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First-order phase transition in a one-dimensional nonequilibrium model
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We present an example of a single-component, one-dimensional interacting particle system with a
discontinuous transition into an absorbing state. The basic processes in the model are spontaneous an-
nihilation (X—+0), autocatalytic creation by trimers (3X~4X), and hopping. The transition is continu-
ous, and in the directed percolation class, for low diffusion rates, and first order for sufficiently high
diffusion rates. The transition in a similar model with creation by pairs (2X~3X) remains continuous
even at high diffusion rates.

PACS number(s): 05.70.Ln, 05.50.+q, 64.90.+b

I. INTRODUCTION

Nonequilibrium phase transitions continue to attract
great interest in physical and biological sciences [1,2].
Theoretical efforts have focused on simple lattice models
or interacting particle systems [3] which describe none-
quilibrium transitions in ionic conductors [4,5], surface
catalysis [6], and autocatalytic chemical systems [7].
Many of these models exhibit a transition into an absorb-
ing vacuum state. Typically the transition is continuous
and belongs to the universality class of directed percola-
tion [8,9]. Here we present an example of a one-
component, one-dimensional model with a discontinuous
transition into an absorbing state.

Consider a population of "particles" residing on the
sites of a lattice (with at most one particle per site), which
evolves via spontaneous annihilation (X~O), autocata-
lytic creation [nX~(n +1)X,n ~ 1], and nearest-
neighbor hopping. The simplest example (n =1) is the
contact process (CP) [10] in which particles disappear at
rate 1 and create new particles at a (vacant) nearest-
neighbor site, at rate X. The steady-state density p grows
continuously from zero as A, is increased beyond a critical
value A,, [3,11]. The CP is a particularly simple realiza-
tion of the universality class encompassing directed per-
colation and Reggeon field theory [3,12,13]; the same
critical behavior is found in models describing diverse
nonequilibrium processes [14—21]. The variety of models
exhibiting directed percolation transitions lends strong
support to the proposal [14] that such critical behavior is
generic for continuous transitions into a unique absorbing
state.

A question naturally arises, in attempting to
comprehend the range of nonequilibrium phase transi-
tions: Under what conditions wi11 a system exhibit a
discontinuous transition into an absorbing state? This is-
sue arose in the context of autocatalytic chemical models
[1,7,22]. Schlogl's first model is equivalent to a mean-
field or rate equation description of the CP, while his
second model involves autocatalytic creation by pairs

(2X~3X). In its original mean-field formulation, the
latter exhibits a first order t-ransition, because (in mean-
field theory), the particle production rate is proportional
to p . Will a strictly local version of the model, with
creation only by nearest-neighbor pairs (a pair creation-
model, in our terminology), show a discontinuous transi-
tion? Simulations [14] showed that the transition is actu-
ally continuous in one and two space dimensions, and
discontinuous when d =4. Thus d =4 marks the upper
critical dimension, below which mean-field predictions
are qualitatively incorrect. For d &4 the particles are
strongly clustered so that the production rate is propor-
tional to p not p .

The question posed above may be restated: What is
the simplest model with short-range interactions that
does exhibit a discontinuous transition into an absorbing
state? We shaH present a likely candidate. Our criteria
for "simplicity" include a restriction to one space dimen-
sion and to a single species of particle. A number of
two-component models —for example, the Ziff-Gulari-
Barshad model [6]—show discontinuous transitions.
The only single-component local model we know of, with
a discontinuous transition for small d, is the stochastic
cellular automaton devised by Bidaux, 8occara, and
Chate (BBC) [23]. The transition in the BBC model is
first order for d ~ 2, but continuous (and in the directed
percolation class [21]), in one dimension. The BCC pro-
cess involves interactions of a site with eight neighbors,
so it is not as simple as one might hope.

Before considering more complicated processes, we
should try to rule out the possibility of a first-order tran-
sition in the pair-creation model. We therefore begin by
examining the pair-creation model under rapid diffusion,
which might be expected to show mean-Geld-like behav-
ior. Our simulation results indicate that this is quite un-
likely: the transition remains continuous even when 95%
of all attempted moves are diffusive. Another direction is
suggested by recent results on models with competing
diffusion and multiparticle annihilation [19,20,24,25]. It
turns out that a three-particle annihilation rule leads to a
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new (reentrant) phase diagram, not observed for one- or
two-particle annihilation. Thus we are motivated to
study the competition between diffusion and a multi-
particle birth process in a triplet-creation model. This
system is the simplest we have been able to devise, which
exhibits a discontinuous transition. Definitions of the
models are given in the following section. Section III
presents our simulation results, followed in Sec. IV by a
brief discussion of theoretical approaches.
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II. MGDELS

We consider interacting particle systems on a one-
dimensional lattice. The configuration is conveniently
described in terms of occupation variables o.;, with o.; =1
(0) for site i occupied (vacant). The triplet-creation model
involves three elementary processes.

