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Density-matrix theory of recombination
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A general formulation for calculating the recombination probability from a system consisting of
many autoionizing states interacting with many continuum states is given. The formulation is ap-
plied to obtain the recombination probability from two continuum states coupled to an autoionizing
state; Explicit expressions for various fundamental processes contributing to recombination proba-
bility are also given.

I. INTRODUCTION

The physics of the dielectronic-recombination (DR)
process, which involves the capture of a free electron by
an ion to form a doubly excited state that then radiatively
stabilizes to end up as a bound highly excited Rydberg
state, has attracted much attention in recent years. An
excellent review was given in 1976 by Seaton and Storey'
summarizing the theory and importance of DR in appli-
cations. A general theory of DR was developed by Bell
and Seaton. The DR process in a system involving a
single-electron continuum state interacting with a single
discrete state has been studied in detail by Alber, Cooper,
and Rau, and it was shown that the total recombination
probability has three contributions coming from (i) direct
decay of the electron in the continuum state to the bound
state (RR), (ii) decay of the continuum electron to the
bound state via the autoionizing state (DR), and (iii) the
interference between the above two processes.

A unified description of radiative and dielectronic
recombination in a system consisting of single-electron
and photon continua interacting with a single autoioniz-
ing state was developed by Jacobs, Cooper, and Haan,
using the projection-operator techniques to construct the
transition operator for the electron-ion photorecombina-
tion process. In this method one needs to calculate the
transition amplitude for each individual process and ob-
tain the total transition amplitude by summing over all
the allowed channels. The Feshbach formalism of
projection-operator techniques was recently utilized by
I.aGattuta to study the effects of overlapping resonances
in electron-ion recombination, and it was found that
these systems show a small reduction in the DR cross
section. Haan and Jacobs have also shown how
projection-operator methods can be used to obtain the T
matrix for electron-ion photorecombination processes in
systems having a limited number of discrete states and
continua. As a further application of this work, Haan
showed how generalized Fano parameters can be intro-
duced to characterize a line profile for a system consist-
ing of a single autoionizing state, a single-electron contin-
uum, and one final state. Haan also applied the T-matrix
formulation to study the recombination profiles when
more than one electron or photon continuum was in-
volved.

The effects of external fields on the DR process has
also been extensively studied. ' Using the techniques
of quantum-defect theory, Harmin extended the work of
Bell and Seaton to include the inhuence of an arbitrary dc
electric field, and he found that there was a considerable
enhancement of the DR probability. The effect of plasma
electric microfields was studied by Davis and Jacobs,
and it was found that the DR probability is strongly field
dependent owing to the mixing of different angular
momentum states. In a previous study' we had exam-
ined the effects of an external dc electric field on the
recombination from coupled states. We showed that the
recombination would also exhibit many interference
effects, which occur in autoionization via coupled states.

For many situations, particularly those involving many
events of radiative decay, the density-matrix framework
is better suited. For example, if one were studying recom-
bination in the presence of laser fields, then one has the
possibility of the following processes repeatedly occur-
ring: recombination, absorption of laser photon, autoion-
ization, recombination. Agarwal, Haan and Cooper'"
studied a closely related system using the density-matrix
method. Density matrix methods are also advantageous
if one is interested in considerations of photon statistics.
Note that recently there is considerable interest in the
study of laser action' ' using autoionizing states. ' It
is known that a complete study of laser action can best be
carried out in the density matrix framework. Thus the
problem of laser action using autoionization and recom-
bination processes would require density matrix treat-
ment of recombination.

In this paper we present a general density-matrix for-
mulation for calculating the recombination probability
from a system consisting of many autoionizing (AI) states
interacting with many continuum states. We demon-
strate how the density-matrix framework can be used to
account for different radiative decay processes. To keep
the analysis simple, we neglect the presence of external
fields. The organization of the paper is as follows: In
Sec. II we present the density-matrix formulation of the
recombination. In Sec. III we present the solution of the
density-matrix equation. In Sec. IV we apply the results
of Secs. II and III to obtain the recombination probabili-
ty for a system involving two continuum states coupled to
an AI state and decaying to a bound state. We also give
the physical interpretation of various terms in the recom-
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bination probability. Finally, in Sec. V we calculate the
total recombination probability for the two continuum
systems. The relation of our results to recent works is
also established.

H = —d-E

where

d= g Jd IlaE )&fldE. +H c.

