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The influence of colored noise on the Hopf bifurcation in a first-order delay-differential equation

(DDE), a model paradigm for nonlinear delayed feedback systems, is considered. First, it is shown, us-

ing a stability analysis, how the properties of the DDE depend on the ratio R of system delay to response

time. When this ratio is smaH, the DDE behaves more like a low-dimensional system of ordinary

differential equations (ODE s); when R is large, one obtains a singular perturbation limit in which the be-

havior of the DDE approaches that of a discrete time map. The relative magnitude of the additive and

multiplicative noise-induced postponements of the Hopf bifurcation are numerically shown to depend on

the ratio R. Although both types of postponements are minute in the large-R limit, they are almost

equal due to an equivalence of additive and parametric noise for discrete time maps. When R is small,

the multiplicative shift is larger than the additive one at large correlation times, but the shifts are equal

for small correlation times. In fact, at constant noise power, the postponement is only slightly affected

by the correlation time of the noise, except when the noise becomes white, in which case the postpone-

ment drastically decreases. This is a numerical study of the stochastic Hopf bifurcation, in ODE s or
DDE s, that looks at the effect of noise correlation time at constant power. Further, it is found that the

slope at the fixed point averaged over the stochastic-parameter motion acts, under certain conditions, as

a quantitative indicator of oscillation onset in the presence of noise. The problem of how properties of
the DDE carry over to ODE's and to maps is discussed, along with the proper theoretical framework in

which to study nonequilibrium phase transitions in this class of functional differential equations.

PACS number(s): 05.70.Fh, 02.50.+s, 05.90.+m, 87.10.+e

I. INTRODUCTION
The past two decades have seen a burst of interest in

the dynamics of nonlinear delay-di6'erential equations
(DDE's). The main applications of DDE's have been to
the fields of laser optics [1,2] (to optical bistability in par-
ticular), to population biology [3], and to mathematical
physiology [4] where they serve as models of physiologi-
cal control systems. The fact that a DDE in one variable
actually describes a time evolution in an infinite-
dimensional functional (Banach) space has interesting
consequences. For one, such a DDE can undergo a Hopf
bifurcation, a property that requires at least two degrees
of freedom in an autonomous system of ordinary
difFerential equations (ODE's). In fact, the number of de-
grees of freedom in such a DDE is roughly on the order
of the ratio R of delay to response time, at least in the
chaotic regime [5—7]. When this ratio is small, the be-
havior of the DDE is well approximated by that of the
ODE obtained when the delay is set to zero. On the oth-
er hand, when the ratio is large, the DDE behaves in cer-
tain regards like a one-dimensional discrete-time map
[7,8—11].

This paper focuses on the dynamics of stochastic first-
order DDE's in the vicinity of a Hopf bifurcation for a
range of magnitudes of the ratio R. We draw our motiva-

tion mainly from recent experimental and modeling stud-
ies of the human pupil light reflex, in which the behavior
of solutions of first-order DDE's in the presence of high-
intensity colored noise has been a major focus. By in-
creasing the feedback gain of this reflex using an optical
method in combination with controllable external elec-
tronic feedback, it is possible to induce pupillary oscilla-
tions [12,13]. A deterministic theory [14] predicts that a
Hopf bifurcation occurs as the gain or delay are in-
creased, in the same way the Ikeda and Mackey-Crlass
equation bifurcates to a limit cycle. The observed limit
cycles, however, are very noisy. By bringing the system
near a bifurcation, it is possible to study the nature of this
noise more closely because it then dominates the dynam-
ics [13]. In fact, Ref. [13]has shown that much of the ir-
regular fluctuations could be attributed to band-limited
noise driving the reflex. These studies have further
demonstrated that noise-induced transitions are possible
in first-order DDE's, in the sense that the Hopf bifurca-
tion is postponed by either additive or multiplicative
noise.

These results need to be extended for two main
reasons: (1) an understanding of the origin of the shift
and of its dependence on system parameters, especially
the delay, can yield useful insights into the quasi-non-
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existent theory of stochastic DDE's, and (2) from an ex-
perimental point of view, it is important to be able to es-
tablish from measurements whether fluctuations in de-
layed feedback systems are due to additive or multiplica-
tive noise, and to determine, in either case, what the
characteristics of the noise are. The present study, there-
fore, aims to clarify what influence these noise charac-
teristics have on the solutions of DDE's. Further, since
there exists no equivalent of Fokker-Planck analysis for
stochastic DDE's (see Sec. II), we resort to numerical
simulation to understand how the noise interacts with the
other time scales of the equations, especially near bifurca-
tion points. Insight into which kinds of analyses can in-
crease our understanding of stochastic DDE's will be ob-
tained by comparing their behavior to that of stochastic
ODE's and maps, for which there exists a theory, and to
which the DDE reduces when the ratio R is, respectively,
small and large.

In this paper we look at the postponement of the Hopf
bifurcation by noise in first-order DDE s, and, in particu-
lar, on how this effect depends on (1) whether the noise is
additive or multiplicative, (2) the correlation time of the
noise, and (3) the ratio R. Section II further motivates
our work by giving a brief review of noise-induced transi-
tions at a Hopf bifurcation and of what is known about
stochastic DDE's. Section III looks at the Hopf bifurca-
tion in DDE's (here and throughout the paper, first-order
DDE's are always assumed) as a function of the ratio R,
and illustrates how one stability diagram can be used for
all values of R. Section IV focuses on the behavior of an
order parameter characterizing the stochastic Hopf bifur-
cation. In particular, the relative magnitude of the post-
ponement for additive and multiplicative noise is studied.
Section V investigates the effect of noise correlation time
on the postponement, and Sec. VI discusses the effect of
noise on the map obtained in the singular limit of the
DDE. Section VII studies how the postponement can be
predicted by looking at the behavior of a specific quanti-
ty, and the paper concludes with a discussion in Sec.
VIII.