Creation: Site i is chosen at random. If
o, &

=o.
,
=o.;+,=1, then one of the sites i +2 or i —2 is

chosen at random and a new particle is placed at the
chosen site, provided this site is empty (if this site is al-
ready occuppied no creation occurs).

Annihilation: Site i is chosen at random. If o.; =1 it is
set to zero.

Hopping: Site i is chosen at random and o.; and o.
, +,

are interchanged.
The system evolves via a random sequence of hopping,

creation, and annihilation processes, which occur with
probability D, (1—D)A, /(1+ A, ), and (1 D)/—
(1+A,), respectively. The pair-creation model evolves in
the same manner, except that creation is contingent upon
the occupancy of just two neighboring sites (i.e., i and
i +1). We are interested in the steady-state and time-
dependent properties of these models, as functions of the
diffusion rate D and the creation rate A, .

III. SIMULATIGNS

Steady-state properties of the pair- and triplet-creation
models were estimated from Monte Carlo simulations on
a lattice of 10000 sites with periodic boundary condi-
tions. A study at a particular D value began from a filled
lattice, with k set well above its critical value. In that re-
gime relaxation times are quite short, but as A, ap-
proaches the phase boundary at A,, density Auctuations
become larger and longer lived. Typical run lengths were
(1—2) X 10 lattice updates (in which each site is chosen
once, on average); close to the transition as many as
6X10 updates were employed. A block-averaging pro-
cedure was used to estimate uncertainties [26].

The results for the steady-state density p in the pair-
and triplet-creation models are presented in Figs. 1 and 2,
respectively. The density in the triplet-creation model
exhibits a substantial discontinuity —clear evidence of a
first-order transition —for D &0.85. No gap is seen in
the pair-creation data, even for D =0.95. We have
found, however, that it is nearly impossible to maintain
steady states with density less than 0.1, so it is very
dificult to distinguish a continuous from a weakly first-
order transition on the basis of the steady-state density.
To obtain a more complete picture we have examined
time-dependent behavior and hysteresis.
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FIG. 1. Average density vs creation rate in steady-state simu-

lations of the pair-creation model at hopping fractions D=O,
0.8, 0.9, and 0.95.
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FIG. 2. Average density vs creation rate in steady-state simu-

lations of the triplet-creation model at hopping fractions D =0,
0.5, 0.7, 0.8, 0.85, 0.9, and 0.95.

The time-dependent simulation method is based
on the expectation —confirmed in numerous studies
[14,17,20,21]—of power laws governing the evolution at
the critical point. One studies the evolution of the system
over a large number independent runs, always starting
from a configuration very near to the absorbing state.
[For each (A, ,D ) value studied, we performed between 10
and 5 X 10 runs, starting from a cluster of two (three)
particles in the pair- (triplet-) creation model, in an other-
wise vacant lattice. ] Each run continues as long as parti-
cles remain in the system, up to a fixed maximum time
t~. The lattice is sufficiently large that no particles reach
the boundary during a run. We follow the evolution of
n„ the mean particle number at time t, and of the sur-
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vival probability P, . At a critical point, these quantities
follow asymptotic power laws [27,28]:

P, =t (2)

For directed percolation in 1+ 1 dimensions, the ex-
ponents take the values [12] 6 =0. 162(4) and
r1=0.317(2), where the numbers in parentheses indicate
the uncertainty in the last figure. The subcritical regime
is characterized by exponential decay; for A, & A,, one ob-
serves linear growth in n, and a nonzero limiting value
for P, . Power laws are not expected at a first-order tran-
sition: since correlations are of finite range, P, and n,
should decay exponentially. Thus asymptotic power-law
behavior of the survival probability and particle number
indicate a continuous transition. Conversely, the absence
of power-law scaling (i.e., in a range of A, values including
the transition point) implies that the transition is first or-
der.

Time-dependent simulations at a particular value of D
covered a narrow range of k values, including the esti-
mate for the transition from the steady-state simulations.
An independent estimate of critical value A,,(D) was ob-
tained by the condition that logarithmic plots of P, and
n, be asymptotically straight. Examples of power-law
evolution are shown in Figs. 3 and 4 for the pair and trip-
let models, respectively. In all cases where power-law
evolution was observed, the steady-state and time-
dependent estimates for A,, were in close agreement. Esti-
mates for the critical exponents g and 5 can be obtained
from logarithmic plots of n, and P, . Greater precision is
afforded by an analysis of the local slopes of such plots
[28]; this method was applied to the triplet-creation mod-
el simulations. If power-law evolution is not observed at
any A, value near the (steady-state) transition value (i.e.,

P, and n, decay exponentially), we conclude that the
transition is first order. In this case the transition found
in the steady-state simulations actually marks a spinodal.