(2.4)

(2.5)

II. DENSITY-MATRIX THEORY
OF RECOMBINATION

(2.1)

where H~ and Hz are the unperturbed atomic and radia-
tion part of the Hamiltonian and H~z gives the interac-
tion part which is responsible for recombination. The
different parts of H can be written in the form

~, = & JE.laE. &&aE.ldE. +EI)f &&f1,

HR X ~ksuj s~ta.
ks

(2.3)

In this section we present a general formulation to ob-
tain the recombination probability in a system consisting
of many continuum states interacting with many autoion-
izing states and decaying to a single final bound state.
We will derive a master equation describing the time evo-
lution for the atomic density operator and use this master
equation for calculating the recombination probabilities.

We wi11 assume that the diagonalization of the part of
the Hamiltonian that accounts for the coupling of the au-
toionizing states with the continuum states has been car-
ried out with the result that we have many orthogonal
continuum states denoted by laE ) (a represents the
continuum index and E the energy of the continuum)
decaying via spontaneous emission to the bound state
lf ). In recombination processes it is assumed that ini-
tially the incoming electron is captured into a high-lying
state of the ion; this electron now makes a transition to
the bound state by spontaneous emission of photons. For
our mode1 system if we assume the initial state of the
atomic system to be the continuum state laE ), then the
various available channels through which the electrons
can go to the bound state lf ) are as follows: direct tran-
sition from the state laE ) to

lf ) (this process is re-
ferred to as radiative recombination) and transition from
laE ) to one or many AI states via configuration in-
teraction followed by a decay from the AI state to the
state

lf ) (this process is dielectronic recombination). In
the other process which arises due to the presence of
many continuum states, the electrons make transitions
from laE } to one or many continuum states by
configuration interaction and then via spontaneous emis-
sion decays to the bound state

lf ). Thus we see that
there are many channels available for the incident elec-
tron. The recombination probability to the state

lf ) in
our approach can be obtained by calculating the density-
matrix element p&&. The formulation automatically in-
cludes all the interference effects between different chan-
nels of radiative decay. In Sec. III it will be shown that
the recombination probability apart from having contri-
butions from the fundamental processes also has contri-
butions which arise due to the interference between
difFerent processes. The total Hamiltonian for our system
has the form

is the dipole matrix element connecting the continuum
state and the state

lf ) and
1/2

2vrckE=i g ek, ak, e' '+H. c. (2.6)

is the mode expansion for the quantized electric field.
Here L is the volume in which the mode is quantized,
Ek is the polarization, k the wave vector, and ak, and ak,
are the photon annihilation and creation operators. In
Eq. (2.5) the dipole matrix elements are implicit func-
tions of the energy E . The Hamiltonian (2.4) can be
written using (2.5) and (2.6) in the interaction picture
after making the rotating-wave approximation as

ksH~R(t)= —pe„, Ata„,gk, e
ks

A~t(t)= g Jd.~laE. &&fle ' dE. ,

(2.7)

(2.g)

' 1/2
2mck

gks ~ L3
eik. r (2.9)

Pa(t)=TrRP&+R(t) . (2.11)

We will see that the knowledge of p„(t) is sufficient to
calculate the recombination probability. At the begin-
ning of the interaction, we assume that the total density
matrix is a product of atomic and field density matrices,
1.e.,

P~+R(0)=p~(0) R(o» (2.12)

where p„(0) and pR (0) are the initial states of the atomic
system and radiation field, respectively. Initially, the ra-
diation field is in a vacuum state, i.e.„

p «)=lI0] && [0Il (2.13)

i.e., all the modes are empty. The initial atomic state
pz(0) is left arbitrary. We solve for the total density
operator of (2.10) using the projection-operator tech-
niques and obtain an equation for the atomic density
operator p „(t) alone. The reduced density-matrix equa-
tion is obtained under two standard assumptions: (i) The

Thus in the recombination process the atomic system
makes a transition from the "diagonalized" continuum
state laE ) to the state

lf ) and a photon is emitted.
I.et p„+R(t) represent the density operator character-

izing the statistical state of the combined system of atom
and radiation field. It obeys the Liouville equation

