (i) and (ii}.

(iv) One fi bond and two ]]i bonds: the only dangerous
configuration of these bonds in the graph is that of Fig. 8
where the fi bonds are attached to both extremities (i,j}of
a (]]1~,1) bond [remember that fi bonds and (A', k) bonds,
k ~2, are fast]. In all other configurations, the (]]'i, 1)
bond has a classical end, hence giving a fast decay for the
same reasons as in (ii). If the configuration of Fig. 8
occurs, we distinguish two cases.

(a) Suppose first that the graph is separated into two
disjoint parts with root points x, and x2 by removing the
(]]],1) bond. Then the value of the graph is necessarily of
the form

dy; dy Da; Da~ Gi x&
—y;, a;

XP; '(y; yj, a;,a )G2(yJ. ——x2, a~ ), -

(4.33}

or, in Fourier representation,

D a; D aj Gi k, Q.
~ k, a.,a~ G2 k, a~

(4.34)

where Gi and G2 represent the total contributions of the
parts of the graph attached to (l, i) and (j,2). Because of
the rotational invariance of the D(a) measure, G, (k, u)
(a =1,2) is invariant under the simultaneous rotations of
the vectors k and a. Moreover G, consists of classical
bonds and one fast ]]] bond, which is linear in a [see
(C22)]. This implies that G, has to be of the form

G, (k, u)=G, (k )k. f ds a(s) (4.35)
0

where G, (k ) is infinitely differentiable at k=O. Insert-
ing (4.35) and the Fourier transform of (4.30) and (4.34),
we see that the a integration produces a k factor, i.e.,

fD(a) k f dsa(s) = k
0 12

which kills the Coulomb singularity of (4.30). Hence,
(4.34) has no singularity at k=O and the convolution
(4.33) is rapidly decreasing.

(b) Assume now that the graph remains connected
when the (6, 1) bond is suppressed. Then the value of
the graph is of the form

f dy, f dy fD(a;)fD(a )

XF(x„xz,y;, a;,y, a )g '(y; —y, a;,a ), (4.36)

where F(x],x2, ,y;, a;,y, a ) is the Mayer expression as-
sociated with a graph that is connected with respect to
the root points x„x2 and that is made of classical and A

bonds. Since these bonds are fast, the value of the latter
graph is rapidly decreasing as ~x] —x2~ ~ oo and the same
will be true for (4.36).

(v) It remains to examine the case where the graph has
one A' bond, the others being classical. The (]]],k ) bonds
with k ~ 3 are fast and a (]]],1) bond cannot lead to an
algebraic decay since it has classical ends. Hence the
only bonds susceptible of producing an algebraic decay
are the (A, 2) bonds coming from the insertion (4.17).

To analyze their effect, it is convenient to define the
contribution H(x, —xz, g„g'2) of the prototype graphs
that remain connected when an insertion (4.17) is re-
moved. Furthermore, we define

K(x] —x2, $],$2) =H(x] —x2, $'], g'g)

+p(x], g'])5(x] —x2)5$ g (4.37)
FICx. 8. Configuration with two A bonds attached to one A'

bond. Every (fi",k) bond is represented by a crenelated line. In (4.37), p(x„g] ) is the contribution of the set of
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all graphs with one root point (xl, gl). By translation
invariance p(xl, g'1 ) is independent of xi and

D
& p x&, &

=p is the electronic density. Then one

can write for

S(xi —x2) =pT(x, —x2)+p5(x, —x2)

an exact Dyson equation, which reads in Fourier repre-
sentation

S(k)= fD(kl) fD(a2) «k kl f2)

+ g fD(a, ) . . D(az)D(al) D(aN}
N=1

XI(.(k, g'„a, )V2(k, a„a', )E(k,a'„a2) V2(k, a~, aIv)E(k, a&, $2) (4.38)