We find that the transition in the pair-creation model
remains continuous (and in the directed percolation class)
for D ~0.95, confirming the conclusions drawn from the
steady-state simulations. The transition in the triplet-
creation model is continuous for D (0.8, but it is clearly
first order for D ~0.9. For D=0.9, the active steady
state persists for A, ~ A.,=10.13, but there is no evidence
of power-law behavior in P, or n, at this point. In fact,
n, decreases monotonically, even at very long times
( tM = 50 000), for A, ( 10.3. Thus the time-dependent
simulation results confirm that the triplet-creation model
exhibits a tricritical point at I,=A, , = 10.42,
D=D, =0.85. For D &D, the simulations yield phase
stability boundaries ("spinodal" lines) A, and A, +. For
A. ( A, + the vacuum is locally stable while the active state
remains locally stable for A, )A, . We determined A, +(D)
in time-dependent simulations, using the criterion that
the long-time ( t =5 X 10 ) survival probability be nonzero
but very small (P, =10 ). The phase diagram of the
triplet-creation model is displayed in Fig. 5, which also
shows a mean-field theory prediction to be discussed
below.

Our results for phase boundaries and critical exponents
are summarized in Table I. The exponents measured at
continuous transitions are all consistent with directed
percolation values, but there is some suggestion of a
crossover to new values for D =0.95 in the pair-creation
model and for D=0.8 in the triplet model. In the ab-
sence of diffusion (Fig. 4, open symbols), the approach to
power-law evolution is quite rapid. In the presence of
diffusion (Fig. 3, solid symbols in Fig. 4) the asymptotic
regime is preceded by a transient period of exponential
decay, whose duration increases with increasing D.

A key aspect of discontinuous phase transitions is hys-
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FIG. 3. Survival probability P, and average particle number

n, in time-dependent simulations of the pair-creation model.
Open symbols: D =0.9, A, =5.35; solid symbols: D =0.95,
X=5.15. The upper curve in each pair represents n„ the lower
one, P, .

FIG. 4. Survival probability and average particle number as
in Fig. 3, but for the triplet-creation model. Open symbols:
D =0, X=12.0; solid symbols: D=0.7, X=10.93.
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FIG. 5. Phase diagram for the triplet-creation model. The
squares represent simulation results, connected by lines as a
guide. The solid lines are mean-field-theory predictions for the
phase boundaries.

teresis: In a regime allowing multiple locally stable
phases, the state of the system depends strongly upon its
history. Of course, in the present case the vacuum state
admits no escape, while the active state (in a finite sys-
tem) is strictly speaking metastable, but with a lifetime
much longer than the time scale of the simulations. To
study hysteresis, we modify the model to include a small
rate I~ of spontaneous particle creation. (Bidaux, Boccara,
and Chate [23] employed this strategy to study hysteresis
in the model they devised. ) We expect that for
suKciently small, the active and vacuum phases of the
original triplet-creation model become distinct high- and
low-density phases. If the transition (in the absence of
spontaneous creation) is discontinuous, then it is reason-

able to expect that for small sc the system will exhibit hys-
teresis between distinct high- and low-density phases, as
A, is varied (with D and ~ held constant). (If the transition
in the original model were continuous, it would be des-
troyed by spontaneous creation. ) We performed simula-
tions of the triplet-creation model with D =0.9 and
a. =0.03, on a lattice of 1000 sites (the smaller system size
eliminates the need for very long relaxation times). The
results, shown in Fig. 6, clearly demonstrate hysteresis.

Further study of the model with spontaneous creation
is in progress. In particular it would be interesting to
study the coexistence of the two phases, and the interface
between them, but establishing a stable interface appears
to be quite difFicult. We expect that with increasing ~ the
distinction between the high- and low-density phases is
diminished, and finally vanishes at a critical value I~, (D).

Additional insight into the phase behavior of the
triplet-creation model is afforded by examining the spa-
tial distribution of particles. To this end we divide the
system into blocks of 100 sites, and follow the evolution
of the block-averaged density. Figure 7 shows a typical
sequence of profiles (at intervals of 10 lattice updates), in
a system close to the phase boundary A, (D=0.95,
A, =9.66). The profiles clearly show distinct vacuum and
high-density regions corresponding to the two locally
stable phases. Histograms of such block density profiles
show a bimodal distribution, with a very narrow peak at
p=0 and a broader one near p=0. 84. The latter peak
maintains a nearly constant position and shape while its
height gradually decreases as A, &A, . This is further evi-
dence of a well-defined high-density phase coexisting with
vacuum.

IV. DISCUSSIQN

At the level of a Landau-Ginzburg-type theory, one
may describe the phase behavior of the CP and related

1.0

TABLE I. Phase boundaries and critical exponents for the
pair- and triplet-creation models.

