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Analytic and numerical results are obtained concerning the entrainment and migration of dynamic

systems, which are governed by ordinary differential equations x =E(x) (x&lR"=1,2, 3), when they
have attracting sets. Using the control x =E(x)+g —E(g) (t ~0), the goal dynamics g(t), to which
x ( t ) is entrained, lim, „i x(t }—g ( t }i, is confined to convergent regions of phase space
g(t}HCI, =[x~ iik(x}5;, BE;/—Bx, ii=0, Rek, (0 VA. ; i j =I, . . . , n]. These regions can be determined

analytically, using the Routh-Hurwitz theorem, without explicitly determining the roots A,(x) of the
characteristic determinant. The control is only initiated when the system is in the basin of entrainment
x(0)&BE[ (g ) ] wllicll eilsilres entrainment. BE(go ) is pi'oved to exist fol' aily fixed poiilt goal go E Ck.
It is conjectured that BE( [g(t)] ) exists for all g(t) P Ck which are "dynamically limited":

ig~ (D(miu[ReA(x}], maxg}, where the function D is system specific. This dynamic limitation is illus-

trated for the Duffing oscillator. Basins of entrainment are explicitly determined in one-dimensional
fiows and for the van der Pol limit cycle {', n =2) in the Lienard phase space. This example is used to
show that convergent regions are not topologically invariant. The convergent regions are obtained for
both the Lorenz and Rossler systems (n =3). The global character of the basin of entrainment for a
class of goals is analytically proved for the Lorenz system. The transfer of systems between di6'erent at-
tractors in multiple attractor systems (MAS) is demonstrated both in one-dimensional flows and in the
Lorenz system, where the transfers between stable fixed points and from a strange attractor to a stable
fixed point are illustrated.

PACS number(s): 05.45.+b, 03.20.+i, 46.10.+z

I. INTRODUCTION

Among the most interesting, and probably the most
important, complex dynamic systems are those that have
a variety of topologically distinct attractors. Many ex-
amples of these multiple-attractor systems (MAS) are
known in hydrodynamics [1,2], the heart [3—6], optics
[7—9], chemical dynamics, neural network dynamics, and
a variety of biological and ecological systems. These
MAS may respond to environmental actions (changes) in
very different ways, depending on which basin of attrac-
tion they are in. Some of these attractors may be destruc-
tive, or disabling in some sense, while others may allow
hierarchal systems to adapt to environmental changes
(e.g. , Refs. [10] and [11]}.Whatever the role of these at-
tractors may be, it is clearly of great interest to be able to
transfer complex systems from one attractor to another
in reliable fashion.

Many of the important dynamic models of such "ex-
perimental" (E) systems consist of systems of first-order
ordinary differential equations (ODE's),

x =— =E(x) (x EIR") .dx
dt

It will be assumed that E (x) is differentiable, so the solu-
tions are uniquely determined by the initial conditions,
x (t =0)=xo, and that E (x) satisfies a condition such as

I„M(r) 'dr = ao, where M(~x~ )) iE(x)i, so that solu-

lim ix ( t } g( t ) i

=0—
t —+ oo

(1.2)

is satisfied for all xo CBE( Ig] ), the basin of entrainment
of the dynamics g (t). The determination of the extent of
these basins of entrainment is often a considerable chal-

tions exist for all t )0. Such dynamic systems are fre-
quently referred to as "flows, "which is the significance of
this terminology in the present study.

This study concerns the control of those flows, which
have attracting sets, such as stable fixed points, limit cy-
cles, intermittent attractors, or any strange attractor
(possessing a fractional dimension). Of particular (but
not exclusive) interest are the multiple-attractor systems
(MAS) noted above. The general aspects of this control
method have been discussed in Ref. [12] and specifically
applied there to one-dimensional maps. The present
study illustrates the application of this method to flows in
one, two, and three dimensions, with a variety of attrac-
tors including MAS.

The control is based on the existence of convergent re-
gions, Ck(x), in phase space (R") of such attractor flows.
In these convergent regions, all nearby orbits converge
along n eigendirections. They are described in more de-
tail in Secs. II and III. One form of control involves the
entrainment of the experimental system to an arbitrarily
selected "goal dynamics, " g(t), which in the simplest
cases is entirely contained in some convergent region
g (t) C: Ck. "Entrainment" means that

4839 1991 The American Physical Society



4840 E. ATLEE JACKSON

lenge, particularly in higher dimensions. Often one needs
to revert to numerical methods to estimate the BE( [g] ),
but sometimes theorems can be proved concerning their
extent (see Secs. IV —VI). Considerations of possible dy-
namic limitation on the goal dynamics that may be re-
quired for BE([g(t)] ) to exist are discussed in Sec. III.
As discussed by Jackson and Hiibler [13] and Jackson
[12], we require that BE([g] ) be the convex set of initial
states yielding (1.2), in order to ensure experimental relia-
bility of the controls.

The nature of the control of (1.1), which produces the
entrainment (1.2), is to apply an action F(g,g) in the
manner

x =E(x)+F(g,g )S(t), (1.3)

(1.4)

This type of control was first applied to the logistic map
and damped nonlinear oscillators by Luscher and Hubler
[15], and by Hiibler and Liischer [16] (also Hiibler [14]).
The extension of these considerations, to determine the
extent of the basins of entrainment, was begun with a
study of the logistic map [13] and extended to very gen-
eral one-dimensional maps by Jackson [12], where the
concept of uniform convergent regions was also intro-
duced. The present study extends these considerations to
Aows in R".

Several points should be emphasized about the control
(1.4) and (1.3). It is not possible to select any particular
solution of the autonomous system to be the goal of the
control, g(t). For if g(r) is any solution of the auto-
nomous equations (1.1), then F(g,g)—=0, so there is no
control. In particular, if the system has fixed points or
limit cycles, these cannot be used for g(t). To obtain
these goals, one simply needs to pick a goal within their
basin of attraction, and end the control when the system
enters this basin. Examples of this will be given in Secs.
IV and VII. The second point to note is that some corn-
ponent of the control may be zero, F;(g,g) =—0, in which
case x, is only inAuenced indirectly through the control
on the other variables. It has been pointed out by
Breeden and Hiibler [17] that physical requirements may
impose this lack of a direct control of some property x;.
In that case the control is limited to the goal that satisfies
g;=E;(g), but the argument of E;(g) is not an auto-
nomous solution of (1.1) because there is a direct control

where S(t) is a "switching function, " S(t)=0 (t &0),
and, e.g. , S(t)=1 (t ~0). The time t =0 refers to the
time that x0& BE is satisfied; if x (t) is not in the basin of
entrainment (BE), any "control" (1.3) will have an un-
desired effect. Aside from the initial information
(x0E.BE), no further information about the state of the
system needs to be obtained [F in (1.3) does not depend
on x]. In particular, this is not a feedback control
method, which is very important for its implementation
in complex dynamic systems [14,12]. Other forms of
S(t), (t ~0) in (1.3), will be explored in Secs. IV—VI.
The essential point to note is that, for (1.2) to hold [i.e.,
for x (t) =g (t) to be a solution of (1.3)], F(g,g ) must be
of the form