As shown before, the algebraic decay of pT at the order
can only result from the occurrence of one (A', 2)

bond, all other bonds being classical. If such a graph
remains connected by removing this (iri, 2) bond, the de-

cay will be rapid according to the same argument as that
given in (iv b). Hence, in view of the definition of H, the
algebraic decay of pT is due to the (A', 2) bond appearing
in the V2 functions in (4.38). Thus p'T'" (k), the dom-
inant nonanalytic part of a pz (k) at the order A', is ob-
tained by making all functions classical in (4.38) except
one of the V2 factors. The dominant nonanalytic part of
a V2 term, after integration of the g variables of its end
points, has already been calculated in (4.22) and (4.25).
Performing these operations in (4.38), one finds

g4 alg(4)(k) Valg(4) (k) y n [ Vcl(k) ]n
—1[~el(k) ]n+ 1

n=1
2

Valg(4) ( k )
1 —V"(k)K "(k)

lim S' '(x)= 7
jxf~ oo m

1

/x/10
(4.43)

which has been found in Ref. [1]by different methods.
It is worth noting that in (4.39) the screening proper-

ties expressed by the classical Stillinger-Lovett sum rule
(4.41) modifies the 1/~x~ decay of the squared dipolar
effective potential (4.19) to 1/~x~' for the full charge-
charge correlation function. This was already pointed
out in Ref. [1]. Similarly, in Sec. III B, the same change
from I/~x~ for U' (x, n =0) to I/~x~ for S(x, n =0)
was due to the quantum sum rule (2.15) together with the
resummations implied by the Dyson equation (2.11).

Moreover, in our quantum Mayer bonds formalism, it
is easily seen that the analog of the ladder diagram of or-
der X + 3 introduced in Sec. III B involves the Xth power
of the dipolar effective potential and so leads to a faster
decay than the diagram of Fig. 7.

(8!/22r )1/~x~', (4.42) corresponds to the following spa-
tial decay of the structure function:

2

—Valg(4) (k)[Scl(k) ]2 (4.39)

In (4.39), V2' and K" are the classical limits of (4.17) and
(4.37) and

S"(k)=I(."(k)+K"(k) g [ V"(k)K "(k)]"
n=1

K"(k)
1 —V"(k)K "(k) (4.40)

lim S"(k)= ~k~
1

0 4m pe

one obtains

X4p(,""(k)=
(8)(4!)240 I

2

(4.41)

(4.42)

Since the inverse Fourier transform of ~k~ is

is the classical structure factor of the one-component
plasma, represented by the classical analog of the Dyson
equation (4.38). Finally, inserting (4.22) with (4.25) into
(4.39), as well as the small-k behavior of S"(k) (the
Stillinger-Lovett sum rule [10])

V. CONCLUDING REMARKS

In this paper, we have given another evidence that
there is no exponential screening in the quantum electron
gas at thermal equilibrium. This evidence relies on the
existence of graphs in the many-body perturbative expan-
sion that do not decay exponentially fast at large dis-
tances. Equivalently, the frequency components
U' (k, n) of the eff'ective potential and the frequency
components S(k, n) of the structure function as well as
the inverse dielectric function I /e(k) are not analytic at
k=O. Although we did not control the full diagrammatic
development, we give plausible arguments that
U'~(k, n =0), S(k, n) and I/e(k) have, respectively, a
~
k ~, ~

k ~, and
~
k

~
term in their small-k expansion corre-

sponding to I/(x(, 1/(x(', and I/(x( spatial decay. We
note that the decay of S(x) obtained here from perturba-
tion theory is faster than I/~x~ in agreement with the
constraints imposed by the exact hierarchy equations for
the imaginary time Careen's functions [1]. We also see
that the introduction of the Fermi statistics, at least as
far as the graph of Fig. 3 and the whole class of 1adder di-
agrams (see Fig. 4) are concerned, does not modify quali-
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tatively the semiclassical result (1.2).
As shown in Sec. III A, SRP&(x) satisfies the sum rule

(2.15) with respect to the density of the free gas. This is
no more the case when the single additional graph II& of
Fig. 3 is taken into account. In fact, the validity of (2.15)
requires AQ(n)=0 for n%0 [see (2.26)], but it can be
checked that the contribution of II l to A Q( n ) does not
vanish. It is an open question to find a consistent model
of S(x) that simultaneously satisfies the basic screening
sum rules together with the correct algebraic asymptotic
behavior.