PA+R( ) [ PA+R( )I PA+R(

where L is the Liouville operator defined as
L . = [H, . . . ]. The reduced density operator corre-
sponding to the atomic system alone [p„(t)] is obtained
by tracing over the radiation field variables, i.e.,
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interaction between the atomic system and the radiation
field is weak and (ii) the reservoir has no memory efFects,
i.e., the atomic time scales of interest are much larger
than the correlation time of the reservoir. Both these as-
sumptions generally hold. Note that the emitted photon
is not reabsorbed by the atomic system. We work in the
interaction picture and use these approximations, and
then obtain the following equation for the atomic density
operator p:

p'z (t)+ lim f 'dr Trz [L„'z ( t)L'„z ( t r—)p~ p'„(t) ]at 0 =0, (2.14)
where the operators in the interaction picture are denot-
ed by p' and L' and where L~~ (t) =(H„'z(t), ]. For the
sake of completeness the derivation of (2.14) is given in
Appendix A.

We will now apply the basic equation (2.14) to the
recombination process. Using (2.7), we have

L„'„(r r)p~—p'„(t —r) = —g g„,e "' [a„,[ek, Af(t —r)],p~p'„(t ~)]
ks

ECt)pi ( t T) 0—g gk, e ' [ak, [ek,, Af(t —r)],p~p„(t —r)] .
k's'

Now,

I 0
—i rok„„(t)L„~(t)L„~(t—r)p~p„(t —r)= —g [[ek-,- Af(t)]a„, g„-,-e

ktl tl

0+ [ek-, ."Af (t) ]ak-, gk, e ',L z& (t —r)pz pz (t —r) ],
Using (2.15) and the relation

Tr&(PRak, ak, )=Tr~(ak, peak, )=TrR(ak, ak, p~)=0,0 0 4 f 0

rR (PR ak's'aks ) ~kk'~ss'
0

we find that

TrRLAR(t)LAR(r r)PRP'A(t —r)=ylgk—, l'f(ek, Af(t)]lek, Af(r r)]p'A(t ——r)
k

+p'&(r ~)[ek, Af(t —r)][ek, Af(t)]je
—X lgk. l'[[ek. Af(t r)]p'A(t &—)—

ks

X [ek, Af(t) ]+[ek, Af (t) ]p'z (t w) [ek, Af (t——r) ] I e

Substituting Eqs. (2.8), (2.9), and (2.18) in (2.16) together with the relation

g(ek, ) (ek, )P=(5 P
—k kP)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

and upon simplification, we find the atomic density operator satisfies the following equation in the Schrodinger repre-
sentation:

~P A

at i(HD P] r f—dE.dEi3s—pd'.f diaf(l«~ &&PEplp~+p~ l«~ &&I3Epl 2If && f1 & pE~—IP~ I«&), (2.20)

with

H. = & fE.l«. &&«.ldE. +Eflf &&f1, (2.21)

p -=& 'E lpl "E „&

i (E, —E„)p, „—g —s&d,f di3fpi3 „dE&
P

s = 3(E Ef)—= 2

3c
(2.22)

+ g J s~ d~f.d~-fp~ dE (2.23)

We have now transformed back to the Schrodinger pic-
ture. From now on we deal only with pz (t) and hence we
drop suffix A from p. Using (2.20), various matrix ele-
ments of the atomic density operator satisfy the equations pff 2 g f s~d~f d@pp dE dE&

aP
(2.25)

pfg' t (Ef E~—)pf~ —$ s —d f d fpf dE

(2.24)
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Equation (2.25) gives the recombination rate to the state
If ). This is related to the dipole matrix elements con-
necting the discrete state

If ) to the new diagonalized
states, let )'s and IP)'s. The recombination probability to
the state If ) can be obtained from the relation

gy (z)= 1+ gmpp 'g f (z) .

We next introduce P, defined by

pp(z) = f dpf p p(z)dEp .

(3.1 1)

(3.12)

Pf = lim pff(t) .t~ oo
(2.26) Using (3.1), (3.11), and (3.12) the recombination rate

(2.25) can be written as
We next present the solutions of the density-matrix ele-
ments.