II. BACKGROUND

For stochastic ODE's, the analysis of the influence of
noise on the Hopf bifurcation can be done in principle by
studying the associated Fokker-Planck equation, which
deterministically specifies the evolution of a probability
density in the state variables [15,16]. Methods using
normal-form transformations, followed by center mani-
fold reductions either on the stochastic equations [17] or
on the Fokker-Planck equation [18], have been used to
simplify Fokker-Planck equations. Most of the earlier
studies have considered only the case of the Hopf bifurca-
tion with additive noise, and can be extended in principle
to the more difficult case of multiplicative noise [17—19].
In the case of a Hopf bifurcation with rnultiplicative
noise, it has been shown that care must be taken to per-
form the normal-form transformations on the original
stochastic system of ODE's [20]. Often, when azimuthal
symmetry is not present, adiabatic elimination is per-
formed in order to obtain an approximate analytical solu-

tion to the Fokker-Planck equation in which the density
depends only on the radial component [17—19,21,22].
The extrema of this one-dimensional probability density
can then be investigated as a function of the parameters
of the equation and of the noise. In this context the Hopf
bifurcation occurs when the density goes from unimodal
to bimodal, and the distance between the peaks serves as
an order parameter for the bifurcation (see Fig. 1).

One of the first studies of the Hopf bifurcation with
noise was by Kabashima and Kawakubo [23], who
showed both experimentally using a parametric oscillator
and analytically that Gaussian white noise postpones the
Hopf bifurcation. Most theoretical studies since have
considered the influence of noise on the bifurcation pa-
rameter [20,24] and have shown that postponements are
possible, although two studies have predicted advance-
ments [21,25]. In Ref. [21], it was shown that whether
postponements or advancements occur depends on the
relative magnitude of the radial relaxation time onto the
limit cycle, the period of rotation in the azimuthal direc-
tion, and the noise correlation time. Analog simulations
of the Brusselator have revealed only postponements,
with advancement effects showing up as decreases in
postponement effects for the predicted ranges of the three
time scales [26]. This work has proposed, based on an
earlier study [27], a rigorous criterion for oscillation on-
set that allows for possible azimuthal asymmetry of the
solution.

Previous work [13] and the present work focus on the
following model equation for delayed negative feedback:

8x
dt

ax(t)+f(x—(r —r) )

9"+x "(r —r)
where the noise is on c (multiplicative) or on k (additive),
and the bifurcation parameter n controls the slope of the
feedback function. The previous study considered invari-
ant densities in one variable for this infinite-dimensional
system and found that these have many features in com-
mon with those for systems of ODE's such as the Brusse-
lator [26]. Noise-induced transitions were shown to
occur in this first-order DDE with either additive or mul-
tiplicative colored noise. This is interesting because
noise-induced transitions are not possible in a first-order
ODE with additive white noise [15]. They have been re-
ported, however, in a two-dimensional system with white
noise [28], and in a one-dimensional system with dichoto-
mous colored noise [29]. In particular, Ref. [13] looked
at the effect on the Hopf bifurcation of noise correlation
time, keeping noise intensity constant but not total noise
power. Under these conditions, noise intensity and corre-
lation time have similar effects on the postponement, as
was found in Ref. [26].

Understanding these results is important for the devel-
opment of a theory of stochastic DDE's. The very few re-
sults on stochastic DDE's deal mainly with the conver-
gence of a process to a diffusion process satisfying an ap-
propriate stochastic DDE [30]. To our knowledge, only
existence proofs for periodic solutions for restricted
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absence of noise there are two time scales of interest: (1)
the azimuthal rotation period and (2) the radial relaxa-
tion time onto the limit cycle (see below). The bifurca-
tion of interest in this paper is supercritical, a fact we
have verified numerically rather than by carrying out the
tedious calculations involved in asserting that nondegen-
eracy conditions are satisfied [32].

If time is rescaled in units of r, Eq. (1) becomes

dx
dt

aux—(t)+rf(x(t —1)) . (2)

The limit where R =a~~ tx) is called the singular pertur-
bation limit. In this limit, the differential term acts as a
perturbation on the difference equation that results when
this term is not present [33]:

x(t)=u 'f(x(t —1)) . (3)

Equation (3) can be interpreted as a discrete time map
(one unit of time being equal to one delay). The dynami-
cal behaviors of this map, such as period-doubling bifur-
cations and chaotic motion, are also found in the DDE.
In fact, the DDE exhibits a much broader range of
dynamical behaviors than the map obtained in the singu-
lar limit, and is often found to exhibit multistability even
when its limiting map does not [7,8, 11]. In general, there
is no continuous transition between the dynamical struc-
tures of the map (periodic orbits, their stability proper-
ties, bifurcation points) and those of the DDE, no matter
how large the parameter ar [9].

Figure 2 plots the Hopf-bifurcation parameter as a
function of limit-cycle amplitude at different values of the
delay. A fixed-step fourth-order Runge-Kutta method
with linear interpolation for the delayed argument was
used. The limit-cycle amplitude was computed after in-

tegrating the DDE for 5000 delays with an integration
time step equal to r/100. Since a is kept constant, each
curve corresponds to a difFerent value of the ratio R (a is
kept constant throughout our study). Because of the
scales used, the bifurcation curve for the map in Eq. (3)
overlaps the r= 10 curve; in fact, the former is lower (bi-
furcation at no=2 84.) than the r= 10 curve (no =2.853).
A continuous progression is seen between the curves as
the ratio R undergoes a 100-fold increase. In the map
limit, the Hopf bifurcation becomes, in fact, a standard
period-doubling bifurcation (see below). Also, the limit-
cycle amplitude increases faster and reaches higher
values at higher delays; the limit-cycle amplitude is
greatest for the map, and is given by c/a if
k & aO & c +k. In the limit of large n, the limit cycles are
as in Fig. 1(c) for x=0.1 and in Fig. 1(f) for r= 10.

