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Controlling chaos to generate aperiotbc orbits
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We show how a chaotic system is able to generate a desired aperiodic orbit by making only small tem-
poral perturbations to an available set of system parameters. The appropriate controls are obtained by
applying the method developed by Ott, Grebogi, and Yorke [Phys. Rev. Lett. 64, 1196 (1990)] to an
artificially constructed dynamical system such that when this dynamical system is at its steady state the
output of the chaotic system should be the desired aperiodic orbit. We illustrate our method with some
numerical examples in which the motion of a chaotic system is converted to two different aperiodic or-
bits.

PACS number(s): 05.45.+b

I. INTRODUCTION

In a recent Letter, Ott, Grebogi, and Yorke [1] (OGY)
describe a method whereby small time-dependent pertur-
bations are applied to an accessible set of parameters in a
chaotic system so as to produce a desired attracting time
periodic motion or steady state. The efficacy of this tech-
nique has been demonstrated on actual physical systems
by Ditto, Rauseo, and Spano [2], and by Azevedo and
Rezende [3]. Another related method is described by
Shinbrot et al. [4] that employs chaos to direct trajec-
tories to targets.

In this paper we wish to enhance the appeal of OGY's
pioneering work in the rapidly emerging field of control-
ling chaos. In particular, we generalize the technique so
that by applying small temporal perturbations to an
available set of system parameters in a chaotic system we
generate desired aperiodic orbits within some bounded re-
gion or, perhaps, even difterent chaotic trajectories. This
generalization enables chaotic systems to operate in a
wider variety of situations than that originally en-
visioned. We illustrate our approach with some numeri-
cal examples.

The rest of this paper is organized as follows. In Sec.
II we outline OGY's method. In Sec. III, we describe
how to generate aperiodic orbits. Numerical examples
are presented in Sec. IV. We end the paper with con-
clusions in Sec. V.

II. REVIEW OF OGY'S METHOD

Before presenting our generalization we briefIy recapi-
tulate OGY's technique. This method is based on the
fact that a chaotic attractor has densely embedded within
it an infinite number of unstable periodic orbits and,
hence, is extremely sensitive to small perturbations.
Therefore, as outlined below, small controls may be ap-
plied to the chaotic system so as to stabilize its output
about its steady state. Without loss of generality we re-
strict our review to two-dimensional discrete-time sys-
tems that depend on one externally adjustable parameter
p~

t)xF(p)

Bp p=0

xF(p) —xF(0)
(2)

for small values of the control p. Note that Eq. (2) allows
for an experimental determination of the vector g.

Near the fixed point xF(0) and for small values of the
control p, a linear approximation for the map (1) is given
by

[x„+,—XF(p)]=M [x„—XF(p)], (3)

where M is a 2X2 Jacobian matrix of F evaluated at
xF(0). Let A, „and A,, denote the unstable and stable ei-
genvalues of the matrix M, respectively, (

~ k„~ & 1 )
~
A,, ~

).
These can be determined experimentally if the system dy-
namics are not known. Thus Me„=A.„e„and
Me, =A,,e„where e„and e, are the unstable and stable

x„+,=F(x„,p ),
where zER are the system variables, F: R ~R, and n
is the discrete-time variable. The control parameter p is
allowed to vary in a small range about some nominal
value po, which still maintains the chaotic nature of (1).
We arbitrarily set po equal to zero.

In what follows we assume that the chaotic system (1)
is controlled so that it remains at a steady state x~(p) of
(1) corresponding to p=0. For instances where it is
desired that the output of the chaotic system be a period-
ic orbit, and for extensions to higher-dimensional
continuous-time and discrete-time dynamical systems,
the reader is referred to Ref. [1]. Furthermore, as de-
scribed in Ref. [1], by utilizing delay coordinate embed-
ding the method is applicable to situations where com-
plete a priori knowledge of the system dynamics is una-
vailable.

We now illustrate how to derive the control which will
drive the output of the chaotic system back to its fixed
point xF(0) when the system is perturbed away from it.
As the control parameter p is varied slightly from po =0
to some value p =p, the fixed point xF(p) ~~ o=xF(0) will
shift to some nearby point xF(p)~ . Thus the vector gP=P
may be defined as
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eigenvectors of unit magnitude of the matrix M, respec-
tively. Furthermore, let f„and f, denote the contravari-
ant basis vectors defined by

f.e=f .e =1
S S u u f .e =f -e =O.

S ll 1l S

Note that e„and e, are column vectors and f„and f, are
rom vectors.

Hence Eq. (3) may be expressed [5] as

[x„+,—xF( p)] =(A,„e„f„+A,,e, f, ) [x„—xF(p)] . (5)

Since it is desired that x„+, falls on the stable manifold of
xF(0), the control p„ is chosen so that

f„x„+,=0 .

Thus, taking the inner product of Eq. (7) and f„, and
solving for the control p„, we get

(1—
A,„)f„x~(0)+k„f„x„

(A,„—1)f„g (9)

We assume that f„g&0. Observe that if xF(0)=0 then
the control p„given by Eq. (9) is identical to that shown
in Ref. [1].