The conclusions of Secs. II and III hold under the ad-
ditional assumption that the functions have no other
singularities for real values of the components of k
difFerent from zero when the temperature is strictly posi-
tive. The situation is drastically different at zero temper-
ature because of the sharpness of the Fermi surface in
perturbation theory. Already the structure factor of the
free Fermi gas in its ground state has a ~k~ term due to
the exchange term [11]. This causes a decay as slow as
I/~x~ . Moreover, the effective potential in the zero-
temperature RPA treatment of the Coulomb gas shows
the long-range Friedel oscillations cos(2k+

~
x

~ ) /~ x ~,
where kF is the Fermi wave number. The absence of ex-
ponential screening will still be reAected by the oc-
currence of algebraically decaying terms of higher order,

but this will be completely hidden at large distances by
the longer tails linked to the nonsmooth effects of the
Fermi statistics. The study at low temperature of the
crossover regime between these two types of behaviors
(i.e., between algebraiclike decays due either to Fermi
statistics or to Coulombic screening) would be interest-
ing.

We emphasize once more that the lack of exponential
screening has a quantum-mechanical origin which is
mostly clearly exhibited in the semiclassical treatment of
Sec. IV. As shown by the functional integration formal-
ism, because of their intrinsic quantum Auctuations, point
quantum particles behave effectively as extended
random-charge distributions capable of multipolar in-
teractions. Moreover, the quantum potential (4.2) is not
identical to the classical electrostatic pair potential be-
tween two charged wires which would be of the form
yclassical( X

1 1

ds, ds2UQ(xl x2+A4i(s, ) —Ag'2(s2)) . (5.1)
0 0

According to (C5) and since

f dsi f ds2IIQ(k, si —s2)=IIQ(k, n =0),
it is easily verified that the effective chain potential corre-
sponding to (5.1) is given by

p;ih", ,'„'"'(k,g„g'z)= UQ(k) 1+ g [UQ(k)IIQ(k, n =0)] f ds, f ds2e'
N=1

4+Pe 1 1 l'Ak [$&($
&

) pp(S2 )]
ds ) dspe

k 4irf3e —pQAQ(k, n =0)
(5.2)

Clearly (5.2) is of Debye-Hiickel type as ~k~ ~0 and the
truly classical system defined by (5.1) has the property of
exponential screening. The quantum potential (4.2)
differs essentially from (5.1) by the fact that it involves
only "equal time" contributions. Thus, the nonexponen-
tial screening discussed in this paper is a pure quantum-
mechanical effect with no classical analog.

Note added. After the completion of this work, N. W.
Ashcroft kindly informed us of two papers [A. C. Maggs
and N. W. Ashcroft, Phys. Rev. Lett. 59, 113 (1987); D.
C. Langreth and S. H. Vosko, ibid 59, 497 (1.987)], in
which the diagram of Fig. 3 is considered and shown to
have a I/~x~ decay for the electron gas at zero tempera-
ture.
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APPENDIX A

In this appendix we retrieve the small-k expansion of
IIQ(k, n) at the order k by methods that will also be used
in Appendix B.

The Fourier transform of IIQ(k, s) defined in (3.1) reads

IIQ(k n )—:IIQ(k CO2 )

+ oo

=2
3 Go p+km+n Go p m

(2m. )

+ QO

=2f g GQ(p+k, m )GQ(p, m —n), (Al)
(2~)

where GQ(p, m ) is the s-Fourier transform of (3.2),
defined as in (2.7),

G (p, )=—G (p. . .)= 1

im(2m+ I)—(k p /2 —Pp)
(A2)

According to the definition (3.1) IIQ(x, s ) = IIQ(x, —s), and
therefore IIQ(k, n ) =IIQ(k, n). In order—to preserve this
parity property through the small-k expansion of
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II0(k, n ), we rather consider the following expression:

11 (k, n)

Pz(p;n) =&„oyz(p),
1

P3(p n) 5,0y3(p)+(1 ~,0) ~ yz(p)
2imn

(A9)

=2 -- - EI'„d
(2m)

X Go(p+k, m )Go(p, m +n

(A3)

1
P4(P;n) =&„oy4(P)+( I —&„0) . y3(P)

2l 7771

where EP„[f(m, n)] denotes the part of f (m, n) which is
even in n:

EP„[f(m, n)] —= [f(m, n)+f (m, —n)]/2 .