II. THE CONVERGENT REGIONS
IN N-DIMENSIONAL PHASE SPACES

As discussed in Ref. [12], the convergent regions of
phase space for the system

x =E(x) (x E)R") (2.1)

are defined to be those connected regions C& in which all
the roots A, (x) of

=0 (i,j =1, . . . , n) (2.2)

have negative real parts. We write this definition in the
form

of some other variable. More complicated forms of
direct control may require variables that are functions of
the variable x, say y =H(x). The direct control of the
variable y is then described by the equations of motion
for y. An example of the controls in two related phase
spaces (x,x) and (y, y) is given for the van der Pol limit cy-
cles, Sec. V.

In Sec. II a general analytic method for determining
the convergent regions of phase space, Ck, using the
Routh-Hurwitz theorem, is presented. Also, the distinc-
tion between those regions of phase space in which dy-
namic volumes contract and the present converging re-
gions for orbits is clarified. It is proved in Sec. III that a
basin of entrainment, BE(g0), exists for all systems when
the goal is a fixed point g (t) =g0 H Ck (i.e., g =0). Using
the Duffing oscillator as an example, it is shown that
BE( jg(t)] ) generally only exists if g(t) is dynamically
(but not topologically) limited, meaning that g(t) may
have to be bounded relative to the min[Rek, (x)], and
maxg, depending on the system (1.1). Section IV is re-
stricted to one-dimensional Aows, where the basins of en-
trainment can be easily determined, and the transfer of
the system from one attractor to another can likewise be
easily understood. Section V treats the entrainment of
the van der Pol limit cycle dynamics, in both the original
phase space and the Lienard phase space. The global na-
ture of the basin of entrainment is proved in the latter
space, for a class of goals. These cases illustrate that con-
vergent regions are not topologically invariant concepts.
These systems are also used to illustrate some effects that
arise from using several switch-on functions, S (t) in (1.3).
Section VI deals with entraining the Lorenz and Rossler
strange attractors. Their convergent regions are deter-
mined, and the basins of entrainment of severa1 goals are
explored. It is proved that the Lorenz system has a glo-
bal basin of entrainment for a family of goal dynamics in
C. Section VII contains examples of the migration con-
trols applied to the Lorenz system, which permits the
transfer between three attractors that occur for certain
control parameters. This is a simple example of some
types of controls of a multiple attractor system, which
are undoubtedly the most common class of systems in
truly complex dynamics.
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E;C„= x~x ER"; 5;,A, (x)—
BxJ.

=0 V Rei,(x) &0 .
con

(2.3)

where con refers to the requirement that this set satisfy the connectivity condition: if (x', x")HCk, they can be con-
nected by some continuous curve x =f(8)ECk, 1)6)) 0, f (0)=x', f(1)=x".

The convergent region can be made more restrictive, in order to try to ensure (see below) that nearby orbits converge
along eigendirections at least at the rate e ~ for some y) 0. This is easily done by noting that if Rek, (—y, then
Re(A, +y ) & 0, so if we set p(x) =A(x)+ y, (2.3) can be written in the form

az,
C„(y)= ~xix&R"; 5; p(x) — y5;, + =0 VRep(x) &0 .

con

(2.4)

Then, within the regions Ck(y) the more-restrictive con-
vergence may occur for nearby orbits. This knowledge
may be of both practical and basic interest, as will be not-
ed below. For the present, we will use the form (2.3).

It should be emphasized that if the dynamics is greater
than one dimensional, all nearby orbits within a conver-
gent region are not necessarily uniformly attracted to-
ward each other (in the Euclidian sense) even though all
A, (x) are negative. If the eigenvectors associated with
these negative [I,] are constant in space, and one intro-
duces a norm based on the vector components along
these eigenvectors, this norm will decrease uniformly in
time (as long as the orbits remain in C). However, the
Euclidian norm may not decrease uniformly in this pro-
cess, even though entrainment will necessarily occur
(x HC). The situation is more delicate in those cases
where the eigenvectors are not constant in space. It is
not presently known whether entrainment, (1.2), neces-
sarily follows from the fact that the orbits x (t) and g (t)
remain in a convergent region, but no nonentrainment
example has been found to date, despite considerable
effort. The fact that g(t)HC (i.e., entirely in C) is not
necessary for entrainment was illustrated in Ref. [13] for
the case of maps. The danger is that, if g (t) is not entire-
ly in C, the corresponding basin of entrainment may be
disjoint, or even fractal in character, making the initia-
tion of the control unreliable (however, no example of
this is known in the case of flows). This lack of necessity
will also be illustrated both in the case of the van der Pol
(Sec. V) and the Lorenz system (Sec. VI). These uncer-
tainties make it particularly useful to obtain specific en-
trainment theorems, as limited as they may be. Examples
will be given in Secs. V and VI.

The problem of determining the roots A, (x) of (2.2)
when n ~ 3 can become tedious at best. Fortunately what
is required to determine Ck is not these roots, but simply
the region in which they satisfy Rel, (x) &0. The answer
to this problem is well known, and does not require a
knowledge of the roots k(x). The characteristic equation
(2.2) is a polynomial equation of order n in A, ,

aors, "+a,A,
" '+ . . +a„=0 (ao=l) . (2.5)

A necessary and sufficient condition for all roots of (2.5)
to have negative real parts is that

a2k)0, 6&k+i)0 (k =0, 1, . . . )

ol

apk+] )0& 62k )0 (2.6)

V E(x) &0 &0dI
dt

V.E(x))0 dI
dt

(2.7)

dI
V E(x)=0 =0

dt
J

Note that the terminology contractive and expansive, are
adjectives being applied to regions to describe the behav-
ior of contained volumes, whereas convergent and diver-
gent, associated with (2.3), are adjectives applied to re-
gions relative to the behavior of (all or some) nearby or-
bits. The convergent condition (2.3) requires the satisfac-
tion of n conditions (2.6), whereas the region of phase
space in which contraction occurs satisfies only one con-
dition, (2.7).

A simple relation can be established between these two
concepts by considering a& in (2.5). This is the coefficient

where b, ;(a&, . . . , a;) are the so-called Hurwitz deter-
minants of order i. These conditions are referred to as
the stability criterion of Lienard and Chipart (see, e.g. ,
Ref. [18])and will be used in later sections.