The bifurcation curves in Fig. 2 were obtained by
fitting the simulation results to a function of the form

n (A) =c o+c, A +cz A +c3A (4)

where A is the limit-cycle amplitude and n is the bifurca-
tion parameter. This form is dictated by the equation for
the radial component in the normal form for the super-
critical Hopf bifurcation (see Guckenheimer and
Holmes). In doing so, the amplitude of the limit-cycle os-
cillation is assumed proportional to this radial com-
ponent.

There is a direct connection between the Hopf bifurca-
tion in a DDE and the first period-doubling (pitchfork)
bifurcation in the map obtained in the singular limit of
this DDE. A similar connection was made previously in
Ref. [10]. Consider the DDE in Eq. (1) and the corre-
sponding map Eq. (3) obtained in the singular limit of Eq.
(1). Both these equations have the same fixed point x*,

r =0.1
40--

Ql 30~a
05

Q

0
~ fN

20--

r =0.3
10-- r = 1.5

10 20

map

30 40

r =10

50

limit-cycle amplitude

FIG. 2. Limit-cycle amplitude vs the bifurcation parameter n for Eq. (1) in the absence of noise at different delay values: ~= ~
(map), 10, 1.5, 0.3, and 0.1 sec. In this sequence, the behavior of the DDE in Eq. (1) changes from maplike to ODE-like. The arnpli-
tudes were computed after 5000 delays had elapsed with an integration time step of r/100. From Eq. (6), the Hopf bifurcation occurs
at &=0.1:np=23.45 r=0.3:np=8. 18 7 =1.5:np=3.34 v=10:np=2. 853 r= ~(map) np=2. 84.



NOISE-INDUCED TRANSITIONS AT A HOPF BIFURCATION. . . 4805

which satisfies x'=a 'f(x*). The characteristic equa-
tion for the DDE (linearized around x '

) is

A, +a —Pe "'=0, (5)

where P=f'—(x*)&0. The rightmost complex conjugate
pair of roots of Eq. (5) lies in the right-hand plane if

Q)7 )cos
a

(6)

where co = (P —a )' and the inverse cosine takes its
value in the interval [n/2, m]. Equality holds in Eq. (6)
when the eigenvalues are pure imaginary, at which point
the period of the oscillation is given exactly by co.

Defining B:——/3 and X= a/—B &0 (since a) 0), Eq. (6)
can be written as

cos '(X)
ag&

&(1/X)' —1

A plot of the stability of the fixed point as a function of
aw and X is shown in Fig. 3. If X & —1 or X & 1, the fixed
point is stable; these regions are labeled "S." Further,

S

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

S

—1.5

X
1.5

FIG. 3. Stability diagram for the Hopf bifurcation in the
first-order DDE Eq. {1). The rightmost conjugate pair of roots
of the characteristic equation [Eq. (5)] of Eq. (1) has a negative
real part in the regions labeled S and a positive real part in
those labeled U. The abscissa is X—:—a/8 and is negative for
smooth negative feedback. For —1 &X( 1, the stability curve
that separates the U and S regions and corresponding to the
right-hand side of Eq. (7) is plotted as a function of X. For X
values in this interval, the singular limit a~&&1 of Eq. (1) im-
plies that the inequality in Eq. (6) is always satisfied, and hence
the system lies in region U. In this limit, the stability diagram
of the DDE collapses down to the X axis, which is the stability
diagram for the map Eq. (3). This map undergoes a period-
doubling bifurcation at X = —1 and a tangent bifurcation at
X= 1.

the unstable solutions of Eq. (1) occur when inequality
Eq. (6) is satisfied; these unstable solutions are found in
the regions labeled "U."

The onset of oscillatory motion in the map Eq. (3)
occurs at the first pitchfork (or "period-doubling" ) bifur-
cation, at which a 'f '(x ) = —1 (corresponding to
B /a = 1). The fixed point also loses stability when
a 'f'(x')= I (or B/a= —1), at which a tangent bifur-
cation occurs. In fact, for —1 &B/a &1, the fixed point
of the map is stable. Since 1/X = —B/a, both the map
and the DDE have a stable fixed point over the same
values of X, i.e., for X outside the interval [ —1,1].
Hence, the stability diagram for the map simply consists
of the x axis in Fig. 3. The condition X=—1 corre-
sponds to the period-doubling bifurcation in the map,
while X= 1 corresponds to the tangent bifurcation.

When the fixed point is unstable for the map, i.e., for—1&X&1, the fixed point of the DDE can be either
stable or unstable, depending on the value of a~. The
fact that the map is obtained formally by taking the limit
a~~00 in the DDE implies that only region 'U" is
relevant for the map. Hence, when —1&X&0 for the
map, there is always a stable period-2 solution. The sta-
bility diagram for the DDE is then seen as a simple pro-
longation in two dimensions (along the a~ axis) of the
one-dimensional diagram for the map.

As R goes to zero, the Hopf bifurcation in the DDE
will occur for a stronger (more negative) slope at the fixed
point. Since the maximum and the minimum of the feed-
back function are fixed, this means that the bifurcation
occurs only when the system is very nonlinear, i.e., when
the feedback approximates what is known as piecewise
constant negative feedback (the function appears as a step
decreasing from left to right going from the value

f =c+k to f =k). As long as the delay is finite, the
slope of the feedback function at the fixed point can al-
ways be made large enough to cause the system to be-
come unstable and a limit cycle to appear. However, in
the limit where the delay goes to zero, the period and the
amplitude of the limit cycle can be shown to go to zero
[13]. In fact, if the delay goes to zero, equality will hold
in Eq. (6) only if P~ —ac, and the period T =2m/ro will
go to zero since ai=(P —a )' becomes infinite. The
~~0 limit of the Hopf bifurcation in the DDE is thus
peculiar since the DDE becomes effectively an ODE with
piecewise-constant feedback, although it has a periodic
solution, making it equivalent to a two-dimensional
ODE; this periodic solution, however, has zero period
and amplitude.

