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Temporal characteristics in nonequilibrium surface-growth models
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We present analytical and numerical results showing 1/f" characteristics in the time series of growth
velocity in a class of surface-growth models. The exponent co is found to be related to the scaling ex-

ponents by co=(2a —z+d —1)/z. The time series of surface width in the steady state are also shown to
have power-law scalings in the frequency domain. We establish a mapping between the single-step mod-
el for ballistic growth and a random cellular automaton. We conclude that the steady state of the
surface-growth models, in particular the ballistic deposition model, is a self-organized critical state.

PACS number(s): 05.40.+j, 05.70.Ln, 68.35.Rh

I. INTRODUCTION

Self-similarities in space and time are ubiquitous in na-
ture. In spatial organization, they are described by frac-
tal geometry [1], while in the temporal domain, they are
manifested by 1/f power spectra [2]. The comprehen-
sive understanding of these phenomena, however,
remains elusive. Recently, Bak, Tang, and Wiesenfeld
(BTW) [3] have constructed a cellular automaton which,
starting from an arbitrary initial state, evolves automati-
cally into a unique critical state characterized by power-
law correlations in both spatial and temporal scales. This
intimate relation between the scale invariances in space
and time resembles that of the critical state near a
second-order phase transition. The fundamental
difference here, however, is the lack of the external tun-
ing parameters in the model (and in many systems in na-
ture). Thus, this phenomenon is called "self-organized
criticality" (SOC) by BTW. They argue that it is the
achievement of this self-organized critical state that is re-
sponsible for the fractal structures and the 1/f type noise-
observed in nature.

On the other hand, in past years, there has been much
development in studying nonequilibrium surface- (inter-
face) growth problems [4]. Surface-growth processes are
of great importance in a wide range of problems. Many
models have been proposed to describe them, among
them the Eden model for tumor growth [5] and the ballis-
tic deposition model for vapor deposition [6]. Simula-
tions of these models usually give rise to random rough
surfaces whose roughness initially increases with time
and then saturates. It is found, however, that these ran-
dom surfaces have intriguing self-affine structures [7—10].
In the case of the ballistic deposition model [9,10], in
which particles stick (to any of its neighbors) where they
land on the surface, if one defines s(r, t)=h(r, t) —h (t)o,
where h (r, t ) is the height of the surface at position r and
time t, and ho(t ) is its spatial average, one gets

G(r —r', t —t') = ( [s(r, t ) s(r', t') ] )—
=ir —r'i' F(ft t'///r —r'/') . —

Here F(x ) is a scaling function that is constant for x ((1

and approaches x i' for x )& I and ( ) denotes an en-
semble average. The exponents cx and z are characteristic
quantities in the model considered and have the following
interpretations: (i) correlations spread in the surface with
rate t'i', (ii) the typical height difference at any given
time is given by bs =

~
b,r, with a ( 1. This relation be-

tween the vertical scale and the lateral scale illustrates
that the surface is a self-affine fractal.

An alternative scaling form of Family and Viscek [9] is
that if we start at t =0 from a Aat surface of length L„we
have

(1.2)

t ' ift((L'
L' if t »L'. (1.3)

It is widely believed that the essential physics of these
models is captured by the continuum theory of Kardar,
Parisi, and Zhang (KPZ) [11] in which they proposed an
equation

Bh 2 A,

at 2
=vV h+ —(Vh) +Dg (1.4)

to describe the surface- (interface) growth processes.
Here the first term on the right-hand side represents the
relaxation of the surface by a surface tension v, while the
noise ri(r, t) in the last term is an uncorrelated white
noise with Gaussian distribution and zero mean. The
second term is attributed to the lateral growth. In the
case of X=O, the equation, which is linear, is the one
originally put forward by Edwards and Wilkinson (EW)
[12], and can be solved exactly. The result is a= —,

' and
z =2 for a one-dimensional substrate and 0.'=0 and z =2
for higher dimensions [in 2+1 dimensions, this corre-
sponds to a logarithmic scaling of the surface width, i.e.,
g'=(lnL )'i, and in 3+ 1 dimensions, a constant g].

where g is the rms roughness of the surface (also called
"surface width") averaged over the whole sample and
over ensembles, and d'=d —1 is the substrate dimension
in d-dimensional space. The scaling function f(t/L') is
such that
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When A, WO, it means that fiat surfaces grow at a different
rate than sloped ones. For the ballistic deposition model,
slopes grow faster than Hat surfaces because of sticking
on the sides. A scaling law [10] a+z=2 is ensured by
the Galilean invariance of the equation (1.4).