Before considering special examples of control, we will
discuss the relationship between convergent regions and
the classic concept of the change in the volume of a
phase-space region, as defined by Poincare's integral

I(t)= f dxi. . .dx„.
Q(t)

Here, Q(t) is a domain whose points move according to
(2.1). It is not difficult to prove (see Ref. [19],Appendix
C) that quite generally,

dI = f V E(x)dx, . . .dx„.
dt A(t)

Note this holds for "dissipative" or autocatalytic sys-
tems, not just Hamiltonian systems (the usual Liouville
theorem). We now introduce the terminology "contrac-
tive, " "expansive, " and "conservative" for the local re-
gion of phase space where any A(t) has the respective
properties
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of k" ' in the expansion of the determinant (2.2). It is
not dificult to see that

n

ct, = V'—.E —= —$ Bx;
(2.8)

and the necessary condition a& )0 (k =1, . . . , n) shows
that a necessary condition for convergence is —V E )0,
or V' E (0. According to (2.10) this implies contraction,
so convergence implies contraction, which is rather obvi-
ous. Moreover, expansion V E &0 implies nonconver-
gence, equivalent to divergence (of some orbits). Thus
the implications are limited as shown:

nearby orbits

(all) converge

vol ume elements

expand

(some) diverge = ~~~~ =- contract

Given knowledge of the lower levels, no implications can
be drawn about the other column. That is, a nonconver-
gent region may have any sign of dI/dt for 0 in this re-
gion. Conversely, a contractive region of phase space
may have some or no diverging nearby orbits.

We next consider some of the possible dynamic limita-
tions that may be required of the goal dynamics, g (t), in
order for a basin of entrainment to exist.

III. POSSIBLE DYNAMIC LIMITATIONS
QF GOAL DYNAMICS

All of the present control methods are based on the ex-
istence of a basin of entrainn~ent, BE(Ig(t)] ), associated
with a dynamic "goal,"g (t) E Cl, , contained in some con-
vergent region of the phase space. It is easy to prove that
such a basin exists if g (t) is a fixed point; g (t)—:go. From
(1.3) and (1.4), the controlled system is generally [if
S(t)=1]

x =E(x)+g E(g) (x,g HH—") . (3.1)

where repeated indices are summed (1 to n). Entrainment
{1.2) is now characterized by the fact that the solutions of
{3.2) satisfy u —+0. If g(t)=go, the coefficients of the u-
factors in (3.2) are constants, and the linear equations are

r

BE
u; (j=l, . . . , ).n

So
(3.3)

Since go is in some convergent region of the phase space,

Setting u =x —g, and assuming that E(x) is smooth, one
obtains

u =E(u +g) E(g)=- u, + —— u;u, +. . . ,
aE(g) 1 a'E(g)

Bg; 2 Bg;Bg.

(3.2)

go&Ck, the fixed point u =-0 of (3.3) is asymptotically
stable (all eigenvalues have negative real parts). Then, by
a famous theorem of Lyapunov [29] (see also [18]), u =0
is also asymptotically stable for the nonlinear equation
(3.2). Thus the basin of entrainment BE(go ) exists, but its
extent in the phase space is of course not determined by
such a linear analysis. Other more global methods must
be employed for this purpose, which are system specific,
and will be illustrated in the following sections.

The interesting and much more difficult problem is to
prove that BE(Ig(t)] ) exists for some family of dynamic
gaals g(t)HCk (g&0). In this case, the coefficients in
(3.2) are nonconstant, and theorems concerning the con-
ditions for the asymptotic stability of u =0 are much
more difficult to establish. It is to be expected that, if
g (t) does not change "too rapidly" in time, BE({g]) will
always exist. We now will consider some of these issues.

If the goals are periodic functions, the coeKcients of u
in (3.3) are likewise periodic. The corresponding linear
equations have been widely studied, to which the names
of Floquet, Mathieu, Hill, and Lyapunov are often associ-
ated. There is no fundamental difficulty in studying the
stability of any specific system, but general statements ob-
viously cannot be made. What should be emphasized is
that Lyapunov also established the relationship between
the stability of these linear systems with periodic
coefficients and the nonlinear equations (3.3), also with
periodic coefficients. For a discussion of this result see
Gantmacher (Ref. [18], Vol 2, p. 120). Thus it is quite
possible to prove whether or not BE(Ig(t)]) exists for
periodic g (t) for any specific system.

To illustrate what is involved, we outline such an
analysis for the Duffing oscillator (whose whole phase
space is convergent):

x+px+x +x =0 .

The control equation (3.2) is then

u = —pu —(1—3g )u —3g„u —u

(3.4)

(3.5)

t't) = —[1—3g —(p/2) ]tc~ (3.6)

have a growth rate less than (p/2), for same g„(t), the
solutions of (3.5) will satisfy lim, u (t) =0. In this case
entrainment to g(t)HIE is proved for sufficiently small
u (0).

For periodic g„(t), (3.6) is an example of Hill's equa-
tion. To illustrate, consider the case

g (t) = 2 sin(cot) . (3.7)

Note that migrational goals can also be of this form, with
"large" 3, small co, and S(t)%0 only for 0 ( t (n/co We.
can now readily transform (3.6) into the canonical

The damping term can be eliminated by setting
u =e "' ~, y~eld~ng

io = —[1—3g„—(p/2) ]w

2 —pt /2 3 —3p, t /2

If all solutions of the linear equation
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Mathieu equation

LO +[a —2q cos(2r)]w =0,
d~2

(3.8)

where r=cot, q =3A /4', and a =[1+(3A /2)—(p/2) ]/co . It is well known that the stability of w

only occurs in bands within (a, q) space. In the present
case we are interested in the character of the solutions
along the parameter region a ~ 2 . For small a, the solu-
tions are stable, and as a =2q is increased from zero, they
pass through bands of instability. If the growth rate for
w is v, u (t) will grow as vcr —p/2. It can be shown [30]
that maxv(a =2q) in these bands decreases rapidly as
A/co increases, so vcr —p/2 becomes negative if A/co
and p/co are both sufficiently large. Therefore, if either
A /a~ is sufficiently small or A /co and p/co are sufficiently
large, the solutions of (3.5) are entrained, provided that
u (0) is also sufficiently small. For example, if
~u (0)

~
&0. 1, then numerical solutions indicate that both

(A =5,ai= 1) and ( A = l, co=5) are stable when @=0.1.
One can, of course, expect a band structure in this stabili-
ty, as a function of a =2q, but these details are not
presently known.