At oscillation onset, the period is given by

The other time scale of interest is the radial relaxation
time onto the limit cycle, t„, which can be obtained as fol-
lows. The radial component of the normal form [34] of
the Hopf bifurcation is to 0 (r ):

dT

dt
=(dIJ, +ar )r,

where the bifurcation parameter p corresponds in our
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case to n —no and

d Re(A. )

dp
(10)

The quantity a determines whether the periodic solution
is attracting or not. By linearizing Eq. (9) around the
limit-cycle amplitude r*=(—dp/a)'~, one obtains the
relaxation time constant t„=(2dp) '. This implies that
t„will be small (the limit cycle will be strongly attracting)
if the real part of the complex-conjugate pair of roots of
Eq. (5) becomes positive rapidly as p increases. In our
case, setting B = —P in Eq. (5), the quantity d is

(14)

DA,S(v) =
vr(A, +v )

(15)

m ultiplicative shifts at two different noise correlation
times. The Ornstein-Uhlenbeck (OU) process with corre-
lation time t, =A, ' is the solution of the stochastic
differential equation

dt
Ag+—A g(t)

in which g(t) is a Gaussian white-noise process of zero
mean, i.e., (g(t))=0 and (g(t)g(s))=2D5(t —s). The
power spectrum of the OU process with the scaling in Eq.
(14) is

d Re(A, )

dn n=n 0

(v is the frequency) and the two-point correlation func-
tion is

d Re(A, )

dB n =n0 dn n =n0

C(t, s) =—exp( —A. ~t
—

s~ ) .D
(16)

a+BQw

B0+2arB0+ B0r "0

The tota1 power in the noise is given by

QO DI S(v)dv= —=C(0) .
oo

C

(17)

This was obtained by implicitly differentiating Eq. (5)
with respect to B and evaluating the result at
g=ico0=i(B20 —a )'~, where B0= P(n0—). The prob-
lem now is in evaluating the quantity d13/dn, i.e., how
the derivative at the fixed point of Eq. (1) varies with n,
given that the fixed point varies itself with n and is
defined by an analytically intractable implicit equation.
It can be shown that

n+1
na8 x*

c 0
(12)

Using the logarithmic derivative and the fixed-point con-
dition, the following expression is obtained:

d/3 + I+IC
I

x*=nK +naK ln
dn 1 —nK 0

(13)

IV. STOCHASTIC CASE

This section describes the method used to compute the
behavior of the order parameter as a function of n, and
gives results on the relative magnitude of the additive and

where IC = —a8/e(x'/8)"+'. Note that this is still an
implicit expression since x* depends on n, but it is the
best we can do. Nevertheless, the variation of dP/dn is
surprisingly almost linear, as shown in Fig. 9. Numerical
values at the bifurcation are ~=0.1:—0.65;
~=0.3:—0.727; ~= 1 5 —0.871; w= 10:—0.907;
v.= ~:—0.2834. Having obtained 80 from the same com-
putation, Eq. (11) can be evaluated and the relaxation
times in units of the delay are t„=k„l(n n0), with-
e =0.1:k,= 18.9; v=0.3:k„=6.805; w= 1.5.k =2.447;
&=10:k„=1.838; z= ~:k„=1.765. In absolute value, t,
is found to increase with the delay, and actually to
diverge for r~oo. However, since (n n0) is typical—ly
larger for &=0.1 than for ~=10, the relative time con-
stant k„ /( n —

n0 ) does not vary much with r.

To our knowledge, there has been no systematic study of
the effect of t, on the Hopf bifurcation at constant noise
power D /t, in ODE's or DDE's. This is done in the next
section. The simulations reported in this section are also
done for constant total power C(0) =24.5, corresponding
to o =&2D =7.0 when t, = 1.0.

The numerical integration of the stochastic DDE is
done by coupling the algorithm for the deterministic
DDE (Sec. III) to the integral Euler algorithm for the
Ornstein-Uhlenbeck process proposed by Fox et al. [35].
At each value of n, Eq. (1) is integrated using a constant
initial function on (

—&,0) which differs by = 1% from the
deterministic fixed point at the Hopf bifurcation x*(n0)
[e.g., x (n0)=44. 6 for &=0.3]. The solution is first al-
lowed to settle onto the limit cycle in the absence of noise
for 2500 delays, at which point noise is applied, and
another 2500 delays are discarded as transients. Equa-
tion (1) is then further integrated for 20 000 delays during
which time the solution is used to construct a 500-bin his-
togram corresponding to the solution interval (10,75).
The order parameter is estimated graphically by measur-
ing the peak separation in this histogram. The error in
this procedure, due to the estimation of the position of
the maxima, the finite bin size (0.13), and to the inherent
statistical Auctuation for this type of stochastic process, is
greatest near oscillation onset where the peaks are
difficult to resolve. This maximal error for total noise
power o. =7 is approximately +l%%uo, or +0.7. This error
decreases very quickly with n to reach about one-third of
this value. Tests at ~= 1.5 for additive noise with
0.=15,t, =1.0 have revealed statistical fluctuations on
the order of 0.5%%uo between the standard simulation de-
scribed above, and one with half the step size (i.e., r/200)
and with another one with an integration time of 10 de-
lays (time step of r/100).