The self-affinity of the surface structures in these mod-
els is interesting. These models are very simple and ac-
cessible examples of time-dependent systems in which
there is a kind of scale-invariant behavior automatically
generated by the dynamical process. Therefore, it is nat-
ural to say that these systems exhibit SOC. In fact, as we
shall see later, we can map the single-step raodel, a
simplified version of the ballistic deposition model intro-
duced by Meakin, Ramanlal, Sander, and Ball (MRSB)
[10], onto a random cellular automaton whose growth
rule is very similar to the avalanche rule in sandpile mod-
els [3]. On the other hand, however, it is easy to observe
that the KPZ equation (1.4) does not contain a conserved
deterministic dynamics, a condition regarded as crucial
to achieve SOC in sandpile models [13—15], and there is
no correspondence to avalanche events in these models.
Nevertheless, it is important to investigate if these sys-
tems possess temporal 1/f characteristics and to under-
sand its relevance to SOC. This is the purpose of our
work.

In this paper, we will first establish a mapping that
transforms the single-step model for ballistic growth into
a random cellular automaton with simple growth rules.
Then we will present numerical data as well as analytical
results showing 1/f characteristic frequency spectra of
the time series of growth velocity and surface width of
the ballistic deposition model. The exponent co is shown
to be related to the scaling exponents a and z of the mod-
el in the case of growth velocity. The connection of these
results to self-organized criticality will also be discussed
followed by concluding remarks.

II. THE SINGLE-STEP MODEL
AND MAPPING TO A CELLULAR AUTOMATION

The single-step model is illustrated in Fig. 1: we can
imagine that atoms fall in straight lines randomly onto a
surface. However, they can stick only at points where
they can form bonds with all the neighbors in the level
below. MRSB [10] mapped this model onto an Ising
model in 1+1 dimensions by setting s(r)=h(r+5)—h(r). The dynamics is biased spin exchange, i.e., up
spins can only move right, and down spins, left. In 2+1
dimensions, they mapped the model to a (biased) six-
vertex model. Plischke, Racz, and Liu [16]considered an
extension to allow evaporation as well as growth: this
partly removes the bias in the spin exchange. Another,
equivalent, visualization of the process, cf. Fig. 1, is in
terms of "bricks" of length 2 that are allowed to fall onto
the substrate at random points. They can only stick in
local minima of the height h(r ), and convert a minimum
to a maximum. This rule ensures that the height
difFerence between a site and its neighbors can be +1 and
nothing else. This restriction does not change the phys-
ics, but makes the mapping possible.

Here we introduce another mapping that emphasizes
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FIG. 1. (a) The single-step model in 1+ 1 dimensions.
Growth sites at the next step are shown by open circles. (b) An
equivalent visualization of the model, with the mapping to a
spin system, valid only in 1+ 1 dimensions, and the n's for the
current state.

the role of the height minima in the model. We always
consider a hypercubic lattice, and we label each site by
the number n(r ) as

n(r)= —'g [h(r+5) —h(r)], (2.1)

where the sum is over the nearest neighbors. Thus a
minimum carries a number +d, and the n's range be-
tween —d and +d. The heights h (r ) are uniquely deter-
mined, up to an overall constant, by the n's: Eq. (2.1) is
the (un-normalized) lattice Laplacian, thus the discrete
Fourier transform of the n's is proportional to that of the
h's. For small k,

n(k)=k h(k) .

Since

h (k,t)=, , g [h(r, t) ho(t)]e'k", —1

(L d')1/2

(2.2)

(2.3)

following (1.3) we have

(h(k}h( —k))=k d ' F(k't, kL}-k d ', t»L'.
(2.4)

Thus the structure function of the n's and the exponent o;
is

$„(k,t)=(n(k, t)n( k, t)) =k "—
; t))L'. (2.5)

The dynamics of the model is easily expressed in terms of
the n's We pick a s.ite r at random, then if n(r }Ad, we
discard the move. Otherwise,
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n (r )~n (r ) —2d,
N(r+5)~n(r+5)+I .

(2.6) (3.1)

Equation (2.6) is almost exactly the same as the
avalanche rules in models of sandpiles of BTW [3] and
shares the same conservation law. (Here it is for local
curvatures n rather than height h as in BTW models. ) It
should, however, be noted that there is no avalanche or
dissipation occurring in the dynamic process discussed
above, i.e., the system is "frozen" once the growth rule
(2.6) is applied to a site and another site is chosen in the
following step.