While this stability is necessary for entrainment, it is
not sufficient for practical controls, because rarely would
one find the system in a state that satisfies
~x (0)—g (0)

~

&0. 1. It is much more important to know
whether the fixed-point attractor of (3.4),
Pz=(x =O, x =0), lies in the basin of entrainment
BE([g]), which ensures (1.2). If this is so, the control can
be initiated any time the system is near its attractor, and
it will be entrained. Unfortunately no analytic criterion
is known, which ensures that PF C BE for the present sys-
tem. However, numerical studies indicate that
Pz C BE([g J) if (A, co) in (3.7) satisfy (conservatively)
A~ &0.7. This type of dynamical constraint still allows
for large-scale migrations of the system (large A), provid-
ed the speed is not too large (small co). Also, it will be
shown in later sections that analytic criteria can often be
obtained for the basins of entrainment.

Finally, the present example is a good place to illus-
trate the physical conditions implied by these controls.
For (3.4) one of the controlled equations is x =y +g —g
and, if x is the velocity of some mechanical mass, it is
difficult to apply any direct control to x. Thus the most
physically meaningful control may require that
g„—g» —=0, which defines g», given by (3.7). The corre-
sponding "force" V that must be applied is determined by

IV. CONTROLLED ONE-DIMENSIONAL FLOWS

The dynamics of autonomous one-dimensional Aows is
of limited interest, because of their very restricted "topo-
logical repertoire" (phase portraits). On the other hand,
nonautonomous one-dimensional Qows are capable of
very complicated dynamics (see, e.g. , section (4.6) of Ref.
[19]). In controlled systems, the goal dynamics are not
typically complicated, but this option means that even
one-dimensional controlled systems are generally by no
means trivial dynamic systems. In this section we will ex-
plore a limited range of these issues.

Let g(t) be the desired goal dynamics, so the con-
trolled system is of the form

x =F(x)+g F(g) (x—HR), (4.1)

which we write in the form

d
dt

(x —g) =(x —g)A, (x,g),

A(x, g) = [F(x)—F (g) ]/(x —g) .

(4.2)

(4.3)

We assume that F(x) is differentiable, in which case
A, (x, t) is defined for all (x,g). The convergent regions of
(3.1) are simply the connected regions (k = 1,2, . . . )

where dE/dx &0,

dFCk= x &0 ~

dx con

(k =1,2, . . . ), (4 4)

where the con index refers to the connected property dis-
cussed in Sec. II. To ensure entrainment,

(4.5)

it is simplest to require that A, (x,g) be negative for all
x (t) sufficiently near g(t), in which case g(t) must be in a
goal region, Gk, within some Ck,

achieve entrainment of some systems (as illustrated by
the Duffing oscillator), a number of entrainment
theorems for other systems, illustrated in the following
sections, do not exhibit similar dynamic limitations. The
reason for this difference in different systems should be
explainable by a study of their associated parametric
equations (3.2).

We will now consider examples of the application of
these and other concepts to flows in one, two, and three
dimensions.

g(t)EGk CCk . (4.6)

PP X X +Q'y +PJ'S +Q +f
(namely, force means g-dependent terms) or, in the case
of the goal (3.7),

V=(l —co )A sin(an't)+pcoA cos(cot)+ A sin (cot) .

This very nonlinear, and "custom-structured" force is the
reason that the nonlinear system tends toward such a
simple goal dynamics, (3.7).

While the above analysis shows that there may be dy-
namic limitations on the goal dynamics, in order to

BE(g0)= [x~A(x, g) &0]„„. (4.7)

This region is particularly transparent in a graph of

Other g(t), which only satisfy (4.6) during a majority of
the time, may also produce entrainment, but (4.6) is a
simple and useful sufficient condition.

If the goal dynamics is simply a fixed point, g (t) =g0,
then g0 must be in some convergent region, and we can
immediately determine its (maximum) basin of entrain-
ment.
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F(x)—F(go ) vs (U
—go), as shown in Fig. 1, where

go & C4. It can be seen in this case that BE(go) contains
the two convergent regions C3 as well as C4.

It is easy to see from this that if gp C Ck, then
Ck C:BE(go); that is, the basin of entrainment is always
larger than the associated convergent region (the same is
not necessarily true of maps [12]). This figure also illus-
trates a number of other features. This particular system
has two (autonomous) attractors labeled A& and A4 that
necessarily fall within convergent regions. Indeed, for
the same reasons as above, these convergent regions are
contained in their basins of attraction,
Ck C:BAk(k =1,4). There are, however, many conver-
gent regions not associated with such attractors (e.g., C2
and C3). Each of these regions offers the opportunity of
selecting goals that are in very different regions from the
"natural" (autonomous) at tractors.

This system is also a simple example of a multiple at-
tractor system discussed in Ref. [12]. The graphical
method in Fig. 1 readily shows that simple entrainment
goals can be used to transfer this system from one attrac-
tor to another. Specifically, if

gp E C] and gp (3,

BE(gp)
F(x) —F(gp)

tan 8-—
BUE(gp p)

(x (t) —go( & [x (0)—go[e ' (y )0;Vt )0)

simply by using (4.2) and (4.3), which yield

BUE(go'y)= {x~A(xqgo) & y j (4.9)

The corresponding graphical construction is shown in
Fig. 2.

Now turning to the general time-dependent g (t),
which satisfies (4.6), we note that A,(x,g ) & 0 for all
x E Ck. Therefore, using (4.2) we obtain a minimal basin
of entrainment:

FICx. 2. The basin of uniform entrainment at a rate not less
than y, BUE(gp; y) is determined graphically.

then (4.8a)
BE(g (t) E Ck ) =Ck (minimal) . (4.10)

A4CBE(go),

which follows from the fact that F ( A ~ ) —F(go) & 0, and
if

The maximal BE can be obtained from BE(g,„) and
BE(g;„)defined by (4.7), namely

gpEC4 and gp) A4

then (4.8b)

BE(g ( t) )=BE(gm,„)A BE(g;„),
g,„=max(g(t)) g;„=min(g(t)) .

(4.11)

A, &BE(go),

since F( 3, ) —F(go) )0. This means that, in the case of
(4.8a), the goal go will entrain the system that is initially
in A4 (or near) and once x (t)RBA, the control can be
terminated, and x(t) will tend to A, . This will produce
the transfer A4~ A, . Similarly the go of (4.8b) can be
used to produce the transfer 3,~ 34.

We note also that it is simple to determine the basin of
uniform entrainment, which satisfies

This can be readily seen by varying gp in Fig. 1 to g,„
and g,„. One can obviously also obtain BUE(g(t), y)
similarly:

BUE(g (t), y ) =HUE(g, „,y)

IMBUE(g;„,

y) (4.12)

Possibly one of the surprising aspects of this control is
that, regardless of how rapidly g (t) is changed, the sys-
tem x (t) nonetheless satisfies the entrainment require-
ment (4.5).