According to (A2) the small-k expansion of
Go(p+k, m ) is very simple:

1+
4~ n

with y~(p)= Pz(p—;n =0). The expression (3.7) of yz(p)
follows from the usual method of calculating frequency
sums by contour integration (see Ref. [4], Sec. 25) and
the remark that

G (p+k, m)= g vf(p)[G (p, m)]i+'

with

vi, (p)= [(p+k) —p ]=A, (p k+ —,'k )

(A4) 1

iver(2m + 1)—g

gN —1

(A10)
(X—1)! dg+ ' i~(2m +1)—g

Because of the rotational invariance of Go(p, m) we can
use the identities

A, kf dpvi, (p)f(lpl)= fdpf(lpl),

For instance

yi(p) =no(p)

yz(p) = —no(p) [1—no(p) ],
(Al 1)

A, pf dpvi, (p)flp )=k k f dp f(lpl)+O(k'),

and we obtain in this way

cjp A, k
II0(k, n)=2f EP„Pz(p;n)+ P3(p;n)

(2w)
" ' 2

(A5)

with

A,
2 2

+A, k P4(p;n) +O(k )

(A6)

P~(p;n) = g [[Go(p, m)] 'Go(p, m +n)] . (A7)

To evaluate Pz(p;n) we first decompose the products
of Go's into sums of simple fractions by using

Go(p, m)Go(p, m +n)

[Go(p, m) —Go(p, m +n)], if nXO . (AS)
1

2l 777l

This leads to

y3(p) =—,'no(p) [1—no(p) ][1—2no(p) ]

y4(p)= —
—,'no(p)][1 —no(p)]I 1 —6no(p)+6[no(p)] ] .

An integration by parts combined with (A10) leads to

2p 2

fdI 1 f d py nr i (p ) . —(A12)

Finally, by using (A9) and (A12) and retaining only the
even parts in n of P~(p;n ) in (A6), we obtain (3.5).

APPENDIX B

In this appendix, we study the small q&, q2 expansion of
Ao's(q„qz, n„nz), defined in (3.18), to second order in
q&.q2 and we derive a useful property of
Ao(q„. . . , q~, n „.. . , n~) defined in (3.27).

In order to deal with A' o(qs„q nz„n )zwe first check
the property (3.15) by translating the dummy variables m
to m n i

—nz—and p to p —qi —
qz in (3.14), then chang-

ing p into —p and using Go( —p, m)=G0(p, m). As in
Appendix A, order to preserve the parity property (3.15)
through the small qi, qz expansion of Ao(q„qz, n „nz), we
rewrite the latter as

Ao(q„qz, n„nz)= f EP, , X [Go(p m)G0(p+q„m+ni)G0(p+q, +qz, m+n, +nz)
(2~)

Go(p m )Go(p+qz, m+nz)Go(p+qi+qi m+ni+nz)]

where EP„„[f( m, n „nz ) ] denotes the part off ( m, n „nz ) which is simultaneously even in n, and n z:

EP„„[f(m,n„nz)]= ,'[f(m, n„nz)+—f(—m, n„nz)]—. —

(Bl)
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Ao(q„q2, n „nz ) = EP„dp
(2ir )

Moreover, in order to simplify the subsequent expansions of q, and q2, we translate the dummy variable p to p —q, (to

p —q2) in the first (second) sum of (Bl) and rewrite the latter as

[Go(p qi, m)Gp(p, m+ni)Go(p+q2 m+ni+n2)

+Gp(p —
q2, m )Gp(p, m+n2)Gp(p+q„m+n i+n2)] (82)

After expanding the propagators Gp's in small q, and qz according to (A4), we find that the only terms in

Ao(qi, q2, n„nz) which are proportional either to a constant, to qi q or to (q, .q2) result from the following equalities
for a spherically symmetrical function f ( p~ ):

A, pf d pU, pq f( pl) = —&'q, q, f dp f(lpl)+~' —,'qiq2 fdpf(lpl),
(B3)

g4 4 g4 4

fdp(U-, )'(U, )'f(lp )=~'—,'(q2 q2)'f dp f(lpl)+~' —,'qiq2 f dp f( pl)+0(qiq2) .