There are certain advantages of this mapping to that
described in Ref. [10] (MRSB), namely that the generali-
zation to d ) 1 is straightforward, and that the interpreta-
tion in terms of local geometry is useful. In Appendix A,
we give a simple but complete proof of exact scaling 1+ 1

dimensions based on this notion and examine some spe-
cial features in higher dimensions, together with some
numerical results.

Then

(3.2)

Letting V(r, t)=u(r, t) —uo(t), where uo(t) is the spatial
average of u ( r, t ), from (1.1) we have

(V(r, t)V(r', t')) = ——,([ (sr, t) —s(r', t')] )1 a a
2 Bt Bt'

III. 1/f NOISE IN THE TIME SERIES
OF GROWTH VELOCITY

A. Analytical results

=-,'lr —r'l ' 'F"(lt —t'l/lr —r'l'),

(3.3)

In surface-growth models, the growth velocity at site r where F"(x ) =a'lax F(x ).
and time t is Now, averaging over r and r', we get

(V(t)V(t')) =
2~d, ~

d" 'rd 'r' lr —r'l ' 'F"(lt t'l/lr —r'l—')1

(3.4)

If w=
l
t —t'l, r = lr —r'l, and y =r/r' ', then

(V(t)V(t') ) = d" 'rr ' 'F"( lly')
21 d —1

[2(a—z )+d —1]/z
2L d —1

X J d 'yy ' 'F"(1/y') . (3.5)

In large systems or on a small time scale, y tends to be
very large, i.e., 1/y'« 1. As we pointed out in the Intro-
duction, the scaling function F will approach a constant
plus a correction to account for the Anite size of real sys-
tems. This correction should be of an exponential form

/Llike =e '",where e is a constant. Therefore, the in-
tegral (3.5) is convergent, and we obtain

(V(t)V(t')) =r( '~ z'+ ') ~g(~/L~)/L (3.6)

where g( /Lr') is a rapidly decaying function.
It is apparent that for ~/I. '&&1, the velocity-velocity

correlation follows a power law 1/~~ with
y= —[2(a—z)+d —1]/z. For d=2, i.e., growth on a
one-dimensional substrate, a= —,', z= —,', so y= —', . For

d =3, there is not yet a commonly accepted value for ex-
ponent 0., except that —,

' & u & —', , thus —,
' & y & —', . Note that

in the Edwards-Wilkinson case, i.e., the weak-coupling
phase in KPZ theory with A, =0, z =2, a =

—,
' (1+ 1 dimen-

sions) or 0 (higher dimensions), therefore y = 1 in both
1+ 1 and 2+ 1 dimensions.

The Fourier transform of the velocity-velocity correla-
tion (3.6) gives its frequency spectrum V(f ), which, ig-
noring the contribution from the exponential function,
yields

V(f )= f CO

where

2a —z+d —1
co —1

z

(3.7)

(3.8)

The function g (7./L') in (3.6) will tend to bend the spec-
trum due to the convolution in the Fourier transform.

This result shows that, ideally, we should obtain a
characteristic 1/f" feature that is intrinsically related to
the dynamical process of the system rejected in the
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dependence of co on the scaling exponents cz and z. No-
tice, however, that co =0 for the Edwards-Wilkinson case
in both 1 + 1 and 2 + 1 dimensions.

B. Numerical results

We have calculated the correlation function of growth
velocities in the ballistic deposition model. In Fig. 2, we
plot the U-U correlation function in 1 + 1 dimensions for
L = 1000. We can see clearly that for a time period, the
curve fits very well to I /r, while ( I /2 )e ' fits
the curve over almost the entire range of the time period
we measure. This agrees with the analytical result of
(3.6). The inset shows the same plot for the single-step
model, which confirms that both models have the same
scaling properties. Figure 3 presents the results in 2 + 1

dimensions. We show here two curves with system sizes
100 X 100 and 75 X 75, respectively. Apparently, since we
cannot go to larger systems in 2 + 1 dimensions, the rap-
idly decaying function g ( r /L '

) has a significant effect
here. Although g appears to be a more complicated func-
tion whose form is not yet known, we can fit the early—~/ wO

part of the curves with a form ( I /ri )e, where
7 p

—cL '. We get y =0.4 for this fit, which is consistent
with Eq. (3.8), though we cannot distinguish among the
various values of a from different simulations. We can
also see from Fig. 3 that the correlation extends further
for larger systems. This fact indicates that the dropping
edge in the graph is a size effect.