We next consider some important autocatalytic exam-
ples of limit cycles in two-dimensional Aows.

F(x)

go

F(x)-F(+

Cp Cp
go&~
Cg

x-go

FICx. 1. The four convergent regions of x=F(x), with the
two attractors A& and A4. The basin of entrainment, BE(gp),
of gp E C4 is easily determined using the coordinates
F(x)—F(gp) vs (x gp)

V. ENTRAINMENT OF LIMIT CYCLES
IN TWO DIMENSIONS

Limit cycles in two dimensions have historically been
of great interest, and continue to be an area of active
research (see, e.g., Ref. [20]). In this section we will con-
sider the entrainment of the classic van der Pol dynamics
in two phase spaces: the original van der Pol phase space
and the Lienard phase space. This will clarify the dis-
tinction between contraction and convergent regions, il-
lustrate how a simple entrainment theorem can be ob-
tained in the Lienard phase space, and consider some as-
pects of "switching on" the control using different types
of functions S(t). It will also make clear the fact that
convergent regions are not topologically invariant.

The first form of the van der Pol equation that will be
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considered is

x+k(x —1)x+x =0 (k )0),
which we write in the form (x, =x)

x, =x2, x2=k(1 —x, )xz —x,

(5.1a)

(5.1b)

so the phase space is (x„xz). As discussed in Sec. II, if
x =E (x) (x H R"), the contractive region of phase space is
given by V E & 0. In the case (4.1), we obtain

V.E =k (1—x
&

) & 0 (contraction) . (5.2)

The convergent region, on the other hand, is obtained
from the determinant (2.2), which in the case (4.1) yields
the polynomial in k:

A, + k (x, —1)k+ 1+2kx, x2 =0 . (5.3)

This is a special case of (2.5), and the Hurwitz condition
(2.6) simply requires that the necessary and sufhcient con-
ditions for all Re( A, ) & 0 are

a, =k(x, —1))0, a2 ——1+2kx,x2)0 . (5.4)

Xp

This can, of course, be trivially verified by obtaining the
explicit roots A, (x) of (5.3), but that is not necessary to
determine the convergent regions. We note that (5.4)
defines two (disconnected) convergent regions C —, in
which +x, ) 1, respectively. These are illustrated in Fig.
3. This also gives a simple illustration of the difFerence
between the convergent regions and contractive regions,
(5.2). If the goal dynamics is (g, (t),gz(t) ), the controlled
system is (4.1) or

xi =x2+(g i
—g2)~

(5.5)
xz =k (1—x

& )xz —x, + [g2 —k (1—g, )gz+g, ]g .

The Lienard phase plane is also frequently used to de-
scribe the dynamics (5.1). Denoting this phase plane by
(y &,y2), the equations of motion are

6=»+k(» —
—,'yl» y2= —» (k&0) (5.6)

One can readily verify, by considering y &, that y &
satisfies

(5.1a), so y, =x„' hence xz =y2+k(x& —
—,'x

& ) completes
the homeomorphism (x „x2 )~(y „y2 ) connecting these
phase spaces.

Since the contractive region (5.2) does not depend on
x2, it remains the same in the Lienard plane,

V.E =k(1 —y, ) &0 . (5.7)

However the polynomial equation for A.(y„y2) is now
simply

A, +k(y, —l)A+1=0 . (5.8)

Hence one of the conditions for convergence, a2 ——1)0,
is always satisfied, leaving only the condition
a, —=k (y f —1) & 0, which is now identical with (5.7).
Thus, in the Lienard plane, the convergent and contrac-
tive regions are identical. To obtain the convergent re-
gion Ck (y ), (2.4), where nearby orbits converge at least as
fast as e ~', one needs to consider the polynomial

p +[k(y~ —1)—2y]p+1+y2=0

instead of (5.8). We see that

C +—(y)= I+y, & [I+(2y/k)]'i J .

(5.9)

Let the goal dynamics in the Lienard phase space be
denoted as (h „h2). Then the controlled system is

y~ =y2+k (y&
—

—,'y3 )+ [h &

—h2 —k (h, —
—,'h 3 )]S(t),

(5.10)
y2= —y, +(h2+h, )S(t) .

We can now prove that the goal dynamics that is
confined to the region h, )4 has a global basin of en-
trainment.

Theorem 1. If h
&
(t) & 4, the solutions of (5.10)

(5 = 1,t )0) satisfy

lim [(y, —h, ) +(y2 —h2) ]=0
t —+ oo

for any (y, (0),yz(0)). The proof easily follows by noting
that (5.10) can be written in the form

'7 E

u )
=1,) tl ) + u 2 u 2

= tl ) ( uk =
yk hk )——

where

A, , = —k(h, —1+h, u, + —,'u, ) .

(5.11)

8///
Since k)0, A, &(0 for any u& provided that h& )4. On
the other hand, (5.11) yields

d
(u ) +u2 )=2k)u )

FIG. 3. The convergent regions, C+—, of the van der Pol equa-
tion in the phase space (xl, xz). C—are subregions of the con-
tractive regions, V'.E (0, as shown.

by (5.11), u&(t)+0 unless u2 —=0. Since u, +u 2 is
non-negative, the last equation shows that, if A,

&
(0,

u, ~0, and therefore u, +uz~c (a constant), so u2~c.2 2 2 2

However, from (5.11) this constant must be zero, proving
the theorem.

To illustrate this entrainment, Figs. 4(a) and 4(b) show
a goal dynamics
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h, = A +B sin(cot), h2 = —Bc@cos(~t) (5.12)

with A =3, co=9, and B =0.45, which has a flow that is
counterclockwise, in contrast to the clockwise auto-
nomous flow. The frequency has also been taken much
larger than the natural frequency of the system (about
0.94, when k = 1), making the goal quite "unnatural. " A

and B were selected such that h, & 2.5, placing the goal
well inside the convergent region. Since the basin of en-
trainment is global, by Theorem 7, the control can be
switched on at any time. Note that (5.12) is not con-
strained by any of the dynamic considerations of the
Duffing system (section III).

A potentially important issue in this process is the
manner in which the control is switched on, character-
ized by S (t) in (5.10). This may be important because the
low-dimensional models may represent a high-
dimensional system's motion on an attracting manifold
("inertial manifold" for ODE's). A violent action on
these variables may activate the other degrees of freedom,
thereby invalidating the dynamic model. This aspect of
control has been emphasized by Liischer and Hiibler [15]
and Hiibler [14]. For the present we will simply illustrate
the system's response to a "hard" and "soft" switching
function S(t).