We have tested the algorithm for the Ornstein-
Uhlenbeck noise for Gaussian quality, and found that it
behaved satisfactorily at all values of t, used, even for
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t, =10 using the largest integration time step in our
study, 0.1 sec, corresponding to r/100 when r= 10. Also,
the order parameter for ~=10,t, =0.01 with time step
0.01 sec was found to differ at most from the order pa-
rameter computed with half the step size (same total in-
tegration time) by +0.35 or 0.5%.

The results are shown in Figs. 4 and 5, where the bifur-
cation parameter n is plotted as a function of the order
parameter ("amplitude" ) for four values of the delay.
The simulation results used to determine the fits are su-
perimposed on the fitted curves. In Fig. 4, t, =1 sec, and
the standard deviation of the noise is o =&2D =7 and
15. For ~=0.1, only the simulations for o.=7 are shown,
since the noise level o =15 is too high to permit resolving
the peaks [note that these peaks are quite close for o =7;
see Fig. 1(b)]. The curves are fit in the same way as in
Fig. 2, i.e., using Eq. (4). For v=10, the differences be-
tween the fitted curves and the fitted curve for the deter-
ministic case (the lower curve in the plots at the other de-
lays) are plotted as a function of the bifurcation parame-
ter itself. These differences are thus the vertical distances
between the curves and correspond -to the shift of the
Hopf bifurcation. These differences are very sensitive to
the fits, and should not be interpreted too literally at the
(low) values of n at which the order parameter starts to
grow. Also, because of the uncertainty in the fit at lower
values of n, it is not possible to obtain an accurate esti-
mate of the shift by comparing the ordinates of the fitted

curves at the origin [i.e., the co values in Eq. (4)].
It is clear from Fig. 4 that the shift is proportional to o.

when t, is kept constant, as reported in earlier studies
[13,26]. Also, it is interesting to compare the relative
magnitude of the additive and multiplicative shifts as the
delay increases. One clearly sees a qualitative change in
behavior as ~ increases. At small ~, the multiplicative
shift is larger than the additive shift, while the opposite
holds at large ~, with the crossover occurring near
~=0.3. This is true at both noise intensities. In the map
limit (Sec. VI), the shifts are found to be small and almost
of equal magnitude. Thus, once the crossover has oc-
curred, the shifts both decrease with increasing delay un-
til they become equal in the infinite delay limit. In Fig. 5,
results are shown for t, =0.01 and at only one value of
noise standard deviation o =0.7, corresponding to the
same total power C(0) =24.5 as in Fig. 4. In this case, the
additive shift is always greater than the multiplicative
one, and the shifts are smaller than in Fig. 4 ( the same
curves are shown in Figs. 6 and 7 where they are the
closest ones to the deterministic curve). Hence the cross-
over appears to be a feature of larger noise t„which sug-
gests that it may also be a property of higher-dimensional
stochastic DDE's.

Although noise-induced transitions are still present in
the quasiwhite t, =0.01 case, they are very small, and it is
difticult to say with certainty whether they persist at even
smaller values of t, . Analog simulations should be per-
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FICx. 4. Bifurcation parameter n as a function of the magnitude of the separation between the peaks (order parameter or "ampli-
tude") in the density of the solution of Eq. (1). The simulations were done for noise correlation time t, =1.0 sec and standard devia-
tions of o =7 and 15 at four different values of the delay: (a) 0.1, (b) 0.3, (c) 1.5, and (d) 10 sec. For each delay, the points plotted
range over values of n for which the peak separation could be measured. Each plot compares the postponed Hopf bifurcation when
the noise is additive (on k: "+")or parametric (on c: "X") to the deterministic curve (lowest curve starting at the y axis). Each
curve is plotted along with the data points used to fit it to an even polynomial of order 6. Since the curves are difFicult to resolve
graphically for ~= 10 (d), the difference between the fitted functions, hn, has been plotted vs n. The parameters are a=3.21, c=200,
k=0, 8=50, and t, =1 sec. The integration time step is ~/100. Numerical solutions and densities are obtained as in Fig. 1.
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FIG. 5. Bifurcation parameter n vs the magnitude of the order parameter for Eq. (1}as in Fig. 4, but with t =0.01 and o.=7.0.
Again the difference between the 6tted functions was plotted vs n for ~= 10.

formed to resolve this question. In any case, it is clear
that the shifts are greater at small delays. This is in-
teresting because these simulations at small t, and small
delay are the best conditions under which the DDE could
behave as a first-order ODE. However, Fokker-Planck
theory predicts that additive noise-induced transitions

are not possible in first-order ODE's with Gaussian white
noise. This implies that either the shifts should go to
zero in the t, ~0 limit, in accordance with the theory, or
that they do not because a DDE undergoing a Hopf bi-
furcation is never equivalent to a first-order ODE.

Note that additive noise can make f become negative if
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FIG. 6. Bifurcation parameter n vs the magnitude of the order parameter for four values of the noise correlation time and at four
values of the delay: (a) 0.1, (b) 0.3, (c) 1.5, and (d) 10 sec. The noise is additive [i.e., on k in Eq. (1)] and its standard deviation is ad-
justed so as to keep the total power of the noise constant and equal to C(0)=24.5. Each plot compares the bifurcation curve for
t, =0.1,1.0,10.0 to that for the deterministic case (solid curve). Numerical integration, provision for transients, and construction of
the densities is as in Fig. 1. The correspondence between the curve style and t, is given in the legend of (a).
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V. EFFECT OF NOISE CORRELATION TIME

It is important to understand the behavior of the
Ornstein-Uhlenbeck (OU) process when taking the ar
limit of Eq. (1). This limit produces a stochastic process
coupled to a finite difference equation. This can be seen
by first rescaling time in the coupled DDE-OU system in
units of ~, which yields

dt
any(t)+rf (y(r —1))+re(t), —

dn
dt

= —Arg(t)+Erg(t) .