P p(t)=i/ (t)i/p(t) . (3.1)

The wave functions i/ 's are found to satisfy the equa-
tions

i/ = ih„g g—f d~f —dpffpsp. dEp,
p

where

(3.2)

III. SOLUTION OF THE DENSITY-MATRIX
EQUATION

In order to solve the coupled equations, it turns out to
be convenient to introduce quantities i/'s defined by

sp=(2/3c )(Ep Ef )=-s .— (3.15)

pff =2 g y*(t) g pp(t) . (3.13)
a P

Note that the quantity rfp(z) involves evaluation of i/p(z)
which can be done by substituting (3.11) in (3.8). Equa-
tion (3.13) thus gives the recombination rate in a system
involving many AI states interacting with many continu-
um states and decaying to the bound state

If ). Substi-
tuting (3.6) in (3.7), we have

4(') = f "pfsp&pdEp . (3.14)

For the case when s& can be taken to be energy indepen-
dent,

b, =(E Ef ), —
2s;= (E; E)—f

Taking the Laplace transform of (3.2), we get

i/j (0) d f dpf l/IpspdEp

(3.3)

(3.4)

(3.5)

Upon using Eqs. (3.12) and (3.15), we find that

fp(z) =sPp(z); (3.16)

~ =2 X&p(t) '
5

(3.17)

thus Eq. (3.13) in this limit can be written in a simple
form as

jp(z)= fLp(Ep)gpdEp,

Eq. (3.5) can be written as

(3.7)

where i/ (0) represents the initial continuum state. The
integral equation (3.5) has the separable form and can be
solved by standard methods. For simplicity we ignore in
the following the vectorial nature of d, though for prob-
lems involving magnetic degeneracies, the vectorial na-
ture of d is very important. Defining quantities

k (E )= . , Lp(Ep)=dpfsp, (3.6)
af

(z+ib,

The recombination probability can be obtained using
(3.17) as

pf = lim f —gyp(r) 2dr .
taboo O g p

(3.18)

Explicit determination of the recombination probability
to a particular problem of interest would require the form
of the diagonalized states IctE ) and various dipole matrix
elements. We next apply these results to a system involv-
ing two continuum states interacting with a single AI
state.

i/j (0)f (z)+k (E ) gyp(z)= z+ia (3.8)

IV. APPLICATION OF THE GENERAL RESULT
TO RECOMBINATION INVOLVING TWO CONTINUA

Multiplying this equation by L (E ) and integrating over
dE, we have

y (z)+m g yp(z) =f (z),
p

where

In Fig. 1 we represent schematically the model system
of interest. Here

I i/E ) and lyE ) are unperturbed continu-
um states which are coupled to the autoionizing (AI)
state Ia ) via configuration interaction. The wavy lines
represent the spontaneous decay of the AI and continu-
um states to the bound state If ). The Hamiltonian for
the system has the form

m =fk (E )L (E )dE

g (0)L (E) dEf (z)=

Equation (3.9) also leads to

(3.10)
(4.1)

(4.2)
ks

ao+ JJ, +H

~o= fEl+ )(P ldE+ fElg )(y IdE+E. I~&&~l

+Ef lf & &f I+ & ~k, ttk ttk,
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H, = f Vg. lq~)&aldE+ f W~. IX, )&aldE+H c. ., Iy&) Jx, )

[a)

H, = f p, )&fl(vEf E„',+,')dE

+ f Iq, ) &f I(w,~ E'„.+, ')dE Fano D iagonalization

+la &&fl(v,I E'„+')+H.c. (4.4)

Various terms in Eq. (4.1) have the following meaning:
Ho is the unperturbed Hamiltonian of the atom field sys-
tem. H, accounts for the autoionization of state Ia & into
channels Igz ) and Iyz), whereas HI is responsible for the
spontaneous decay of the states lgz), lgz), and Ia &. In
(4.3) and (4.4) terms involving V( W) represent coupling
to the continuum IQE)(lyz)) and v,&

is the dipole cou-
pling between a & and

If &. Further, E„',+,' is the positive
frequency part of the electric-field operator and consists
of all the modes of the radiation field. This is the part re-
sponsible for recombination. In the recombination pro-

I

FIG. 1. Schematic energy-level diagram for the model system
of interest.

cess an electron from a doubly excited state stabilizes to a
bound state by emission of photons. We now diagonalize
the part of the Hamiltonian H, which is responsible for
configuration interaction. ' The diagonalization pro-
duces new continuum states which we denote by I

E & and
IG &. The old basis states and the new basis states are re-
lated to each other by the following relations:

1/2

IE&= sinb, a &+ f
L

1/2

1/2

Vz, ,
—cosh, 5(E E')

I PF—)dE'sink
~(E E')—

f Wz, m, —cosh, 5(E E') Igx )dE'—,
m(E E')— (4.5)