In Fig. 4(a), the switching function was the step func-
tion

(5.13)

S (t) = 1 —exp( —A, t) (5.14)

and k was adjusted to give the illustrated "smooth" en-
trainment (A, =0.0025). Such a "soft" form of entrain-
ment may be of great importance in applications. Anoth-
er example will be noted below, in the Lorenz system.

When a symmetric goal is selected [A =0 in (5.12)],
the goal dynamics is outside of the convergent region at
least part of the time. If 8 &1, then it is outside of the
convergent region all of the time, and the typical 1ack of
control is illustrated in Fig. 5 (B =0.45). When B is in-
creased beyond 8 =1, the fact that the goal is in C+—for
longer periods of time can overcome the divergent prop-
erties outside of C—and again yield entrainment. A de-
tailed investigation of this form of entrainment will be
considered in a subsequent investigation.

The fact that convergent regions are not topologically
invariant can be illustrated by using the map (homeomor-
phism) between the van der Pol and Lienard phase
planes,

Xt =gt, X2 =+2+k(xt 3X t )=+2+k(gt 3+t )

(5.15)

and one can see the rather violent response of the system.
The entrainment in this case consists of a descending
spiral motion toward h(t). In Fig. 4(b), the switching
function was taken to be

(a3

S=I

s-to e-gooI, h(t)

The convergent regions in (y„y2) are where y, ) 1, and
any y2. These Lienard regions map onto the regions
x, ) 1 (any x2) in the van der Pol phase plane, which is
not the convergent region in that space, (5.4). Therefore
convergent regions are not topologically invariant.

To illustrate this last fact, in Figs. 6(a) and 6(b) we
show the dynamics in the van der Pol plane, using the
goals

g, = A +B sin(cot), gz =+A Bco cos(cot) .— (5.16)

(b)

sco
s =0.52

S = 0.43

S=O

S=O

e-goal, h(t)

S= I

FICx. 4. (a) The entrainment of the van der Pol oscillator in
the Lienard phase space (y& y2), to the fast "counter-rotating"
entrainment goal (ECz) (5.12). The "hard" switch, (5.13), cause
the rather violent response of the system. (b) The same condi-
tions as in 4(a) except that the control is initiated using the
"soft" switch (5.14), with A, =0.0025. The response of the sys-
tem is much less violent.

e-goal,
h(t)

FIG. 5. The response of the van der Pol oscillator to an EG
which is outside of the convergent regions y& (1. The system
continues to spiral in a solenoidal-appearing manner about the
origin.
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Xp The convergent region of any system is determined by
the determinant (2.2), which yields the polynomial equa-
tion (2.5). For the system (6.1) the polynomial equation
(2.5) has the coefficients (ao = 1):

S=O

Xi

e-goal, g+(t)

a, =c —a —x,
a@=a (x —c)+z+1,
a3 =c x az

(6.2)

The necessary and sufhcient conditions for all
Rel, (x,y, z) (0 are given by (2.6),

(b)
Xp

a, &0, a, a2 —a3 &0, a3) 0 (6.3)

e-goal, g (t)

xi

These conditions only involve (x,z), and not y [nor the
constant b in (6.1)]. Specifically, the necessary and
sufficient conditions for convergence are [(2.6)]

a, =c —a —x )0 (contractive region),

a3=c —x —az) 0,
(6.4a)

(6.4b)

FIG. 6. (a) The entrainment in the van der Pol phase space,
using the EG (g& g&+), (5.16) and the soft switch (5.14). (b) The
same as (a) except the EG (g &,g 2 ) is used, which does not lie in
the convergent region (see Fig. 3). The response of the system is
to go to another attractor.

These goals are modified forms of (5.12), with the same
values of x„but differing values of x2. In Fig. 6(a) the
goal g2 is used, which lies in the convergent region (5.4)
and the "soft-switch, " (5.14), was employed. The system
clearly has a large basin of entrainment. In Fig. 6(b), g2
was used, so that much of g (t) lies outside the convergent
region. The switch (5.13) was used to limit the scale of
the motion. The response of the system is to go to some
undesired attractor. These examples clearly show the im-
portance of the convergent region, and its lack of invari-
ance under (5.15).

We next will consider some classic attractors in R .

VI. ENTRAINMENT OF THE ROSSLER
AND LORENZ DYNAMICS

x= —y —z,
y =x +ay,
z=b+z(x —c) .

(6.»)
(6.1b)

(6.1c)

In this section two classic dynamic systems will be ex-
amined from the point of view of entraining their dynam-
ics. The convergent regions of the Rossler and Lorenz
dynamics are both infinite, but they differ in a number of
respects, which makes them interesting to compare and
contrast.

We begin with one of the many chaotic systems intro-
duced by Rossler [21]:

bop" +hip" + . . +b„=0 (bo= 1)

one finds that

b, =c —a —x —3y,
b2 =(a +2y)(x —c)+z+ I+y(2a +3y),
b3=(c —x —y)(1+ya+y ) —z(a+y) .

(6.5)

This generalizes the result (6.2), and one again finds that
the upper and lower boundaries of the convergent re-
gions, C(y), are given by b3 &0 and b&bz b3 &0, re-—
spectively. These are also illustrated in Fig. 7, for y=0,
0.5, and 0.8. It can be seen that C (y =0.8) is a very nar-
row (but infinite) region. This weak convergence of the
Rossler system is apparent in the entrainment process,

a, az —a3=(c —x)z —a(c —x) +a (c —x)—a&0.
(6.4c)

Note that (6.4a), or a, )0, is the region of contracting dy-
namic volumes, (2.8), whereas two more conditions are
required to ensure convergence.

Because (6.4) is independent of y, the convergent region
in R can be represented simply by the intersection of its
boundary with the (x,z) plane. Figure 7 shows the three
boundaries, (6.4), when a =b =0.2 and c =5.7 (one of
the cases discussed by Rossler [21]). The contracting re-
gion lies to the left of the vertical line x =c —a, and the
convergent region is a subset of this contractive region, as
discussed in Sec. II. The lower boundary of the conver-
gent region is given by (6.4c) and the upper boundary is
given by (6.4b). These two conditions imply (6.4a), as can
be seen by their intersection at the vertical contractive
boundary.

Because of the simplicity of representing the Rossler
convergent region, due to its y-independence, it is also
possible to simply illustrate the more restrictive conver-
gent regions, C(y ). These are given by (2.4), and its asso-
ciated polynomial for p. If we write this as
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r=O.

"e say c =3). In this case (g
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S(t) in (6.6a) and (6 6b 1
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governed by
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x = —y —z+(g„+g +g, )S(t),

y =x+ay+(g —g, —ag )S(t),
z=b+z x —c)+[g, b —g, (g ——c)]S(t) .

