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Several models of partial differential equations describing the dynamics of lasers with transverse
effects are introduced by using the center manifold theorem for the elimination of irrelevant variables.
By taking advantage of the different time scales associated with the relaxations of the variables, we first
eliminate the polarization and later the population inversion. We show that in contrast with the plane-
wave models, the use of center manifold techniques is necessary to properly describe the spatiotemporal
behaviors of lasers. In particular, we characterize unsuspected Hopf bifurcations for the model obtained
from the adiabatic elimination of the polarization and discuss the presence of diffusive terms induced by
the interaction of radiation and matter after the elimination of the population inversion. A complex
Ginzburg-Landau equation is also obtained in the small-field limit.

PACS number(s): 42.50.Tj, 42.60.—v, 42.65.—k, 05.45.+b

I. INTRODUCTION

The study of spatial effects in lasers and, more general-
ly, in nonlinear optics is attracting growing interest. The
theoretical analysis of Maxwell-Bloch equations that in-
cludes partial derivatives of the transverse coordinates [1]
paved the way to the experimental observation of new in-
stabilities leading to complex pattern formation, spatial
symmetry breaking, oscillations, and eventually spa-
tiotemporal chaos and turbulence in lasers [2]. A similar
interest also developed for passive systems where hexago-
nal patterns have been predicted recently by two of us [3],
while experiments on liquid crystals [4(a)], sodium vapor
[4(b)], and photorefractive materials [4(c)] showed the
formation and evolution of complex transverse patterns.
Reference [S] contains a detailed list of recent references
about these topics.

The theoretical and computational analysis of the mod-
els introduced in Ref. [1] is separated into two comple-
mentary branches. On one side, expansions into the
modes of the empty cavity allow a clear picture of some
static and dynamic behaviors of lasers in terms of charac-
teristic resonances [6]. On the other hand, we approach
here the Maxwell-Bloch equations as a system of partial
differential equations in its own right and apply tech-
niques developed in nonlinear dynamics for their theoret-
ical and numerical analysis. The main topic of this paper
is the reduction [also called adiabatic elimination (AE)] of
the equations of motion describing a single-longitudinal
mode laser when the relaxation time scales of the dynam-
ical variables differ greatly, a common case in quantum
optics. At difference with plane-wave models, any reduc-
tion of variables requires a correct application of the
center manifold (CM) theory [7]. We show that naive el-
iminations of the irrelevant equations based on setting to
zero the time derivative of the fast relaxing variables
often lead to erroneous results.

The paper is divided as follows. In Sec. II we apply a
CM technique to eliminate the polarization variable when
its decay is fast in comparison with the relaxations of the
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electric field and population inversion. The necessity of
the CM theory becomes evident when discussing the bi-
furcations associated with the reduced model. In Sec. III
we obtain analytically the threshold of instability for
Hopf and saddle-node bifurcations associated with
dynamical and static pattern formation in lasers, respec-
tively. These calculations are performed on a model
which considers a flat pumping profile and almost plane
mirrors. In spite of the approximations used, some of the
analytical results are of general interest in the description
of spatiotemporal instabilities in laser systems. What is
relevant is that a naive AE would lead to a spurious insta-
bility which is instead removed when considering all the
terms of the first-order expansion of the CM. Finally, we
extend in Sec. IV the technique to the elimination of the
population inversion when its characteristic decay time is
shorter than the photon lifetime in the laser cavity. A
complex Ginzburg-Landau equation in the limit of small
field is then introduced and discussed.

II. THE ADIABATIC ELIMINATION
OF THE POLARIZATION

We start from the Maxwell-Bloch equations for a
single-longitudinal mode ring laser with transverse
dependence of the fields as obtained in Ref. [1]:

2
9,F=—k ‘1—:‘ 8+a ~V4-+l—p2 F—R |,
(2.1a)
9,R=—(1+i8)R +FA, (2.1b)
9,A=—y[A—x(p)+L(F*R +FR*)], (2.1¢)

where F is the complex electric field, R the complex po-
larization, and A the population inversion. 8, the atomic
detuning referred to the mode pulling frequency; ¢, the
time; k and ¥, the decay rates of the field and population
inversion, respectively, are all normalized to the decay
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rate of the polarization. Finally, p is the transverse radial
coordinate and Y(p) the pump profile. These equations
describe a single-longitudinal mode ring cavity with
spherical mirrors. The parameter a contains the informa-
tion about the geometry of the cavity. For example, in
the case of the cavity shown in Fig. 1,
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where R is the radius of curvature of the spherical mir-
ror, A is the total length of the cavity, L is the distance
between the spherical and plane mirror, T is the total
transmittivity of the cavity, and (7,)!/? represents the
minimum size of the beam waist. Equations (2.1) have
been obtained by retaining the zeroth-order terms of a T
expansion under the assumptions of T <<1, n,=0(1/T)
and having normalized the space coordinates via
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T r, (2:3)

AA7,

P=

where A is the wavelength of the laser light [1]. This pro-
cedure remains valid when considering cavities with more
than one spherical mirror. Changes affect the definition
of the parameters a and 7, only.