(4.6)

I =2 (I v. l'+
I w. l'),

rtanA=—
2(E E,)— (4.7)

(4.8)

The Hamiltonian (4.1) can be written in the new basis dof C2f (4.13)

+ X ~k.ak. ak.
ks

(4.10)

H =HO+H1, (4.9)

Ho= fEIE&&EldE+ f GIG&&GldG+EIlf &&fl

C,f=

C2f =

2%

r
2'
I

1/2

( VE~ V@, + WEI Ws, ),
1/2

( VEf WEa WEf VEa )

(4.14)

f IE & & fl(d g E„„)dE

+ f IG & & fl(dGI E„'„')dG+H.c. (4.11)

~I vg. (&~l vlf &+ wg. (y~ I wlf &]
(4.15)

We are now in a position to compute all the quantities of
interest. For the two-continuum case the expression (3.6)
reduces to

2
dFf Cff Cff sinb. 1 + (E E,)—

rqf
(4.12)

In (4.11), d, 's are the dipole matrix elements connect-

ing the states (i & and
I j & and these are found to have the

following explicit form:

dEf
z+iAG L, (E)=sdF~,

(4.16)
dGf

K2(G) = . , L)(G) =sdGf-
z+~AG

while the expression (3.9) has the form



S. RAVI AND G. S. AGAR%'AL

Xi«) =f i
—m»(Xi+X2)

X2(z) f2 ™22(X1+X2»

(4.17) with

(4.18) f dEig(E) =1 . (4.24)

where

L, (E)QE(0)dEf, (z) =
z+ihE

L2(G)QG(0)dG
2(z)= z+ib, G

(4.19)

m „=fL, (E)K,(E)dE,
(4.20)

m22= L2 GK2 GdG .

In (4.19), QE(0) and ittG(0) are the initial states of ~E&
and ~G &, respectively. Equations (4.17) and (4.18) can be
cast in a matrix form,

y, (z) 1+m„m„ f,
+2(z) 1+m22 (4.21)

m22

Equation (2.25) for the recombination rate to the state
~f & can be written as

Pff (t) =2lyi( &)+y2(t) l' (4.22)

Thus, to determine the recombination probability to the
state

~f & [Eq. (2.26)], one needs to compute the various
matrix elements elements of m and determine the quanti-
ties f.

To determine f, we need to know the initial states
~ittE (0) & and ~gG (0) & of the new diagonalized states.

1 1

Following Davies and Seaton, ' we assume a wave-packet
structure for the initial state of the electron, i.e.,

The form of g is taken to be

3
'1/2

g(E) =
l kl'o

e

eke (k —ko) +/3
(4.25)

where ro is large, P is small, ko gives the center of the
wave packet, and roP)) 1. Note that in (4.25) the param-
eter k depends on the energy.

Now,

dE" E) E E" (4.26)

(0)=f dE ( G i I qE- )g(E" ) . (4.27)

sink —cosh, 5(E, —E"), (4.28)~(E, E")—
1/2

gG (0)=fdE"g(E") WE, 5(Ei E") . (4.—29)

Using (4.5), (4.6), (4.26), and (4.27) and the orthogonali-
ty property between the unperturbed states

~ pE ) and
ICE) we have

1/2

gE (0)=f dE"g(E")

ly(0)&= f«lqE)PE), (4.23)
I

Substituting (4.28) and (4.29) in (4.19), we have

f, (z) = f d dE/ f dE'g(E')
1/2

VE.. . —cosh, 5(E E')—sink

2'—S r
1 /2 dE dE~fd 'g( ') VE, f . ,

—cosh, 5(E E')— (4.30)

f2(z) =s dG/ WE, j(E)dE
(z+ib, E)

(4.31)

(4.32)

Substituting for the dipole matrix elements of (4.12) and (4.13) in (4.30) and (4.31) and upon simplification, we find

(1+5E/qI )

I / '/ ' (5E +i)[z+i(E, E/)+I /2] (—5E i+)[ zi+(E' E/)]-+

2'f2(z) =s I
1/2 g(E') WE.,C2/

[z+i (E' EI)]— (4.33)

1

2
(4.34)

where 5E =(2/I )(E' E, ). —
The matrix elements m

& &
and m 22 can be computed us-

ing (4.12) and (4.16) in (4.20). These are found to be

(1 i /q/)—
m i i

—s 7TqP Ci/ ~

m„=svr~ C2/~2,

=2a= (E E) . — —f a

(4.35)