(6.6a)

(6.6b)

(6.6c)
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system e-goal

e-goal

)
t= 0

all solutions of (6.14) go to the origin of u-space, provided
that g HC. A step in this direction is to note that (6.14)
yields

d
(pu', +u', +u3) (p(7+r g3)u, u2 —pou,dt

~u 3 +g2u] u3

x=y

= —(au, —u2) —b(13u, —u3) (6.15)

provided that p=0 and (p, a, P) satisfy

a +bp =po, 2a=po+r —
g3 2bp=g2 .

One finds that these conditions require that

FIG. 12. The entrainment of the Lorenz system with r+10
to the EG of the chaotic Lorenz dynamics r =30.

a = 1+[1+g3 r ——(g2/4b) ]' (one root),

)3=gi/2b, p=(a +bP )/cr .
(6.16)

ui cT(u2 ui )

u2 =ru, u2 u &u3 u )g3 g]u3

u3 = 6us+u )u2+u )gp+Qpg)

(6.14)

where uz —=xI, —gk. One would then like to determine if

Other examples of entrainment that take the system
from a chaotic state (strange attractor) to an ordered,
periodic motion can easily be achieved. The periodic
goal can either be selected in some arbitrary fashion, as in
the example used in the Rossler system (6.8) (but, of
course, now placed in the convergent region of the
Lorenz system), or by using a periodic solution of the
Lorenz system. For example, the chaotic Lorenz dynam-
ics (say r =30) can be entrained to the limit cycle associ-
ated with r =350, but with these extreme difI'erences in r
the entrainment can cause the system to react very
violently. As noted in Sec. IV, such a violent reaction
may excite in the real physical system other degrees of
freedom that are not represented in the low-dimensional
"inertial manifold" model (here the Lorenz system). In
this case the model dynamics are no longer accurate, and
the predictions of entrainment by the model may not
occur in the physical system. This violent reaction of the
system can be "softened" by again using a switching
function such as (5.14). Little is yet known about
methods of "optimizing" the selection of such soft
switches, or of proving entrainment when they are em-
ployed. The knowledge to date is only from numerical
examples, and it would be useful to extend this under-
standing.

From many numerical examples, it appears that the
basin of entrainment of any goal in the convergent region
(6.11) and (6.12) is global. That is, all solutions of (6.13)
with S =1 satisfy lim, „~x(t) g(t) =0, provided th—at
g (t) lies in the convergent region (6.11) and (6.12). If this
is true, then the control can be activated at any time
[S(t) set equal to 1]. To try to prove such a fact, it is use-
ful to rewrite (6.13), S =1, in the form [replacing (x,y, z)
with (1,2,3)]

For real n, and p =0,

g3 ) r —I+(gz/4b),

a(t)g3 —gzg2/2b 0 .
(6.17)

Moreover, from (6.16) we note the important fact that
p&0.

Therefore we have the following result: the solutions
of (6.14) satisfy

(pui+u2+u3)= —(au, —u2) b(/3u, —u—3)

(p) 0),
provided that (6.16) and (6.17) are satisfied. Since p) 0,
one can conclude in a straightforward fashion (similar to
the reasoning in Sec. IV) that all solutions of (6.14) satis-
fy lim, ~u~ =0. This can also be expressed in terms of
the controlled equations (6.13).

Theorem 2. If

g, ) r —1+g /4b (6.18a)

and one of the following conditions is satisfied:

[1+(1 r+g, g /4b)'~ ]g—, ——g g /2b =0, (6.18b)

then all solutions of (6.13) (with S =1) are entrained to
g (t),

In other words, the basin of entrainment of (6.18) is glo-
bal (R ). The conditions (6.18) do not involve g (t).
Moreover, (6.18b) can be satisfied either by a fixed point
g =g, =0 or some complicated interdependence between
g (t) and g, (t). Regardless of what this relationship may
be, or what g (t) may be, if the condition (6.18a) is
satisfied, one can prove that g (t) is in the convergent re-
gion (6.11) and (6.12). This, of course, must be true if
g (t) is a fixed point, go, but it is also true for this class of
dynamic EG's (6.18).
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VII. MIGRATION BETWEEN LORENZ ATTRACTORS

xo =yo =+[b(r —I)]'~, zo=(r —1) . (7.1)

These attractors A — are the only attractors for
14 & r & 24 (cr = 10,b =

—,', ), but they have very convoluted
basins of attraction, BA+— [23,25,26]. This convoluted
structure produces the phenomena of transient chaos,
which is most observable for the larger values of r (24
(see, e.g. , Ref. [27]).

Figure 13 shows the system when r = 15, initially in the
basin of attraction BA+ of A +. The MG in this case be-
gins at A + and tends toward A, remaining always in
the convergent region; specifically,

g, (t) =gy(t) = [b (r —1)]'~ [2 exp( r/5) —1], —

g, (t) =(r —1)(0.05 sinI sr[ 1 —exp( —t/5)]] =1) .
(7.2)

When the control is initiated (t =0), the system is attract-
ed toward (7.2), as can be seen from the projection on the
x =y plane in Fig. 13. The intersection of the convergent

Many of the most important and interesting complex
dynamic systems have a number of attractors in their
phase space (MAS) [1—11] as discussed in Ref. [12]. One
of the important applications of entrainment (or near en-
trainment) is to make it possible to transfer a system from
one attractor A

&
to another attractor A2. If the system

is in the basin of attraction BA& of A
&

this transfer can
be achieved by first using a simple entrainment goal, such
as a fixed point go E C& CBA], for a finite time, until the
system and the EG is within some small distance
lx (t) —

go l
& e„ the entrainment error. At this time a mi-

gration goal (MG) is introduced, which goes from go to
the basin of attraction BA2 of A2. If the system follows
this MG, it will enter BA2, at which time the control can
be terminated (S =0), and the system will tend auto-
nomously to A 2. This achieves the desired transfer
A( —+A~.