We then perform the Fourier transformation on the
temporal correlation functions of the growth velocity.
Figure 4 shows the frequency spectrum of the function
plotted in Fig. 2. A function form ( 1 /f" )e ' with co =

—,
'

appears to be a very good fit to the spectrum shown. The
value of the exponent ~ is exactly the value one would get
according to Eq. (3.8). This is also the case in 2+ 1 di-
mensions il lustrated in Fig. 5, where we plot the frequen-
cy spectrum of the U-U correlation in Fig. 3 for system
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model, a power-law fitting gives co=2.6. We do not have
an explanation for these results.

V. DISCUSSION AND CONCI. USIQNS

100

. . . I

10
. . . I

10
. . . I

10 1 100

FIG. 8. The power spectra of the correlations in the time se-
quences of squared surface width in 1+ 1 dimensions for p = 1

and 0 with L = 100. The dashed lines are —1/f '.

in a (2+ 1)-dimensional ballistic deposition model.
Different plots correspond to different system sizes. The
correlations decrease in time rather slowly, as shown in
the log-log plot in the inset. For larger system sizes, the
correlations would extend over longer periods of time,
which is evident in the graph.

The power spectra of these time series are plotted in
Fig. 8, (1+1 dimensions) and Fig. 9 (2+1 dimensions).
Both spectra of ballistic deposition (p =1 in the YKS
model) and the EW model (p =0) are shown. In Fig. 8,
both curves scale as 1/f, with co~2. While 1/f fits
the curve ofp =0 as predicted, the exponent ~ for p =1 is
clearly larger than 2; in fact, ~=2.25. For 2+1 dimen-
sions, as shown in Fig. 9, the curve of p =0 can be fitted
by the predicted form [a+& ln(f ))/f very well, with
a=0.015 and 6=0.0019. For the ballistic deposition

In the previous sections, numerical results as well as
analytical analysis show that, in addition to their spatial
scale invariance, surface-growth models, in particular the
ballistic deposition model, have long-range temporal
correlations as well. This fact illustrates that for this
class of nonequilibrium surface-growth models, systems
evolve through their own dynamical processes to a state
with all the expected properties of a self-organized criti-
cal state. However, these systems are different from
sandpile models [13,15], where the conserved dynamics is
essential to achieve SOC. For the systems discussed here,
the role of the conservation law is ambiguous, because
from the KPZ equation (1.4), the dynamics of the height
variable h is apparently not conserved, whereas the dy-
namics of the local curvature is nevertheless a conserved
parameter, as shown in the mapping (2.6). As pointed
out by Hwa [19], conservation laws in general are not
necessary for the occurrence of SOC; other symmetries,
like the translational invariance present in the KPZ equa-
tion in this case, can also induce long-range correlations
in both time and space. Note that even though there are
no avalanches here, correlations propagate throughout
the system via diffusion and lateral interactions. On the
other hand, the mapping we have established between the
single-step model and the sandpile model reveals curious
similarities in some aspects of the dynamics in both sys-
tems.

In conclusion, we have presented analytical as well as
numerical results to show that the steady state of the
ballistic deposition model (thus of other models in the
same universality class) appears to be a SOC state in
which the temporal characteristics of the growth velocity
have long-range correlations and show 1/f behavior.
The exponent co has been shown to be related to the scal-
ing exponents o. and z, thus intrinsic to the system dy-
namics.
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APPENDIX A

FIG. 9. The power spectra of the correlations in the time se-
quences of squared surface width in 2+ 1 dimensions for p = 1

and 0 with lattice size 100X 100. The fit to the curve of p =1 is
30/f, while the fit to the curve of p =0 is

[0.015 +0.0019 1n(f ) ]/f .

We now give a complete proof of the exact scaling in
1+1 dimensions. The proof is, in fact, a clarification of
the argument of MRSB [10],but in a way that makes the
special role of the one-dimensional substrate completely
transparent.

Consider the master equation for the probability
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d~ ~"~' = y W(. -.)~(('), t)
dt

—g Wtn~n']P([n), t) .
(n')

(Al)

p([n j, t) to be in a given configuration of n's at a given
time:

O
~ A

CO
4c

CJ

O

0.26-

0.24

0.22-

0.20

Minima m(-2)
m(-1)
m(0)
m(1)
m(2)

S„=(n(k)n( —k) ) =k (s(k )s( —k) ) =k2 . (A2)

If we think of this as a matrix equation in which the P's
are vectors with an entry for each configuration, then the
first term is the off-diagonal process of creating the
configuration, and the second is diagonal. There is an en-
try of one off diagonal element in the matrix for every
process that leads to the given surface. But since every
maximum in the configuration corresponds to a
minimum in the parent, the number of off-diagonal ele-
ments is the number of maxima. The diagonal element is
the number of minima.