(4.36)

Having obtained the exact expressions for f and m, we
use these now to compute the recombination probability
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to the state If ). The recombination probability to the
state

If ) in this case has the form
where

llm fl
=detm =1+m1i+m22 . (4.40)

&f = —f,
"

[IX1«)I'+ IX2«) I']«,

Using (4.21), we have

y1(z) = [(1+m22)f, ™1,f2]

X2(z) [™22f1+(1+m11)f2]
llmll

'

(4.37)

(4.38)

(4.39)

Quantities such as y(t) can be obtained on taking the in-
verse Laplace transform of y(z). From (4.32) we see that
f, (z) has poles at values of z given by z = i—(E' Ef—)

and z= i—(E, Ef—) —1"/2, while f2(z) has a pole at
z = i(E' —Ef—). Also, llmll(z) has complex zeroes z, .
Using (4.32), (4.33), and (4.34), it is evident that y(t) has
the form

yi(t) = g(E')dE'

f

VE*, ( 1+5E./qf )

(5 + ~

)
11 E'a 2f

1/2
2~@ —i (E'—E~)t

I

g(E')dE' VE, (1+5E,/qf )

~i(E' Ef ) ( llm —
fl ) f 'f (5E,+ i

(4.41)

+(1+m i i ) 8 E,C2f

1/2
2~S —i (E' —E& )t

I (4.42)

—i {E'—E )tf (4.43)

Using (4.43) in (4.37), we have

In the above expressions terms represent the contributions from the complex zeroes. 1hese contributions go to
zero in the long-time limit and hence we neglect these. From (4.41) and (4.42) we have

g(E')dE' qf 1f E'a E'/qf 27'y1t+y2t = lim E'a 2f e-—&E' —E&& ( flm fl) (5E +i) r

dE, ((E, ) dE2$*(E2)
P~=2 lim

zl o gE gE* z +i Ei —E2
1 2

qfC, f VE, (1+5E /qf)
I

(5E +i) El a 2f
1

qfC1f VE ( 1 +5E /qf )

(5E +i)
2

(4.44)

with Thus, (4.44) reduces to

sE = llm fl(z)
z = —i(E.—E )i f

5E = (E; E, ) . — —=2
(4.45)

(4.46)

dE2((E2 g'*(E2 ) qf C1f VEa ( +5E, /qf )

2

Note that in writing (4.44) we had taken the unperturbed
matrix elements to be energy independent. The expres-
sion (4.44) can be simplified using the procedure of
Davies and Seaton. ' To carry out the Ej integral, we
first carry out a complex integral in the k plane,

ikro
remembering that g(E) has a factor e and in the limit
ro ~~, z

&

—+0, only the pole at E
&

=E, +iz contributes.

+ WE, C2g
2&S

r (4.47)

5(x)= lim
Om(x +e )

we obtain (for small values of f3)

(4.48)

Substituting (4.25) in (4.47) and using the relationship
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qfCif VE (I+5+ lqf )

0.20—

where

2&$

0

(4.49)

0.15—

P(E.) „,-

&E =(2/r)(EO —E, ) . (4.50)

In (4.50), Eo is the energy of the incident wave packet.
Upon using Eqs. (4.14), (4.15), (4.34), and (4.35) and
defining quantities

0.05—

Vf,
~VE .VfE

r, =2
I v...l',

we find that the Eq. (4 49) can be written in the form

(4.51)

(4.52)

0 00 I I I I I I 4 I I [ I S l I S I I I I [ I l 4 I I I I I I [ I I I I I I I I I [ I ~ t I I S I I I [ I ~ I I I I I I I—6.00 —4.00 —2.00 0.00 2.00 4.00 6.00

FIG. 2. Variation of recombination probability as a function
of incident energy for indicated values of yf, other parameters
are taken to be qf =2, qf )

= 5 I = 1 I
&
=0.5.