Since the control p„depends on x„,a new control must
be calculated at each iteration n. This control is applied
by adjusting the tunable parameter of the chaotic system
by an amount p„which then drives the output of the
chaotic system to the stationary point xF(0).

The control policy we employ is given by

pn —pg

p =.—p p (—p

pn~ p* +pn +pe .

We imagine that this control policy comes into eftect only
after the initial transients have died.

Note that if the control p„determined from Eq. (9) is
such that ~p„~ )p, , then the output x„of the dynamical
system will behave in a chaotic fashion and will wander
from x~(0). However, the orbit of the chaotic attractor
will, within some finite amount of time, return to an arbi-
trarily small neighborhood of x~(0). When this happens
a control of the appropriate magnitude may then be ap-
plied to the chaotic system so as to drive it back to xF(0).
Thus an arbitrarily small set of controls that will drive
the chaotic system output to the desired fixed point can
always be found.

This equation relates x„ to x„+, from which the tem-

porally determined control parameter p„at iteration n

can be computed. Upon observing x„, the control pa-
rameter p is adjusted to p„so that x„+, falls near the
fixed point xz(0). Observing from Eq. (2) that

xF(p) =pg+xF(0),

Eq. (5) can be rewritten as

xn+ i =En g+ "F(0)

+(A,„e„f„+A,,e, f, ).[x„—p„g—xF(0)] . (7)

III. GENERATING APERIODIC ORBITS

With this background, we now proceed to illustrate
how the OGY technique may be employed to generate
aperiodic orbits. The key to generating aperiodic trajec-
tories from a chaotic system is to formulate a related
chaotic system and then apply OGY's method on this
artificially constructed system. This system is such that
when it is at its steady state the output of the chaotic sys-
tem should be the desired orbit. This artificial device is
employed only in a theoretical sense to derive the ap-
propriate controls used to regulate the chaotic system
and is not physically realized.

To obtain these appropriate controls so that the output
of the chaotic system is the desired aperiodic orbit we
consider the related chaotic system whose output e, + &

is

a measure of the error between the desired aperiodic
motion r„+, and the output of the original chaotic sys-
tem x„+„ that is, e„+&

=r„+&

—x„+&, where

x„+,=F(x„,p ) and p is the controllable parameter. Not-
ing that x„=r„—e„, and that r„depends on n, e„+, may
be written as

e„+,=h(e„,n, p) .

We now apply OGY's method to determine the controls
which, when applied to the chaotic system (1), drive the
system (11) to its steady state. Because (11) is a nonauto-
nomous system, a time-invariant steady state eF(p) ~~

may not exist as required by OGY's method. Instead, the
steady state will trace out an arc in phase space over
time. Consequently, the error between the given refer-
ence signal and the output of the controlled chaotic sys-
tem x„will not remain constant, much less be zero. On
the other hand, if the desired reference signal does not
vary much over time, system (11) behaves in a manner
similar to that of an autonomous system over the region
of interest and allows for the application of OGY's
method. As a result, the steady state ez(0) is almost time
invariant, implying that the error between the reference
signal and the output of the controlled chaotic system x„
can be made as small as possible. This leads to near per-
fect generation of the reference orbit by the controlled
chaotic system (1).

In general, however, the given reference orbit will not
be as described above. Therefore, if we want to employ
OGY's technique we first have to appropriately trans-
form the given reference signal so that it meets the above
criteria. This transformed signal r„ is obtained by an ap-
propriate scaling and translation of the given reference
signal r„. If T: IR —+E represents this transformation,
r„=T(r„). OGY's method is then employed to deter-
mine the controls that must be applied to the chaotic sys-
tem (1) so that it generates the transformed orbit r„ in-
stead of the original reference signal r„. The desired
reference orbit r„can be reconstructed by applying the
inverse transformation to the output of the chaotic sys-
tem. That is r„=T '(x„).
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IV. NUMERICAL EXAMPLES

We elucidate our technique of having a chaotic system
generate a given aperiodic trajectory by considering the
logistic map

x„+,=(po+p )x„(1—x„), (12)

~n+1 ~n+1 Xn+1

=rn+ i pxn(1 xn )

where p=p, z+p. Substituting (r„—e„) for x„yields

e„+&=r„+,—p(r„—e„)[1 (r„——e„)] .

(13)

The fixed points eF(0) for the system (14) are determined
as

which is chaotic when 3.57&p, +p &4, where p is the
controllable parameter. In our numerical computations
we have set p0=3.9.

Let r„+&=t(n) denote a generic time-dependent
aperiodic reference signal that we wish to generate and
let r„+& denote a scaled and translated version of r„+&.
Recall that r„ is the orbit that will actually be generated
by (12). Thus, from Eq. (11), the error e„+& is given by

If Eq. (16) is taken to be the fixed point, then it is possible
for g =0, which from Eq. (2) will result in impractically
large values of the control parameter p. Hence, for our
computations we have selected the fixed point ez(0) given
by Eq. (15).

