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Role of fluctuations for inhomogeneous reaction-diffusion phenomena
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Although Auctuations have been known to change the long-time behavior of homogeneous diA'usion-

reaction phenomena dramatically in dimensions d ~ 4, simulations of reaction fronts in two-dimensional
3 +8~C inhomogeneous systems have only shown marginal departure from mean-field behavior. We
perform cellular-automata simulations of the one-dimensional case and find that the width 8 (t) of the
reaction front behaves as t '— ', in contrast to mean-field behavior t' . We develop a scaling theory
to obtain inequalities for the exponents in the more general mechanism n 3+mB —+C. Heuristic argu-
ments about the range of fluctuations imply that the mean-field behavior should be correct in dimensions
larger than an upper critical dimension d„p =2, irrespective of the values of n and m. This leads us to
reinterpret the two-dimensional data obtained previously in terms of a logarithmic correction to mean-
field behavior.

PACS number(s): 82.20.Wt, 82.20.Db, 82.20.Mj, 66.30.Ny

I. INTRODUCTION

Chemical reactions in which several species react are
usually described in terms of macroscopic rate equations.
These rate equations give the time evolution for the local
average concentrations of the different species. They as-
sume that the reaction is completely described by the lo-
cal average densities, i.e., that the reaction introduces no
correlations between the reacting species. This is remin-
iscent of a mean-field approximation in statistical physics,
and therefore neglects an important aspect of the prob-
lem, namely, the microscopic Auctuations.

For homogeneous reaction-difFusion systems, it is well
known that the Auctuations play an important role. The
simplest example may be provided by the annihilation re-
action A +B—+0. The solution of the rate equations pre-
dicts that the concentration of 3 (or B) will decrease at
short time as a = t while a calculation taking into ac-
count the microscopic Auctuations in the particle density
a gives a =t, where d is the dimensionality of the
system [1].

A more complicated class of problem is that for which
the initial condition is inhomogeneous. The inhomo-
geneities of the problem often arise from the presence of
sources or sinks of particles. This may lead to the forma-
tion of reaction-difFusion fronts. Those fronts play an im-
portant role in many physical or chemical problems. Ex-
amples are given by solid-solid chemical reactions [2], ca-
talysis [3], crystal growth [4], diffusion-limited aggrega-
tion [5], or precipitate formation [6].

A simple model displaying a reaction front has been
analyzed at the level of the rate equations by Galfi and
Racz [7]. They consider two species 3 and B diffusing on
a two-dimensional substrate and reacting to form a new
species C. Provided that the two difFusing reagents 2
and B are initially separated in space, they will react in a

confined region ("reaction front"). An appropriate
choice of geometry reduces the problem to one dimension
in this approximation. In particular, it is assumed that,
at time t=0, the system is uniformly filled with 3 for
x ~ 0, and uniformly filled with B for x & O. The study of
the properties of this front provides relevant information
about the production of C particles. The analytic treat-
ment of Galfi and Racz assumes that the reaction rate is
expressed in terms of the product of mean particle densi-
ties, which we shall henceforth refer to as the "mean-
field" approximation. Their main result is that the distri-
bution of the production of C particles, i.e., the reaction
front, has a scaling form in the large-time limit. In par-
ticular, the width of the front behaves as 8'(t ) = t '

The role of Auctuations in this system has been recent-
ly investigated in two dimensions by numerical simula-
tions of microscopic models [8,9]. While the Monte Car-
lo simulations of Jiang and Ebner [8] were not precise
enough to detect corrections due to Auctuations, the
cellular-automata approach of Chopard and Droz [9]
showed a significant departure from the value —,

' for the
width exponent. If the Auctuations play a significant role
in two dimensions, their efFect in one dimension should be
still more dramatic.

In this paper, we present a scaling analysis of the more
general process n A +mB ~C, obtaining rigorous ine-
qualities for and relations between the scaling exponents.
We then present a thorough analysis of a one-dimensional
cellular-automaton model of this reaction-diffusion pro-
cess in the case m =n =1. We find that the reaction
width scales like t —,contrasted with the mean-
field value t '

Furthermore, we formulate a microscopic argument to
obtain the range of Auctuations. We argue that the upper
critical dimension, where the Auctuations become of the
same range as the mean-field reaction width, is 2, in-
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dependently of n and m. This leads us to reinterpret the
two-dimensional data in terms of a logarithmic correc-
tion to the mean-field power law.

In the concluding section, we consider possible
schemes for introducing fluctuations at the level of the
macroscopic rate equations and suggest further avenues
of research.