If a~ &&1, then it follows

y(t) =a 'f(y(t —1))+a 'r)(t)

(18)

(19)

in which time is still continuous. Furthermore, with this
scaling, the correlation of the OU process becomes

( g( t)r)(s) ) =D i,re (20)

k is small and the noise amplitude is large. This is not a
problem because the computation is done around the un-
stable fixed point. The fact that f(x(t —r)) is negative
does not imply that x will be negative, since the system is
always attracted toward the limit cycle. Also, for large
delays, the invariant density becomes strongly peaked as
the bifurcation parameter increases, i.e., the ratio of peak
height to the minimum between the peaks is very large
[compare Figs. 1(b) and 1(e)]. This ratio is proportional
to the delay. This is due to the fact that for large delays,
the oscillation rapidly changes from a harmonic to a
square-wave type in which transitions between the levels
occur [10]on a time 0 (a ').

in which the noise correlation time t, = ( A,r ) '. Hence,
as ~—+ ~, t, ~0 and the noise becomes effectively white
with intensity 2D as usual.

In this limit also, the DDE has become a continuous
time difference equation [in the same way as Eq. (3) be-
fore discretizing time in units of the delay]. All the
points on an interval [t, t +r] are mapped by f in Eq. (3)
to points on the interval [t+r, t+2r], and the points
behave independently. This corresponds to doing an
infinite number of realizations of the stochastic map in
parallel. If one is interested only in the density from
which to measure the order parameter, it is clear, if the
map is ergodic (as it is in our case), that only one realiza-
tion sufBces to construct this density. As a consequence,
the correlation time of the noise is not important for
determining the order parameter, although it will certain-
ly determine the precise time solution [7,36].

The effect of additive and multiplicative noises of con-
stant total power but different correlation times is illus-
trated in Figs. 6 and 7. For additive noise, Fig. 6 shows
that, for this 1000-fold range of noise correlation times,
postponements of the Hopf bifurcation are to be expect-
ed. However, the magnitude of the shift does not seem to
follow any clear pattern at any of the delay values investi-
gated, apart from the following two observations: (1) the
quasiwhite case t, =0.01 always produces the smallest
shift, and (2) the strongest shift always seems to occur for
the noise correlation time that is closest to the delay. In
the multiplicative noise case, shifts are again seen across
this range of t„and further there is a clear pattern: the
shift is proportional to t, . The reasons for this behavior
and the patterns observed in the additive noise case are
not known, nor is it known whether these patterns de-
pend on the precise choice of values for the other param-
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eters, especially of a. For the ~=10 case for both addi-
tive and multiplicative noise, the separation between the
fitted curves and the deterministic curve has been plotted
versus the bifurcation parameter, as in Figs. 4 and 5,
again because the fitted curves themselves cannot be
resolved adequately. As in Figs. 4 and 5, these curves
should not be interpreted too literally, due to the statisti-
cal error on the points fitted, but rather they should be
thought to give a rough measure of the relative shifts.
Hence, the negative values in Fig. 6(d) may be interpreted
as advancements, especially those occurring for large n

where the precision is higher, but this point must be sub-
stantiated by more extensive simulations. Such constant
power simulations have not been reported to our
knowledge, and thus they may provide insights into the
development of a theory for colored noise-induced transi-
tions in DDE's, as in Ref. [21] for ODE's.

VI. EFFECT OF NOISE ON THE MAP x;+ i
=a 'f(x; )

In this section the inhuence of noise on the map ob-
tained in the singular limit of Eq. (1),

x;+,=(c/a)f (x, )+k/a, (21)

is considered. Previous studies [37,38] have looked at the
effect of noise on the dynamics of the logistic map. They
have found that for such discrete time systems, there is
an equivalence between additive and multiplicative noise,
in the sense that the effect of an additive perturbation can
be mimicked by an appropriately chosen multiplicative
perturbation. In their more rigorous analysis, Linz and
Liicke [38] have computed this equivalence by equating
the moment generating functions for the trajectories
x„+, and x„+, inAuenced, respectively, by multiplicative
noise of variance 6 and additive noise of variance 6:

VII. THE ROLE OF (f (x ) ) t

In this section, we discuss the behavior of one quantity
whose changes do correlate well with the onset of oscilla-
tion in the presence of noise. The quantity that is most
influenced by the noise, whether additive or multiplica-
tive, is the slope of the feedback function at the fixed
point, f (x*)=P. In our study, this is the only Quctuat-
ing quantity in the oscillation condition Eq. (6), and thus
one suspects that it may determine the growth of the or-
der parameter. Figure 8 plots the feedback function f in
Eq. (1), at a given value of n, versus its argument x (t —r)
with and without (a) additive and (b) multiplicative noise,
as in the simulations presented so far. The dashed lines
represent positive and negative perturbations (magnitude
equal to 15) to f.

Each perturbation causes the fixed point of the system
to change, since this point is determined by the intersec-
tion of the line y(x) =ax with f (x), as shown in Fig. 8.
In turn, this causes the slope of f at x* to change. Un-
fortunately, it is not possible to obtain an expression for
the probability distribution of (f(x")) given the proba-
bility distribution of the fluctuations affecting the param-
eter (c or k). Instead, numerical computations of the
average (f(x*))&—=(P)& were done using Gaussian dis-
tributed noise of the same standard deviation as used in

2o0-

150-

100.

( exp(ikx„+, ) ) = ( exp( ikx„+, ) ) . (22)
50-

This results in the relation b,,~d~[(r —I)/r]A „~„where
r is the parameter in the logistic map. This implies that
additive noise has a slightly stronger influence on the dy-
namics than multiplicative noise.