The dependence of eF(0) on r„and r„+, means that the
value of the aperiodic orbit at time (n+ 1) is required in
order to compute the control p„at time n. To ensure
that the argument under the square root in Eq. (15) is
non-negative, the difference between the reference trajec-
tory at time n and at time (n + 1) should be small in rela-
tion to (p —1) /4p. Furthermore, as described above,
one way in which the effect of the discrete-time variable n
on the steady state e~(0) is reduced is if the reference tra-
jectory r„varies only slightly within some bounded re-
gion.

In general, the original reference trajectory r„will not
satisfy these conditions. Hence r, may have to be scaled
by the factor P, where /3 is a small number, and then
translated. To obtain the appropriate translation and the
appropriate scaling factor P, we first have to get an ap-
proximation of eF(0) from Eq. (15). If r„ is going to be
transformed as illustrated above, then (r„—r„+,)« (p —1) /4p. Hence e~(0) may be approximated as

and

1 —p+2pr„
2p

[(V—1)'+4m(». —r.+i)]"
2p

(15) 1
e~(0) =r„— 1 ——

p
(17)

CF
1 —p+2pr„[(p —1) +4@(r„—r„+,)]

2p 2p
(16)

In order that the output of the chaotic system x„closely
conforms to the reference trajectory r„, IeF(0)I should be
as smaH as possible. For this reason, we select r„as
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FIG. 1. Generation of r„+,= r„exp[3 5(1 r„)]. . —
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1

2Po

2(po —I )+4(r„—r„+,)

2uo[(Vo —1)'+4Vo(r. —r. + i)]"
[(po —1) +4po( r„r„+—, ) ]

2
Po

(19)

generating two different aperiodic trajectories. In both
cases we plot graphs that show only how the output x„of
the chaotic system generates the aperiodic orbit r„. If x„
is to reconstruct the original aperiodic orbit r„, we need
to apply the inverse transformation T ', which shifts x„
by —(1—I/p) and scales it by 1/P.

The first aperiodic orbit that we generate is given by

and the eigenvalue A, is determined as r„+,= r„exp[3.5(1 F„—)], (22)

A, =p 2@[—r„—e~(0) ] . (20)

If r„ is obtained from the original reference signal r„as
shown above, then it is easy to see that A, is an unstable
eigenvalue as ~A,

~
) 1. Hence, for the logistic map con-

sidered here, the control p„, from (10) takes the following
form:

(1—
A, )eF(0) +Re„

(A. —1)g
(21)

where e„=r„—x„.
We demonstrate the performance of our method by

I

where ro=0. 75359. The scaling factor P was 10
Note that this system is also chaotic. However, its at-
tractor is different from the uncontrolled attractor of
(12). In this particular example a variance of 0.77%%uo was
allowed on the adjustable parameter p by imposing a lim-
it of ~p~ ~

=0.03 on the control once the initial transients
had died. For all subsequent p„, however, ~p„~ ~p, ,
demonstrating that it is possible for one chaotic system to
generate an attractor of another chaotic system using
only smaO controls. The results are shown in Fig. 1.

The second aperiodic orbit that we generate is the
seventh order polynomial.

—1.981X10", n (15
r„= . (n —20)(n —60)(n —100)(n —140)(n —180)(n —220)(n —260), 15 ~ n ~ 265

1.981&10', n &265 .
(23)

The scaling factor p was 10 ' . The control that could
be applied to the chaotic system was limited in magnitude
to 0.04. That is, ~p„~ ~0.04. At time steps 65 and 110
the chaotic system was given a large disturbance. As can
be seen from Fig. 2(a), the dynamical system initially
loses track of the reference signal r„but, due to its in-

herent chaotic nature, is able to recover proper orbit gen-
eration.

Since ~eF(0)~=0, the output generated by the con-
trolled chaotic system is a near perfect reproduction of
the aperiodic orbit, making it very difficult in both exam-
ples to differentiate between the desired wave form and
that produced by the chaotic system. Figure 2(b) illus-
trates that, for the second example, the desired reference

trajectory and the aperiodic orbit obtained from the

chaotic system do actually vary, however slightly.

V. CONCLUSION

In conclusion the infinite complexity inherent in a
chaotic system enables it to be controlled so that it will

generate orbits of arbitrary higher and lower orders. By
exploiting this complexity, it is possible to design simple
and extremely flexible systems which will generate an
infinite variety of trajectories yet require only minimal
changes to the control system itself. We believe that such
an approach may prove useful in many applications, par-
ticularly in situations where it is necessary that the sys-
tem track an exogenous signal.
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0
M=[e„e,] 0 & [e„e,]

S

Furthermore,

imp1ying that

f„
[e„e,]

S

Thus M may be written as

0 f„Q

M=[e„e,]

=(A.„e„f„+A,,e, f, ) .