After some translations of the dummy summation variable m in (82) and collecting identical series, we obtain

Ap (q„q2, v, n —v)=2 EP „L3(p;n,v) —
A, q, .

q~ L~(p;n, v)+A, (q, qz) — L7(p;n, v)alg dp . 2 ~p . 4 22 ~ I
(2ir ) 3 5

with

(B4)

L2&+, (p;n, v)= g I[Go(p, m)] Gp(p, m+v)[Gp(p, m+n)] (B5)

Decomposing again products of Go s into sums, we obtain in the same way as in Appendix A

EP „[L3(p;n,v) ]=5„o5 oy3(p),

EP „[L~(p;n, v) ] =5„p 5 py5(p)+( I —5, p)

EP„„[L7(p;n,v)]=5„p 5 oy7(p)+(I —5 p)
r5(p)

(1—5„p)
(5 p+5 „)y3(p)

4m n
(B6)

—(5 p+5 „+(1—5 p)4~~n 2 + + 4~2n 2 4m nv
+(1—5 „), y3(p),

1

4ir n(n —v)

with the y,v(p)'s defined in (A9). By using the relation (A12) for N =3 and 5 and the similar relation

f X4p4 3
&iv(p) (N 1 )(N 2) f dpi ii' —2(p)

for %=3,5, 7 a straightforward calculation leads to

(87)

alg I4 Iz
Ap (qi, q2, v, n —v)=5„p5 p2I 3+A qi q2 5„p 5 p +(1—5 p)

4w v

I2
(5v, o+5v, n )

4m n ' ' 4vrn

2I 5 I 3/3
+A, (q.q2) 5„p 5 p +(1—5 p)

2I i

(4~v )

(1 —5„p)
4m n

6I) 2I) 2I i—(5, p+5 „) +(1—5 p) +(1—5„„)
4m n 4~ nv 4m. n(n —v)

(BS)

We now prove the property (3.28) of Ap's(qi, . . . , q&, ni, . . . , n&) According to . the symmetries exhibited by the
definition (3.27), the small q, 's expansion of Ap(q„. . . , qz, n „.. . , nz) to second order in the q, 's has the following
form:

Ao(qi q~ ni . n~)=~o(ni n~)+ g ~i(n; n, lInk]k~;, )q;.q, + &pi(n;I [ni, ]k~;)lql'
lWJ l

(B9)
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where the ellipsis represents terms of fourth order in the q s and where Ap(n„. . . , n&) [A, ,(n;, n
~ [nk )k~, . ) and

pi(n; l [nk j k~i) ) is symmetrical under any permutation of n „.. . , nz (of the nk's). Moreover

A, ,(n;, nj I [nk Jk&, J ) =A, ,(nj. , n, I [nk )k&, 1 ) .

Thus, when studying the properties of Ap(q„. . . , q&, n i, . . . , nz) at the second order in the q; s, it is sufficient to con-
sider Ap( q, =0,qz, . . . , q&, n „.. . , nz ). We rewrite (3.27) with q; =0 as

A p(q, =O, q„. . . , q~, n, , . . . , n~)= g Gp(p, m)Gp(p, m+n, )G,(p+q, m+n, +n )
dp

(2~)' ~~n„,
X XGp(p+q + . +q, m+ni+n + n„)

N —1

+ g Gp(p, m)Gp(p+q, m+n )

X XGp(p+q + . + q, m+n + +n )

XGp(p+q„+ +q, m+n, +n + . +n„)
XGp(p+q + +q, m+n, +n„+ . . +n )

X . .XGp(p+q +. . . +q, m+ni+n + . +n„)
+Gp(p, m )Gp(p+q, m+n )