Inspection of the proof of this result shows that it
should be valid for any single-humped map of the form

250--

20 40 80

(b)

100

x, +i =ri f (x, )+r2, (23)

where r, and r2 are parameters subjected to noise. In
fact, the identification r, ~c/a and r2~k/a of the pa-
rameters in Eq. (21) with those of the map in Eq. (23)
above allows us to extend their result to this map. Then,
since c/a-62, the ratio (r —1)/r is very close to 1, and
thus there should be very little difference between addi-
tive and multiplicative noise.

We have in fact found that both shifts are almost equal
within statistical error (data not shown). They are, how-
ever, very small, occurring between n =2.85 and 2.86. In-
spection of our bifurcation curves in Figs. 4—7 reveals
that the two shifts become smaller as the delay increases,
and further the difference between them decreases. One
thus sees a clear convergence of the properties of the
DDE to those of the map in the presence of noise.

150-

100-

50-

20 40 60 80 100

Flax. 8. Plot of the negative feedback function f vs its argu-
ment x (t —w) in the presence of (a) additive and (b) rnultiplica-
tive noise. The solid line is the deterministic curve, while the
dashed lines show the efFect of the noise on f. The fixed point is
determined by the intersection of f with the function y (x) =ax,
where a =3.21.
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the stochastic simulations of Eq. (1). Because the evolu-
tion of the noise process is decoupled from that of the
system, all that is necessary is to insure that the noise
takes each value in its domain with the proper (Gaussian)
probability; t, is thus not important. (I3)& is plotted
against n in Fig. 9 for four delays used in this study: 0.3,
1.5, 10, and ~, along with the deterministic value of Il
(solid line). Only the range of values of n over which the
averages are computed changes from one plot to the next.

The results clearly indicate that ( P )
&

can signal the
growth of the order parameter. In fact, Fig. 9 shows that
(P)& crosses the solid line at a given value of n, for either
additive or multiplicative noise. Further, these crossings
occur for values of n close to those corresponding to the
onset of growth of the order parameter in Figs. 4—7.
While simulations at a greater number of values of n

(especially for r= 10) could be done to pinpoint the cross-
ing with accuracy, our calculation is sufficiently precise
for illustrating the point of this section. For example,
compare Fig. 4(b), r=0.3, o =7, for which the onset is
around n =8.3 with Fig. 9(a), where the crossing occurs
around n=8.3. Also, for the map, the crossing occurs at
n=2. 855 in Fig. 9(d) and the order parameter becomes
nonzero around n=2. 86 Iresult not shown, computed us-
ing 10 iterates of the map in Eq. (3)]. The only exception
is for ~= ~, for which only the multiplicative noise curve
crosses the solid line, and for r=0. 1 (not shown) for
which neither type of noise produces a crossing. The ab-
sence of crossing for ~= ~ with additive noise may be
due to the fact that not enough values of n between 2.85
and 2.86 (where the crossing is expected) have been used
in the computation. A finer sampling indicates in fact

that the distance between the curves is minimum around
the bifurcation value no

=2.84 and also shows a
minimum at n=2.86. Since the shifts are very small to
begin with, it is conceivable that the curve crosses only
brieAy if at all, and much better statistics are needed to
settle this question.

The rationale behind this calculation is the following.
According to Eq. (6), the fixed point is unstable when P is
su%ciently negative. If the e6'ect of the noise is to cause
P to be less negative on average than without noise, then
one might expect, in the real simulation where the noise
time scale interacts with the period and radial relaxation
time onto the limit cycle, that the system be more stable
and thus have a unimodal invariant density. Thus, it is
only when (I3)& becomes smaller than the deterministic
value at some n that the system actually does become un-
stable in a statistical sense and exhibit bimodal densities.
In the simulation of the stochastic DDE, one would ex-
pect the invariant density to depend on the noise, provid-
ed the noise Auctuates slowly enough (large t, ) or that ra-
dial relaxation onto the limit cycle is fast enough. If this
were not the case, the system would not have time to
sense the new roots of the characteristic equation, and
could not react to the stability increases of x by spend-
ing more time near x . When t, is small, the oscillation
condition can then equilibrate to the Auctuations, and
through (P )

&
be a good indicator of onset.

This reasoning is substantiated by the following obser-
vation. The indicator of onset proposed in this section
performs well when the values of n at which the crossing
occurs are compared to those at which onset is estimated
to occur from the plots in Figs. 4—7, as long as the noise
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FICx. 9. Plot of the average value of the slope of the feedback function at the fixed point, (P(x *)), vs the bifurcation parameter n
at four different delays: (a) ~=0.3, (b) ~=1.5, (c) ~=10, and (d) the singular limit where the DDE behaves like a map. The solid
curve denotes the deterministic value of the slope, the finely dashed curve corresponds to multiplicative noise, and the coarsely
dashed curve to additive noise. The noise standard deviation is o.=7. The values of n at which the dashed curves intersect the solid
curve are to be compared with those at which oscillation onset occurs in the corresponding DDE s in Figs. 4—7. At each value of n,
2 X 10 iterates of the noise process were used in computing the average slope, after discarding the erst 1000 iterates.
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correlation time is not too short. In fact, for t, =0.01,
the shifts are always very small and onset occurs at lower
values of n than those at which the crossings occur in
Fig. 9. For larger t„ the shifts are roughly of the same
order, as discussed in Sec. V. Thus, if the Auctuations of
the Ornstein-Uhlenbeck process are not too fast, especial-
ly in comparison with the radial relaxation time t„, which
was shown in Sec. III to be an increasing function of the
delay, then the indicator seems to work well. It is then
more surprising that the indicator does not work for
&=0.1, for which t„ is small. This may be due to the fact
that the indicator works in the absence of major non-
linearities, and this is certainly not the case for ~=0.1 for
which the Hopf bifurcation occurs when the feedback
function is very nonlinear.