This scenario is obviously contingent upon the satisfac-
tion of "if the system follows this MG." If the MG is in
the convergent region of the system most of the time, and
dg/dt is not "too large, " then the system will follow this
MG. Many details of this process have yet to be worked
out, but several points appear to be likely. If the MG is
in a convergent region C(y), (2.4), and d( logg)/dt &y,
the system should be able to follow this MG, provided
that e, is suKciently small. However, in order to move
from one basin of attraction to another, the MG may
leave the convergent region [12], in which case there are
competing factors involved in a successful migration.
The details of these considerations will be discussed in fu-
ture publications (see, e.g., Ref. [24]). In this section we
will simply illustrate this migration process in the Lorenz
system. This will be done with two diff'erent examples in-
volving the transfer 3,—+ A 2 .. (1) 3, and 2 2 are stable
fixed points (but transient chaos); (2) A

&
is a strange at-

tractor and A 2 is a stable fixed point.
In the first example the system is the Lorenz system

with r = 17, which has stable fixed points at

m goal

t=o
S= I

System ~ BA

Convergent
boundary

System ~ BA+

p{o)

FIG. 13. The migration of the transient chaotic Lorenz sys-
tern (r = 15) from the basin of attraction BA + to BA . The mi-
gration goal (MG) is kept in the convergent region, above the
convergent boundary. Once the system is in BA, the control
can be terminated.

region's boundary with the plane x =y, in which (7.2)
lies, is also illustrated. Once the system is "safely" in the
basin of attraction BA of A (past the convoluted
structure), the control is terminated (S =0), and the sys-
tem tends to A

Several points should be noted about this process. (7.2)
does not leave the convergent region even though it goes
from BA+ to BA . The convoluted boundary separating
these two basins is not locally "unstable" in this region
(it, of course, must be unstable someplace in order to
separate trajectories toward 2 + and A ). Moreover,
since (7.2) does not leave C, it would be an EG if the con-
trol is maintained for all t ~ 0.

One of the very interesting dynamic states of the
Lorenz system occurs in the approximate control-
parameter range 24. 1&r &24.7 (see, e.g., Ref. [28]). In
this range the system has two stable fixed points, (7.1),
but it also has a strange attractor. The basins of attrac-
tion, BA—,of these fixed points are cylindrical-like re-
gions that extend to infinity, and coil around the
positive-z axis in a serpentine fashion. The region outside
of these topological cylinders is the basin of attraction of
the strange attractor (aside from some invariant mani-
folds of lower dimension, and hence zero measure; see,
e.g. , Ref. [23]). Thus, outside of the regions Ba—,the au-
tonomous system has chaotic dynamics. Nonetheless
much of these dynamics passes through the convergent
regions (7.11) and (7.12), illustrated in Fig. 11.

Figure 14 illustrates the transfer of the system r =24. 1

from the strange attractor to the stable fixed point A
First, the control (7.13) was initiated at an arbitrary time
(labeled t =0 in the figure) while the system is near the
strange attractor. The goal dynamics was arbitrarily
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go: e-goal

S=l
t=o

System ( SA~

FIG. 14. Illustrates the transfer of the Lorenz dynamics
(r =24. 1) from a strange attractor (SA) to the stable fixed point
A . First the system is nearly entrained to go E.C, switching on
the control at any time (t =0). Then the MG (7.3) is used to
transfer the system to the small BA, where the control is ter-
minated (S =0).

selected to be a fixed point well inside the convergent re-
gion

g„=g =[b(r —1)]'~, g, =(r —1)+50

labeled go in the figure. This go was selected in order to
make this two-step control process very clear in the figure
(much less exaggerated controls are possible). Once the
system is nearly entrained, the control is changed to the
MG,

g =g =[b(r —q)]'~ [2exp[ —(t —t )/5] —1I,
(7.3)

g, =(r —1)+50exp[ —(t t )/5] —(t ~ t ),

where t is the arbitrary time the migration is begun.
The system closely follows (7.3), and once the system is
sufficiently near A (the distance 0.5 was used) the con-
trol can be terminated. In this particular system the
basin of attraction of A is rather small and the attrac-
tion is very slow, so some care is required in the time
when S is set to zero, and the integration methods used.
In any case, this gives an example of the transfer
SA ~A

VIII. CONCLUSION

A variety of controls of the dynamics of complex sys-
tems can be accomplished when the goal dynamics of
these controls, g(t)ER", are largely limited to conver-

gent regions C of the system's phase space, (2.3), and pos-
sibly dynamically contrained, as illustrated in Sec. III.
These controls may involve long-time entrainment goals
EG's or finite-time migration goals MG's, which may
venture for short periods outside of convergent regions.
In the case of EG's, the objective is to produce some
desired dynamics in a region C, whereas the purpose of
the MG's is to transfer the system either from one con-
vergent region to another, or from one attractor to anoth-
er.

The process of making a reliable transfer between at-
tractors involves a two-step process. First, the system
must be reliably entrained to some simply dynamics state
(e.g. , a fixed point, go), which requires some knowledge of
the convergent regions in which go must be located, using
the Routh-Hurwitz theorem. It was also shown in
several cases that the basin of entrainment of certain fam-
ilies of goal dynamics, BE(lg ]), could be analytically ob-
tained, while others could be estimated numerically.
Once this information is known, the system can be reli-
ably entrained to this goal dynamics with only macro-
scopic information about the system's initial state
[xo EBE( lg ] )].

This study also illustrated that, once the system is
nearly entrained, lx(t) —g(t)l &e„ the control can be
changed to a migration type, which moves from one
basin of attraction to another. This MG control needs to
be applied only for a finite time to accomplish the
transfer between attractors, A, ~A2. Such a transfer
may, or may not, require such MG dynamics. As shown
in Sec. IV, this is not necessary in the case of one-
dimensional Aows. A fixed-point goal go in the conver-
gent region of one attractor, A „can be found that has
any other attractor Az within its basin of entrainment,
BE(go) & Az, making the transfer Az~ A, possible us-

ing only go. Similarly, in the Lorenz system if r & 14 it is
possible to use a goal goC BA( A ) to cause the system
in BA(A ) to transfer to BA(A+), where the control can
be terminated, producing the transfer A —+ A+. How-
ever, for r &24.7, where two fixed points are stable, the
transfer from one to the other is increasingly difficult to
accomplish in a reliable fashion as r becomes larger. This
is due to the convoluted structure of the basins of attrac-
tion. Thus for the transfer between these fixed points, or
from the strange attractor to a fixed point
(24. 1 & r & 24. 7), the use of MG's is required.

At present, not much is known about the optimal rate
of speed of such transfers. This partially concerns the
maintenance of "near entrainment, " which involves con-
siderations discussed in Sec. III, as well as how such con-
trols might cause the excitation of other degrees of free-
dom off the inertial manifold [14,15]. The use of a vari-
able switching function [e.g. , (5.14)] illustrates one ap-
proach to this latter concern. However, such important
questions will need to be studied in the future.

The present methods of control may be contrasted with
other recent interesting approaches introduced by Ott,
Grebogi, and Yorke [32], which have been studied experi-
mentally by Ditto, Rauseo, and Spano [33], as well as the
studies by Huberman and Lumer [34], Huberman [35],
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and Sinha, Ramaswamy, and Rao [36]. These ap-
proaches focus on the modification of the control param-
eters of the system to gain their control (parametric con-
trols). Moreover, the changes that are made in the con-
trol parameters are dependent upon the present state of
the system, which is a feedback control approach. The
present method of control di6'ers in that it uses neither of
these approaches and may also open the opportunity for
migration controls.
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