X XGp(p+q + . . +q, m+n + . +n )

XGp(p+q + +q, m+n, +n + . .+n ) (B10)

where II~, denotes the group of the permutations of [2, . . . , N J.
Assuming now that n, %0, we can use the relation (A8) for each product

Gp(p+q„+ . +q, m+n + . +n )Gp(p+q„+ . . +q, m+n, +n + . . +n )

occurring in (B10) and rewrite the summation over k as a difFerence. Then changing the dummy variable m to m n, —
in the term involving the product

Gp(p, m+n, )Gp(p+q, m+n, +n ) . Gp(p+q + . . +q, m+n, +n + . . +n ),
we see an exact cance11ation of all the terms. Thus we find that

Ap(ql q2 qN nl ' ' ' nx) i n1+

Hence the symmetrical coefficients in (B9) necessarily have the following structure:

Ap(n„. . . , nz)=Ap5„p 5 p if N~2

(Bl 1)

A, ,(n;, nJI[nk Jk~;))=A, ,(n„n;) Q 5„p if N~3 .
kAi,j

(B12)

APPENDIX C

In this appendix we show how the effective chain potential (4.9) introduced in the Boltzmann statistics regime is re-
lated to the RPA effective potential (3.4) and we study some of its properties.

In Fourier representation, the effective potential (4.9) reads

P' (k, g„gz)=P(k, g„g'2)+ g (
—2z) J D(ai) D(az)$(k, g„a, )P(k, a„az). . . P(k, a~, g2),

N=1

where P(k, g„g'2) is the k Fourier transform of (4.2).

P(k, g, ,x, ) = U, (k)f ds e

(Cl)

(C2)



ELECTRON GAS BEYOND THE RANDOM-PHASE. . . 4909

—ii k [g((s( ) —g~(s2 )] eff rs) $2

where

with Uo(k) given by (2.12). Hence, one finds

1 1
(t)' (k, g(, $2)= f d. , f d...

0 0
(C3)

([)"(k,s, —s, )=U, (k) 5(s, —s, )+U, (k)ll, (k, s, —s, )

+ g [U (k)] f do, . f dcr, II (k,s, cr, )—II (k, cr, o—)
. II (k,o,—s ), (C4)

N=2 0 0

In (C4) we have introduced IID(k, s, —s2) which is
defined as the limit of IIO(k, si —s2) in the Boltzmann
statistics regime (where A, k /2 » Il)(c ), and we have
made the identi6cation

11 (ks, —s )= —p fD(a)e [ ' ' (CS)

where P0=2z=2e~"/(2nA, )
/ is the density of a classi-

cal noninteracting gas with two internal degrees of free-
dom, with chemical potential p and Boltzmann statistics.
Indeed, when the Fermi statistics is suppressed, the free
propagator (3.2) becomes

II()(k, s) = IID(k, n)e (C9)

with, according to (C7),

II (k n)= — f ds e0

Comparing (C7) with (CS) leads to the identification (C5).
Since IIo(k, s) is periodic with period 1, like IIO(k, s), it

can be represented by the Fourier series

G (p, ) = —e(s)e

+g( s)e
—(A. p /2 —ii)r, )(s+))

By introducing (C9) and (C4) and using the convolution
theorem, the series (C4) can be summed with the result

and therefore, according to (3.1), the free polarization in-
sertion tends to

jef(k S) y (treff(k n)e
—2irrns

(k s )
— —

e (i & /&)Isl(1 Isl)
o ~ Poe (C7) with

[note that we also have po=lim 260(x=O, s)]. On

the other hand, since the measure D(a) is Gaussian, one
finds easily with the help of (4.1) that

U()(k)
(kn)=:U~p)((k n)

1 —U (k)II (k, n)
(Cl 1)

ii..[a(s()—a(s2)] —(i. /2)( [k.[a(s()—a(s2)]I )~ ~Dae ' ' =e
—(A. k /2)ls& —s21(1—

Is&
—s21)

(CS)
I

where U Rp~(k, n) is the Boltzmann limit of U Rp~(k n).
The last identification in (Cl 1) comes from (3.4). Finally,
we obtain