O a D O0 0

0.9
0.95

0
0.1

0.2
0.5
0.6
0.7
0.8
0.85

0.90
0.95

pair
5.35(1)
5.15(1)

triplet
12.00(1)
11.55(1)
11.435(15)
11.27(1)
11.15(1)
10.935(10)
10.64(1)
10.415(5)

10.12(1)
9.67(1)

creation
0.163(3)
=0. 1

creation
0.158(8)

0.164(6)

0.170(6)
0.17(1)
0.20(5)

k+
10.30(2)

~ 17

model
0.35(3)

=0.4

model
0.3 12(10)

0.305(10)

0.32(2)
0.32(1)
0.25(5)

0.4—

10.0 10.4 10.8 X

FIG. 6. Hysteresis loop observed in steady-state simulations
of the triplet-creation model, with a=0.9 and spontaneous
creation rate v=0.03. Open symbols: gradually decreasing A, ,
starting at high density; solid symbols: gradually increasing X,
starting at low density.
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X

FIG. 7. Evolution of the block density profile in triplet-
creation model with k =9.66 and D =0.95. Each point
represents the density of a 100-site block. Time increases to-
ward the top of the plot; successive profiles are presented at in-

tervals of 10 lattice updates.

models in terms of the evolution of a scalar order-
parameter field:

dp(x, t)
ap(x,—t) bp(x,—t) —cp(x, t) +DU p(x, t) .

The uniform solution p(x, t) =p exhibits a critical point
at a =0, for b, c )0, a first-order transition at a =b j4c,
for b &0, c &0, and a tricritical point at a =0 for b =0,
c)0. Janssen [29] showed that this sort of equation
yields a qualitatively correct description of the critical
point, when a Gaussian white-noise term that respects
the absorbing state at p=0 is added. Ohtsuki and Keyes
[30] applied this field-theoretic approach to calculate
nonequilibrium tricritical exponents. However,
Grassberger [14,31] has pointed out serious difficulties in
the application of the field-theoretic formalism to models
with multiparticle-creation rules. In particular it is not
obvious how to identify the order parameter p, it appears
more appropriate to associate it with the density of clus-
ters than with the particle density. Another difficulty is
that the parameters appearing in Eq. (3) represent
effective, macroscopic rates; their dependence upon the
microscopic rates A, and D is unknown. Thus, while the
field-theoretic formalism may yield critical exponent
values, it is not useful for predicting the phase diagrams
of the models considered here.

A more straightforward method for predicting the
phase diagram is provided by dynamic mean-field theory
[32], in which one considers the evolution of densities of
clusters of various sizes. An exact description would of
course involve an infinite hierarchy of equations. A trac-
tible, approximate theory is obtained by factorizing all
probabilities for clusters of more than n sites, yielding a
closed set of (nonlinear) equations for the evolution of the

n-site cluster densities. We have studied the triplet-
creation model in the four-site approximation (there are
seven independent equations at this level). The resulting
phase diagram is shown in Fig. 5: It is qualitatively
correct in that it predicts a change from a continuous to
a first-order transition. The location of the tricritical
point (near D =0.017) is very far from the simulation re-
sult, however. (Mean-field theories employing smaller
clusters predict a first-order transition independent of D ).

It is a commonplace that mean-field-like behavior ob-
tains in the rapid dift'usion limit. (Such limiting behavior
has been rigorously established in certain cases [33].)
Our observations of the triplet-creation model tend to
support this notion, but no change in the nature of the
transition in the pair-creation model has been found. As
in the case of multiparticle annihilation, there seems to be
an important distinction between processes mediated by
pairs and by triplets. We speculate that the distinction is
related to the recurrence of random walks on the line.
Pairs of particles are liable to be brought together by
diffusion; intersections of three random walks are com-
paritively rare events. In other words, diffusion is more
effective in destroying three-particle clusters than pairs.
A low-density active state is therefore nonviable in the
triplet-creation model, under rapid diffusion.

The question remains as to how the mean-field limit is
achieved in the pair-creation model, as D~1. A simple
argument suggests that the diffusion rate D* marking a
crossover to mean-field behavior depends on the system
size. The source of correlations is the creation process.
The average time interval between creation attempts is
roughly (1 D), whi—le the time required to mix a sys-
tem of size L is proportional to L . Equating these times
yields the estimate D*= 1 —const/L for large L.

In summary, we found an example of a one-
component, one-dimensional model with a first-order
transition into an absorbing state. The essential feature
of this triplet-creation model is the competition between
diffusion and cluster-mediated creation. The model has
been studied via steady-state and time-dependent Monte
Carlo methods and mean-Geld theory, and has been
shown to exhibit marked hysteresis. In future work we
plan to locate the tricritical point more precisely, to
determine the associated scaling behavior, and to pursue
a more quantitative theoretical analysis via time-
dependent series expansions [34].
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