4yf r,
Pf — 5E + qf, + 1

I ( qf)
I qf

0'f n'+(~z —~. )'~
(4.53)

g= 1+ 1—yf 1
2

(4.54)

where

yf/=1+ +snarl Cpf I
=1+st(l vf~ I

+ [vs I ),
I qf

2yf
r„q

of population from the initial state Igz) to the bound
state f ). Figure 3 shows the comparison of the values
of Pf for recombination involving a single continuum
(I 2=0) and for two continua (I z&0). From the figure it
is evident that the recombination probability for the
latter case is less; a similar result was found by Haan.
Increase in I 2 leads to an increase in transfer of popula-
tion into the second continuum and hence a decrease in
population to the state f ). We next discuss the various
fundamental processes that have contributed to the
recombination probability of Eqs. (4.53). These processes
are shown in Figs. 4(a) —4(c):

(a) The situation shown in Fig. 4(a) corresponds to the

0.50—

2 N$=
C

The expression (4.53) was also recently obtained by Haan
and Jacobs using the projection-operator approach.
From (4.54) we see that while g depends on the coupling
of the unperturbed continuum states gz) and IyE) and
the autoionizing state to

If ), P soley depends on the cou-
pling of litt@) and Iyz) to lf ). Note that parameters
such as I and qf given in (4.7) and (4.15) depend on the
coupling of the autoionizing state to the continuum states
I Pz ) and IyE ). The physical interpretation of b,, is that
it represents a shift in the energy of the autoionizing state
due to the continuum-continuum coupling.

The plot of Pf as a function of 6E is shown in Figs. 2
0

and 3. In Fig. 2 we present the variation of the recom-
bination probability Pf as a function of the incident ener-

gy parameter 6E for various values of spontaneous emis-
0

sion rate yf. From the figure we see an increase in the
value of Pf with increase in yf. This is to be expected, as
increase in spontaneous decay leads to a greater transfer

0.40—

P, (E,)
0.30—

0.20—

0.10—

0.00—6.00 —4.00
I I I I I ) I 1 I I I I l l I [ I l I 1 I I I I I ( I I I I ( I I l I ) I I I I I I I ( (—2.00 0.00 2.00 4.00 6.00

FIG. 3. Comparison of recombination probability as a func-
tion of incident energy for a single continuum (I 2=0) and for a
two-continuum (I 2=0.5) system for parameters qf =2, qf 1=5,
yf =0.1.
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case where the spontaneous emission from the initial
state lgz) as well as from the autoionizing state la ) is
zero; in such a case the only contribution to the recom-
bination probability comes from the transition
lyz) —&lf ). The recombination probability for this case
[P»(Ep) ] is obtained by putting

( )
)QE) (b) IxE}

VE f=V,f=0,
whereby Eq. (4.53) reduces upon using (4.54) to

4~sr, (r —r, )le fl'
P,(E p)=I I p r2pz( 2+ g2)

(4.55)

(4.56)

(C) ~&E~ IXE)

—la)

with the appropriate limits [Eq. (4.55)] taken for g and i).
(b) The other process is shown in Fig. 4(b). In this the

electrons from the state
l gz ) make a transition to the AI

state la ) and from there decay to the state
l f ) (DR pro-

cess). To obtain the recombination probability [P»(Ep ) ]
for this process, we put

FIG. 4. Schematic diagram of the various fundamental pro-
cesses leading to recombination.

We see on comparison of (4.18) with (4.56), (4.58), and
(4.60) that

WE f VE f 0 (4.57} PI (Ep )WP~ & (Ep ) +P/g( Ep ) +P/3 (Ep ) (4.61)

in which case the expression (4.53) now has the form

8sl V./l'
P 2(Ep)=f2 o r( 2+hz)

(4.58)

From (4.61) it is evident that the recombination probabil-
ity apart from having contributions from the fundamen-
tal processes shown in Fig. 4 also has terms that arise due
to interference between these fundamental processes.

(c) Another possibility shown in Fig. 4(c) corresponds
to the case where the electrons from the initial state

lpga)

directly decay to the state
lf ) (RR process) To obtain

the recombination probability [PI3(Ep)] for this process,
we put the matrix elements

V. TOTAL RECOMBINATION PROBABILITY

We next calculate the total recombination probability
to the state

lf ) defined by the relation

O'E, = VE, = 8 E f =0

to obtain the expression

P/3(Ep)=4vrsl VF Il /(1+vrsl VF Il ) .