II. SCALING ANALYSIS

The process we are interested in is the reaction

n 2+mB —+C

between two species 3 and B diff'using on a gel, for in-
stance. This reaction-diff'usion process can be described
by the following partial diff'erential equations:

Therefore x&(t ) is given by u(x&(t ), t )=0. From Eq. (5),
it is then clear that x&(t) behaves like v't and that
x&(t)=0 if mao=nbo. For the sake of simplicity, we
shall now consider only the situation where the front is
motionless. This does not aff'ect the scaling arguments we
present, since the velocity of motion of the front de-
creases monotonically, and so must asymptotically move
more slowly than the particles.

Interesting information on the long-time behavior of a,
b, and R can be obtained from Eqs. (2) by using simple
physical arguments and assuming the scaling forms

a(x, t)=t '&(xt '),
b(x, t)=t '&(xt '),
R(x, t)=t ~R(xt ) .

B,a=DU a —k, R, B,b=DV b —k R, (2)

n

k2 m

This condition ensures that each reaction event consumes
n 3 atoms and m B atoms.

In this work we are interested in a situation where a re-
action front develops, as is the case when 3 and B are in-
itially separated in space. %'e assume that
a(x,y, . . . , t =0)=ao if x (0 and a =0 otherwise. Simi-
larly, b(x,y, . . . , t=0)=0 for x (0 and b =ho for x )0.
With this choice of initial conditions, Eqs. (2) reduce to a
problem containing only the space variable x.

In general, the reaction region (the front) is expected to
move through the system as time goes on. Following
Galfi and Racz [7], one observes that u =ma nb obeys-
the diffusion equation

B,u(x, t)=DR, u(x, t) . (4)

With the initial condition u(x (O, t=0)=mao and
u(x )0, t =0)= —nbo, the solution is found to be

where a and b are the local concentrations of A and B,
and D the diff'usion constant which, for simplicity, is as-
sumed to be identical for both species. If the difFusion
constants are diff'erent for the two species, we still expect
the same asymptotic scaling behavior, with irrelevant
corrections to the scaling function [7]. R is the reaction
term. It is proportional to the joint probability of having
n particles of type A and m particles of type B simultane-
ously present at the same point. The reaction constants
k) and k2 are such that

~a ~s o'~ 7a 3'b 'V . (7)

Relations between these exponents can be derived from
two assumptions [7,8], based on the fact that A and 8
react only in a localized region.

(i) The reaction zone increases more slowly than the
characteristic length of the difFusion process. This means
that, in the long-time limit, a and b vary over a typical
length governed by diff'usion, i.e., grada ~gradb ~ t
and thus

(ii) Due to the gradient concentration of A and 8, a
Aux of particles towards the reaction region is observed.
Assuming that the reaction is fed by these particle
currents, the reaction-diff'u sion equations take on a
quasistationary form DV a =k)R and DV 6 =k2R. For
the exponents, this amounts to the relation

y+2a=P . (9)

For consistency with assumptions (i) and (ii), we should
also have

CX &—1
2 (10)

so that the width of the front grows slower than the de-
pletion zone produced by the difFusion. To ensure the
quasistationary of the solution, we need furthermore that

These scaling forms are only valid for x «Ld, where Ld
is the width of the depletion zone. Consistency between
the forms and Eq. (2) requires

u(x, t)= mao —nbo

(mao+nbo)
du exp( —u ) .

7r 0

a=t x —2a

))B,a = t r (ya+a—xt a ),
which is again consistent with the condition (10).

From relations (8) and (9) one also gets
The position of the front x&(t ) can be defined as the point
where the rate of reaction is maximal. If u )0,
a /n )6 /m and then the production of C particles is lim-
ited by the number of B particles. This number increases
as u decreases. Similarly, for u &0, the reaction is limit-
ed by the number of 2 particles which increases with u.

P—a= —,', (12)

sincewhich is easy to
JvolumeR

Relations (8), (9), and (12) are still quite general since
no explicit form of the reaction term E. has been used. In
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a mean-field approximation, one neglects the fluctuations
and assumes that the reaction term factorizes into a prod-
uct of the local concentrations of 2 and B. For the pro-
cess nA+mB —+C, the mean-field reaction rate RMF
takes the form

RMF
——a "b (13)

and we obtain the following the values for the mean-field
exponents:

This introduces another relation among our exponents,
namely,

P=(n+ m))

Diffusion is produced by a simultaneous random walk
and reaction takes place at each site where two particles
3 and B are simultaneously present with opposite veloci-
ties. The particles involved in such a reaction process
disappear from the lattice and are replaced by a C parti-
cle which does not enter furthermore into the dynamics.