In Fig. 9, the crossings for additive and multiplicative
noise occurs almost at the same value. Hence, more ex-
tensive simulations may allow us to predict from the be-
havior of this indicator whether the additive or multipli-
cative shifts are greater. Clearly, (p)& gives only a rough
estimate of the postponement across a variety of condi-
tions, although it performs surprisingly well under cer-
tain conditions. More work is needed to clarify how the
knowledge of the behavior of (p)& can be combined with
the other time scales in the DDE to predict a given post-
ponernent.

We have verified that (p) &
is also a good indicator of

oscillation onset at higher noise intensities (cr =15) for
~=0.3, but not as good at the other delays. Thus it seems
that this quantity is useful only for low noise intensities
and for larger delays. In fact, once the crossing has oc-
curred, reverse crossings were found at higher values of
n. This points to the fact that this quantity may be
relevant to the stochastic onset of oscillation only locally
(i.e., in some linear range). We have also computed a
"stochastic oscillation condition" using Eq. (6) with
(f(x*)) substituted for p. The fulfillment of the in-
equality in this case did not prove to be a signature for
the behavior of the order parameter. We have also
looked at the peak of the distribution of P(g) rather than
its mean (p )&, to see whether the system decides to bifur-
cate based on the time spent in each state or whether it
cares about the time average (P). The distributions are
in fact slightly skewed, being typically broader for multi-
plicative than for additive noise of the same standard de-
viation. The mean was found to provide a better indica-
tion of the onset than the mode. These results may de-
pend on the particular choice for a.

VIII. DISCUSSION

This work is a thorough investigation of the behavior
of a first-order DDE with additive and multiplicative
noise at a Hopf bifurcation. We have argued in Secs. I
and II that this class of equations is important in various
applications. The results of this study are valid for sys-
tems that can undergo a Hopf bifurcation, regardless of
whether they bifurcate further into chaos, as for the
Mackey-Czlass equation and the Ikeda equation, or not,
as in the simple negative feedback case considered here.
The results should be useful for delayed feedback systems

in which the gain varies, as occurs, e.g. , in lasers and in
physiological control systems. Our study has revealed a
variety of behaviors, some of which have been explained
by considering the stochastic behavior of limiting cases of
the DDE (ODE's and maps). Insight into the origin of
the postponements of the Hopf bifurcation at different
delays, noise correlation times, and intensities has further
been obtained by looking at the behavior of a special indi-
cator (Sec. VII), the average of the slope of the feedback
function at the fixed point. It remains to be seen whether
equivalent quantities can be found for noise-induced tran-
sitions in ODE's, or if this is only a property of DDE's.

Many studies of DDE's have focused on the question
of how many degrees of freedom interact in the chaotic
regime as a function of the delay. Very little is known
about the effective number of degrees of freedom there
are at low delays for simple periodic motion. It is known,
however [39], that approximations to DDE's in terms of
integro-differential equations (which model a distributed
rather than a fixed delay) must be at least three dimen-
sional in order to undergo a Hopf bifurcation. This
would suggest that even as the delay becomes small, the
system has at least three degrees of freedom, as suggested
in Sec. III and at the end of Sec. IV. When the delay is
small, the feedback function is very nonlinear. It appears
in this case that it is not possible to expand the DDE in
powers of ~ or a~ and obtain an ODE that can oscillate
autonomously, for this could only yield a first-order
ODE. On the other hand, although it has been reported
that many properties of DDE's do not carry over to the
map due to the singular limit [9], our study gives an ex-
ample of a smooth transition between the noisy behavior
of the map and that of the DDE. In fact, the additive
and multiplicative shifts decrease with increasing delay
and further become roughly equal, which are both prop-
erties of the map.

Our study has compared postponements of the Hopf
bifurcation with additive and multiplicative noise using
the simplest order parameter, the separation of the maxi-
ma of the invariant density. Other order parameters are
possible, e.g., the rms amplitude [38]. One might even
consider constructing three-dimensional densities
P(x (t),x (t —r)) and applying the criterion proposed in
Ref. [26]. While this type of calculation is very computer
intensive and is beyond the scope of the present paper,
the application of such criterion may provide insights
into the behaviors found in our work (i.e., why, in Sec.
IV, there is a crossover of the shifts for large and not
small t, ). Analog computation should probably be used
to resolve this issue.

There has been work on the application of Fokker-
Planck theory to DDE's in another context than the one
of this paper, that of analyzing the chaos produced by
DDE's [40]. This work views DDE's in chaotic regimes
as generators of colored noise. This approach, in which
Kramers-Moyal expansions are performed to obtain ap-
proximations to the invariant densities, works only for
large delays or for feedback functions that strongly
decorrelate their inputs, e.g, when f (x, ) ~ sin( Ax),
where A ))1. These conditions are not applicable to our
case, although it would be interesting to evaluate terms in
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such an expansion by computing the correlation func-
tions numerically. An important issue to address eventu-
ally is whether there exists a unique invariant measure for
stochastic DDE's. Although one strongly suspects that
such a measure (supported on the domain of x) exists for
simple periodic behaviors, based on numerical simula-
tions that scan, due to the noise, elements of the Banach
space of initial conditions, they may not be unique when
chaos interacts with noise due to the multistability
known to occur in the deterministic case [7].

In view of the dearth of analytical tools to study sto-
chastic DDE's, the patterns found in our results should
provide encouragement to undertake such analytic stud-
ies. The time appears ripe to tackle the problem of per-
forming a center manifold reduction for the stochastic
version of Eq. (1) by extending the techniques of function-
al differential equations to the stochastic case [41].
2 priori, center manifold reductions for the stochastic

DDE may be in the short term a more fruitful avenue
than reductions on a Fokker-Planck-type equation, be-
cause they will avoid the problem of having to define den-
sities in a Banach space. Once the former reduction is
performed, the construction of a standard Fokker-Planck
equation in two dimensions, or higher if the noise is
colored, could proceed as in the case of stochastic ODE's.
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