(tr' (k, g„g~)=f ds, f ds2e
—iik [g((s()—g&(si)] ~ —(2rrn(s( —s2) —effe RPA (C12)

The long-wavelength behavior of (]()' (k, n) = U Rp~(k, n)
is easily investigated. In the regime where the Fermi
statistics are suppressed A, p /2»Pp and, according to
(3.3), no(p)~e~("(e ' P / ') while 1 —no(p)~1. Then,
according to (3.6), (3.8), and (All),

[We note that (C14) can also be verified by expanding
directly (C10) for small k's. ] In the same way, by taking
the Boltzmann limit (C13) in (3.9), we obtain

lim P' (k, n)=5„0UDH(k)+(1 —5„0)UD(k)h(n),k~o
Po Po Po

and 1"3~2' 2' 4

and the limit of (3.S) is

II()(k, n)= —
p() 5„0(1——,(, A, k )

(C13) (C15)

where UDH(k) is the Boltzmann limit of UDH(k). Ac-
cording to (3.11), (3.12), and (C13), U DH(k) is the
Debye-Hiickel potential associated with the density po
and the renormalized charge e *= e /+1 —(K D A, ) /12,

+(1—5„()) 2 2A, k +O(k ) .
4~ n

4m
U DH(k) =

I 2+I D'

(C16)

(C14) with (c D
=+4~1lpoe * . Similarly, h (n ) is the Boltzmann
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limit of h (n) given by (3.10),

h(n)= 1

I+(KD X /4m n )

with K D =')t/4irPpoe .

(C17)

Therefore, one sees that only the zero-frequency com-
ponent of the effective potential is screened. This sug-
gests to split {b' (k, g'i, g2) given by (C12) into two parts,
singling out its zero-freqency term. This leads to the
decomposition (4.11)with

and

Ae2

k' 4~13—e'II, (k, o)
(C18)

{b'(kg' g')=f ds f ds (e ' ' ' ' —
) g e ' 'P'(kn).

0 0
n&0

(C19)

It is clear on (C18) that {bs (k, g'„g2) is an infinitely differentiable function of k; therefore, iI}s (x, g'„g2) decays faster
than any inverse power of ~x~. To determine the long-range behavior of PL (x,g's, g2), we examine the most singular—iA.k. [g'](S ) ) —g'2(S2 ) ]contribution of (C19) as k ~0. One obtains it by using (C15) and by expanding the factor (e ' ' ' ' —1) in
(C19) to second order in k (the first order does not contribute since Iods e ' "'=5„o)with the result

z i i [k g'i(si )][k.g(s2)]
hm PL (k, g»$2)=~ 4rrPe f ds, f &s2 2 h(s, —s2),

o o o
(C20)

where Finally, since D ( g ) is Gaussian,

h(s)= h (n)e 2inns— D ( g )e i i.k g( s )
—{i. k /2 ) ~

s
~ ~

1 —s
~

p ~& po ~

2

(k kl k2) 2 o2 = UDH(k)
k +RD

(C21)

n&0

This leads to the dipolar behavior (4.12).
One sees that the singular term (C20) occurs at the or-

ders A'", n ~ 2, because of the A, prefactor. Thus the clas-
sical limit of the effective potential, P'@ )(k, g'), $2), is ob-
tained by setting A, equal to 0 in Ps (k, g„g'2). According
to (C18) and (C10), {b'@ )(k, g'„g2) coincides with the
Debye-Huckel potential associated with the density po

according to (C7); then integrating (C19) on g, gives a
factor

—[IIo(k,s, )/po]e ' ' —1 .

Since

—[II (k, s, )/p ]=1+0(k )

[see (C14)] and

with KD = "1/4vrppoe . The term linear in t)1 is

gyeff(1)(k g g )
r

= UDH(k)( iX)k f d—s[(',(s) —g2(s)]
0

(C22)

n&0

integrating (C19) on g', kills the Coulombic singularity
1/k of i))' (k, n) for n%0. We conclude that after in-
tegration on one of its g' variables, the effective potential
becomes short range.
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