In 1+ 1 dimensions, the number of minima is always
equal to the number of maxima. Since the sum of each
row of the matrix is zero, the steady state (the eigenvec-
tor with eigenvalue zero) has equal probability for all
configurations. This is identical to the equilibrium state
of the infinite-temperature Ising model, in which there
are no spin correlations. Now note that since
n(r ) =—' ts(r ) —s(r —5)], as is trivially obtained from Sec.
II, we must have, for small k, n(k)-ks(k). Thus

0.18

0.16
0

FIG. 10. The concentration of the various possible local
geometries for various size lattices in 2+1 dimensions. The re-
sults were obtained in the steady state by averaging over ap-
proximately ten realizations. The statistical errors (obtained
from the spread in the values among different realizations) are
about the size of the symbols in the graph.

APPENDIX B

For the linear model, in a moving frame, the correla-
tion function of the time series g ( t ) is

S(t,s)= f fdxdy(h (x, t)h (y, s))
= y(~h(k, t)~2~h(q, s)l') . (B1)

The last step follows from the fact that (s(r )s(r') ) =5„„..
From Eq. (2.5) we have a= —,'.

In higher dimensions, it is not necessarily true that the
number of minima is equal to the number of maxima.
The fundamental reason is that the constraints of global
topology for d ~2 are much weaker than for 8=1. For
example, for d=2, the only relevant constraint for a
function on a torus is that there must be at least one
minimum and one maximum. In Fig. 10, we illustrate
this point by showing numerical results on concentrations
of elements in a configuration in 2+1 dimensions. Here
m; =N; /L" is the concentration and N, is the total num-
ber of each element in the configuration.

X2)(k, r, )r)( —k, r2) . (B3)

Putting (B3) into (Bl), we have

k, q

We know that

h(k, t)=Go(k, t)h(k, 0)+f drG(Okt —r)2)(k, r), (B2)
0

where Go(k, t)=e 'e(t) is the free propagator of the
linear model where e(t ) is a step function. Assuming fiat
substrate at t =0, h ( k, 0)=0. Thus

lh(k, t)~ =e " 'f dr, f dr2e
0 0

S(t,s)= pe " 'e ~ 'f dr, f dr2f do, f do2e ' '.e ' ' (r)(k, r, )21( k, r2)rt(q, cr, )2—1( q, o2)) . —
0 0 0 0

k, q

(B4)

Here we omit the boldface notation for vectors. By applying the fact that the noise q(k, t ) is uncorrelated and assum-
ing that t )s without losing generality, we arrive at

'2~ e
—2vk ( d& 2vk w +2 ~ —2vk ((+s) d& t

k 0 k 0 0
(B5)

Since we are interested in the steady state where t ))L', we have k t )& 1 and k s »1, thus
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S(t,s)= y + y e " " '=S(7.),1 1 1 —2vk (g —s)

, 2vk' 2v', k' (B6)

where ~= t —s.
The frequency spectrum of S(r) is then

S(co)fS(r)e' 'dr=cd(L)5(co)+ 1 L
2v 2&

d —1

e
—2vk 7.2

fdre'-f" d'-'k'
I /L k4

=cd(L )5(co)+ 1 L
2v2 2m.

kd —6

dk
1/L l CO

—2Vk
(B7)

where co=2rrf and cd(L) is a constant corresponding to
the first term in (B6), which depends on dimensionality d
and system size L. Assuming x =2vk /co the real part
of S(to)

S„(co)= L
2'

X dx
(1/L)+2v/co ~ 1+~

%(S(co)) =cd (L )5(co)+—1 L
v 2K

d —1
kd —4

dk
4 'k'+ VCO

' —1/2
1

(1/L )&2v/co

=cd(L )5(co)+
1 L

VCO

'd —1 d —3/2

For d =3,

L 1 1

2' V Q) Q)

2

(B9)

~d —4
X dx

(1/L )+2v/co 1 +~
(B8)

S„(co)= L
2m

1 1 2v
1n

VCO

m dx
VQ) (1/L)+2v/it) / 1+~4

2 1/2
L
2'

In 1+ 1 dimensions, d =2, so aside from the 6 function at
f=0 we have

a+b 1nm

CO

where a and b are constants.

(B10)
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