We introduce the occupation numbers a; (x, t ) and
b;(x, t ) defined as the number of, respectively, 3 and 8
particles entering the site x, at time t, with a velocity U;.
In the spirit of a cellular-automata approach, we con-
struct a dynamics such that a; and 6; can be either 0 or 1

(exclusion principle).
Our CA model is described by the following equations:

n+m —1 1

2(n+m+1) ' " n+m+1
a;(x+Ae;, t+r)= g p/(a;+/ k;+/R—;+/),

1=0, 1

(19)

where we used relations (8) and (9) and I' is a scaling
function. With Eq. (15), this ratio also reads

—(n+ m+1)(a —a )MF

RMF
(17)

Since the reaction introduces correlations between the
two species which tend to reduce the probability of parti-
cles meeting, R /RM„must not diverge when t increases,
and we conclude that

++ MF

The quantity o, —aMF is thus a measure of the quality of
the mean-field approximation R =a "b

III. NUMERICAL SIMULATIONS

The numerical simulations have been made using a
cellular-automata (CA) algorithm for the reaction-
diffusion of the particles. This algorithm has been used
by Chopard and Droz for the two-dimensional case and is
described in detail in their paper [9]. Accordingly, we
shall simply give the main points for the one-dimensional
case.

We assume that the particles are constrained to move
on a lattice of spacing A, , either to the left or to the right.
At each time step ~, the particles move towards one of
their nearest neighbors, according to the direction of
their velocity U;

=e; A, lr, where e, = 1 and ez = —1.

Note that these values are compatible with assumptions
(i) and (ii) since aMF (—, for any finite values of n and m.
In addition, a numerical solution of Eq. (2), with
R =R MF, have yielded these exponents, for the cases in-
vestigated, namely, (n, m )=(1,1), (n, m )=(2,2), and
( n, m ) = (3, 1). When n =m = 1 this gives the well-known
result [7] aMF= —,

' and I3M„=—', .
The values of the non-mean-field exponents can be ob-

tained numerically, as discussed in the next section. Al-
though an analytical determination is probably hopeless,
an inequality can be derived by considering the ratio

R —t
—/i+(n+m )yy ( t a)

RMF

t ( n +m —i ) l2 —a( n + m + i )g( t
—a

)

b( x+Ae;, t +r)= y v/(b, +/
—k,.+/+(R, .+/+(),

1=0, 1

R, —a,.b,.+1 .

(20)

(21)

i =1,2

b(x, t)= g (b, (x, t)),
i =1,2

(22)

The right-hand side of Eqs. (19) and (20) is taken at posi-
tion x and time t. The index i is defined modulo 2 and
refers to the two possible direction of motion. pl and vI
are random Boolean variables which are responsible for
the diffusion and which are also functions of x and t.
They are such that p0= 1 —p1 and v0=1 —v1, so that only
one of the two terms of the right-hand side of Eqs. (19)
and (20) is selected at a given time and a given position.
The Boolean variables ph and vI take the value 1 with

probability pI. The probability p0=1 —p, can be adjust-
ed to choose the desired value for the diffusion constant
(see Ref. [10]for more details).

R, is the reaction term. It corresponds to the creation
of a particle of type C whenever an 3 particle and a B
particle undergo a head-on collision where they annihi-
late. k, is also a Boolean variable which is 1 with proba-
bility k. This parameter allows us to tune the reaction
rate. For the present simulation we always took k to be
equal to 1.

We consider chains of size 2L, i.e,
x = —I., —L+1, . . . , 0, . . . , I.—1. In order to simulate
an infinite system, the two extremities of the chain are
taken as sources of 3 and B particles, respectively. The
chain should be long enough to ensure that, for the obser-
vation time considered, the system is not affected by the
boundary conditions.

At time t =0, all the sites on the left half of the system
are occupied by 3 particles and, similarly, by B particles
on the right half. An equal concentration of 3 and B en-
sures that the center of the reaction-diffusion front will

stay in the average between x = —1 and x =0 for all time.
The equations governing the local average density of 3

and B can be derived in the Boltzmann approximation
following the scheme explained in detail in Ref. [10].

We define these averages as

a(x, t)= g (a;(x,t)),
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This gives us

a —P+ —,
' =0.002+0.002,

y+2a —P= 0.011+0.006,

(34)

(35)

IV. MICROSCOPIC ARGUMENTS

The initial problem is very difficult to solve analytically
by virtue of the presence of sources of particles and
correlations between the species. This makes exact argu-
ments about the behavior of the reaction front very
difficult, in contrast to the case of homogeneous
reaction-diffusion [1,12]. Nevertheless, we can obtain
lower bounds for the range of fluctuations of the reaction
by considering a simpler case.

Let us consider a species A, diffusing on a d-
dimensional half strip, with a sink formed by a (d —1)-
dimensional hyperplane perpendicular to the x axis and a
source at x=oo. In the long-time limit, the density
profile of A, a (x, t ), varies like

a(x, t) ~ (36)

Let us introduce a B particle at the origin. This particle
performs a random walk, until it meets an 3 particle,
whereupon they annihilate. After moving a distance l the
probability of meeting an A particle is approximately

P(l, t)=1~a(l, t) . (37)

Therefore the characteristic distance at which a reaction

which compare well with the predictions (9) and (12) of
the scaling analysis.