(4.59)

(4.60)

(5.1)

where AE is taken to be much greater than the total au-
toionization width, i.e., b,E ))I /2. Substituting (4.53) in
(5.1), we have

ATE /2 4

/2Z 2
p 1qf1

2
I1 ~1 qf1

6E + qf, +
I qf

2
(65p) 'dip

Q [i) +(5~ —b,, ) ]

4&& 4&&(65' )
' d5z I5z [(2I,/I )q»+26, , ]+[(r,/r)qI&] —ri —b,, +[1—(r,qI&/rq/)] ]

ri A/i )q/& 0' [ri +(5E —b,, )2]

(5.2)

Carrying out the integral in (5.2), we get

41 f 41r7 f
1,$ qI, r, p q/, (55~ )i)

2I 1 r,
X 6, 5, + qf, + qf,r

'2

4~'sr, (r —r, ) I Ivg fl'
&Pf](Ep) )

b, 5pI

&P»(Ep)) =
66OI g

(5.4)

(5.5)

I 1qf1

I qf

2

(5.3}

Using Eqs. (4.56), (4.58), and (4.60) in (5.1), we find that

&PI3(Ep}& =4~s
I V,,&l'/(I+~s

l v, Il') . (5.6)

Here the first term (5.4) gives the contribution to the total
recombination probability due to the presence of the
second continuum, the second term (5.5) is the contribu-
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tion coming from the dielectronic-recombination process,
and the third term (5.6) represents the radiative recom-
bination contribution. Note that the total recombination
probability (5.3) is not equal to the sum of (5.4), (5.5), and
(5.6). This is due to the interference among different
pathways leading to the final state

~f ).
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APPENDIX A: DERIVATION OF EQ. (2.14)

where

L„'~(t)=exp[+i (L~+Lz )t]L„+exp[ i(L„+—Lz )&],
(A2)

p&+&(t) "p[+'( &+ ~) ]p~+&( ) .

In order to obtain a dynamical equation for the reduced
density matrix, we introduce a projection operator P
defined by

P. . . =pz(0)Tr (A3)

On inultiplying (Al) on the left by P and by (1—P) and
on using P+(1—P) =1,we obtain

Pp~+~(t) = iPLqii (r)PP—'~+ii(t)

i PL ~+ (t)(1 —P)p'z+R (i), —

(1 P)P'„+z (t) = i—(1—P)Lw—z (t)(1 P)P'„+ii(r)—
i (1 P—)L&z(t)Pp'„+ii (t)—.

(A4)

(A5)

Clearly, (A5) can be integrated for (1—P)p'z+z(t) in

In this appendix we present briefly the derivation of
(2.14) even though master equations of the type (2.14) are
well known in quantum optics literature. In the in-
teraction picture (2.10) can be written as

(A 1)

terms of Pp'~+~(t). This result when used in (A4) will
lead to an exact closed equation for Pp'„+~ (t). However,
for recombination problems we do not need an equation
for Pp to all orders in coupling between the atom and the
radiation field. We therefore simplify using straightaway
the approximations mentioned in Sec. II. Note that the
initial condition for the recombination problem is such
that p„+~ (0)=p„(0)pz (0), which implies that
(1—P)p„+a(0)=0. Moreover, the initial state of the
field is vacuum and hence PL„'~ (t)P=O. Assuming that
the interaction between the vacuum field and the atom is
weak, we restrict our analysis to second order in the in-
teraction H„~. From (A5) we get

(1 P)p~+z—(t) ——i f (1—P)L~ii(w)Ppz+~(r)d'T,
0

(A6)

which on substitution in (A4) leads to

~PA+R(r) f d++LAR(r)(1 ~)LAB(r)~PA+R(r)

(A7)

On using (A3), Eq. (A7) simplifies to

P''a (t)= —f dr Trz Lwa (t)L&Jt (t r)P„(0)P—'a (t r) . —
0

(A8)

The range of time integration in (A8) is determined by
the time-correlation function —in particular, correlation
time ~, of the vacuum field. For the radiation field it is
known that the correlation function is nonvanishing over
a time interval which is much smaller than the time over
which the atomic system evolves. Hence it is a good ap-
proximation to replace p'„+~(t ~) by p'~(t) and take
the limit t~ ~. Note further that for the spontaneous
emission problem ~, is so small that one can hardly ex-
pect to observe the behavior of the system for times of
the order of ~, . Thus times of interest are much bigger
than r, and Eq. (A8) reduces to Eq. (2.14), i.e.,

p'„(t)+ lim f drTr~L„'z(t)L~z(t r)pz(0)p'„(t)=0 .—
t —moo 0

(A9)
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