Figures 3 and 4 show the scaling forms for 8 and R M„
with the above values of the exponents, for three typical
times. The quality of the scaling fit is very convincing.

occurs l„ is given by P(l„,t ) = 1. Hence

]1/2(d+ 1) (38)

In the true situation, the role of the sink is played by the
diffusing B particles. Therefore the sink is efFectively
diffuse, and so the profile of A particles varies more rap-
idly. This means that the true reaction width W(t)
satisfies

W(t) ~I„. (39)

Another lower bound for the exponent a has been ob-
tained from the scaling analysis (18).

We note first that d = 1, l„=t ', whereas in the mean-
field approximation the exponent is —,'. This shows clearly
that there is a large departure from mean-field behavior.
However, a fit of the experimental data to a form
W(t) =t'~ is not very convincing. Second, for d =2, the
fluctuation arguments predict the mean-field exponent.
This implies that the upper critical dimension is d„p 2.
Motivated by analogy with critical phenomena, we have
attempted to fit our data for the two-dimensional case [9]
with the mean-field exponent plus logarithmic correc-
tions. Figure 5 shows a good fit with a form
W(t ) =at '~ ln(t /to )~+6, where y =

—,'. We remark, how-

ever, that similar fits with different values of y are equally
convincing. The value y =

—,
' is appropriate to arguments

about the largest probable fiuctuation in l„[12,13]. The
data for one dimension may in fact be consistent with a
form W( t )= t ' ln( t )

' which would also be predicted
by such arguments. We emphasize, however, that the
fluctuation arguments should only be regarded as giving
lower bounds on W(t), and that we therefore have no a
priori justification for preferring such a fit in one dimen-
sion.

For dimensions higher than 2, the fluctuations are
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FIG. 3.. Scaling profile of the reaction front at three typical times.
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shorter in range than the mean-field reaction width.
Therefore the depletion of particles drives the reaction
front, and so we expect the mean-field predictions to
hold.

Similar arguments can be used for the more general re-
action nA+mB~C. For such a reaction to occur, one
A particle must meet (n —1) other A atoms and m 8
atoms within the same volume U, where U is set by the re-
action cross section. The probability of such a Quctua-
tion at a distance of order I, from the center of the front
1S

(40)

5.9

2.5
'

4.6 16.8

FICr. 5. Fit of the date in Ref. [9] to a mean-field exponent
with logarithmic corrections.

Thus l„ is determined by setting P„=1, which gives

I (n + m —1)/2(d+ n+ ln —I )I„=i
We again recover the mean-field exponent at dimension

d„„=2. %'e therefore predict that, assuming that the
scaling theory still holds when Auctuations are added, the
mean-field exponents hold for dimensions greater than 2,
irrespective of the values of n and m.

V. CONCLUSION

While the arguments presented in the preceding sec-
tion are not rigorous, they account for the numerical re-
sults and give a coherent picture of the phenomenon. In
particular, they suggest that the upper critical dimension
is d„p 2 1n this geometry, instead of d„=4 for the
homogeneous case.

Another question which is raised by this study is how
to add noise in the mean-field reaction-diffusion equations
in order to restore the fluctuations. We have considered
numerically several attempts in both one and two dimen-
sions, without much success. For instance, the introduc-
tion of an additive white-noise term to Eq. (2) led to prob-
lems with the positivity of the solutions of the equations.
A multiplicative noise, stemming from the idea that the
number of particles N in a given volume Auctuates as
&N, brought the same troubles. Another idea was to
take the reaction constant k& and k2 as random variables.
This gave well-behaved solutions, but with the mean-field
exponents. A value of the reaction constant changing in
an ad hoc way with time has successfully accounted for
the effect of tluctuations in the homogeneous case [14].
There is, however, no a priori justification for this ap-
proach.

These difBculties call for a first-principles approach.
For example, one could consider the Bogohubov-Born-
Green-Kirkwood- Yvon (BBGKY) hierarchy associated
with the CA model, and retain correlation functions of
higher order than the one-point functions considered in
the mean-field approximation. This method has been
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used for CA models describing fluids out of equilibrium
[15].

Another approach would be to map this classical prob-
lem onto a quantum field theory, within which frame-
work one could study the effects of fluctuations using a
renormalization-group analysis [16j. Such an approach is
under investigation.

The surprising result that the upper critical dimension
for reaction fronts appears to be 2, irrespective of the re-
action mechanism, needs to be verified numerically. We
hope that the discovery of a spectrum of universality
classes shaH motivate further simulation studies of

reaction-diffusion fronts in systems with more complex
mechanisms.
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