In the following we also analyze cavities with almost
flat mirrors under the action of homogeneous pumps.
Some of the assumptions introduced above and the nor-
malization (2.3) are not appropriate for the correct treat-
ment of this case. By considering large beam waists of
order at least 1/T2, we observe that the parameter a
scales as 1/(T7,), the laplacian as 7,, and p? terms in
(2.1a) as 1/7y. Then Eq. (2.1a) is replaced by

3,F=—k{[1—i(6+aV?)]F—R}, 2.4)

where purely numerical factors have been included into
the space normalization. The physical meaning of these
approximations is straightforward: a(1—p?) is the phase
shift induced by the presence of the spherical mirror
which becomes negligible once the curvature of the mir-

FIG. 1. Schematic representation of the ring laser cavity
with a single spherical mirror of radius of curvature R.. The
total length of the ring is A; the distance between the curved
and plane mirrors is L.
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rors tends to zero. Equation (2.4) together with (2.1b)
and (2.1c) under the further assumption of flat pump cor-
respond to the model studied in Ref. [8] and will be the
subject of our linear stability analysis in Sec. III.

We assume that both k and y are much smaller than
unity, i.e., we restrict our analysis to lasers with a very
broad homogeneous linewidth but with long spontaneous
emission and photon lifetimes. Then, in agreement with
Oppo and Politi [7], it is convenient to introduce

A=h(p)1+8)(1+uW), u=Vvy . 2.5)

Note that it is necessary to multiply the scaling of the
population inversion by a radial function % (p) to proper-
ly describe the behavior of the field at large distances
from the beam center. In fact, even if the area around
the beam center is above threshold, the tail of the intensi-
ty distribution approaches the zero state for large p’s be-
cause of the radial shape of the pump. We therefore im-
pose the following conditions on the function k(p):
h(p)—1 when p—0 and h(p)—x(p)/(1+8*) for large
p; any smooth function with these properties can serve as
h(p). Now Egs. (2.1) become

VZ
9,F=—k|{1—i|6+a T+1—p2 F—R|,
(2.6a)
9,R =—(14+i8)R +h(p)1+8*)F +uWF), (2.6b)
oW =—p |14+pw——X8)__
h(p)(1+6%)
+——l (F*R +FR*) (2.6¢)
2h (p)(1+8%)

At the zeroth order in the smallness parameters y and k
we obtain

3,R=—(1+i8)R +h(p)1+8*)F , 2.7

where F acts as a constant forcing on this fast time scale.
The solution of this equation is

R =Rge 1H® 4 p(p)(1—i8)F , 2.8

where R, represents the initial condition. In order to
find the first-order corrections it is convenient to intro-
duce the fluctuation of R with respect to the zeroth-order

solution:
r=R —Rge 1T —ph(p)(1—i8)F 2.9)

and rewrite the partial differential equations up to the
first order in y and k:

3,r =—(1+id)r +uh(p)1+8*)WF
—h(p)1—i8)d,F ,

el

—r—Rge 1t®r_p (p)(l—iS)F’ , (2.10b)

(2.10a)

9, F=—k 6+a

VZ
T+1—p2
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X(p)

QW=
h(p)(1+8%)

—p|1+uWw—

+ 1
2h (p)(1+82)

X[Fr*+F*r+FRte (171

+F*Rge 1T 42h (p)|F|?]

(2.10c)

We have now cast the transverse laser equations in a
form suitable for the application of the CM theory [7]. In
order to make the paper self-contained, we briefly review
the application of the CM theory to infinite-dimensional
systems as suggested by Carr [7]. By considering the gen-
eric system of partial differential equations

9, U=¢[V’U+f(U,V,e)],
9,V=—aV+eg(U,V,e¢),
9,e=0,

where U and V are vectors of variables, € is a smallness
parameter, f(U,V,€) and g(U,V,e) are nonlinear func-
tions of the arguments, and « is a complex number with
negative real part, Carr showed that the CM theorem can
be applied so that V may be expressed as a function of
the other independent variables of the system and
effectively eliminated from the equations. The major
difference here in comparison with the application of this
theory to ordinary differential equations is that one has to
consider VU as one of the independent variables, i.e., the
perturbative expression of V is given by

V=3 €V,(U,U%V*U,V?U*),
i=0
where the complex character of U has been made expli-
cit. By substituting this expression in the trivial equation

« vy v2u* )= 9OV .

4, V(U,U*,vV-°U,V-U*) aUa U+ aU*aU
av a2 5 v2U*

avu aV

one is then able to determine the functions V; to the
desired order in the perturbation expansion. A compar-
ison of this system of partial differential equations with
(2.10) yields U=(F,W), V=r, and a=—(1+i8). Then,
a lower-dimensional attracting surface (containing F and
W and over which the long-term dynamics develop) can
be determined by just applying the previous rules, i.e.,

r=uh(p)1—i8)WF — 8L _isa F . @.11)
1+6

It is important to note that this first-order result coin-
cides with the setting of the time derivative of the r vari-
able equal to zero. This is, however, a peculiar conse-
quence of the structure of our equations, as a rigorous ap-
plication of the CM theory requires the use of the follow-
ing equation:
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8,r(F,F*, W, V2F,V2F*)= aF+a‘;*aF*
or_ ar 2
AW+ a v
- 82’ —9,V2F* , 2.12)

where r is expressed as a perturbation expansion of the
given smallness parameters. One can easily check that
the zeroth-order term of this expansion is identically zero
and that the right-hand side of the expression (2.12) starts
with second-order terms. The shape of the CM surface at
orders higher than the first one greatly differs from that
obtained by assuming steady-state conditions on the vari-
able .

We substitute the CM expression (2.11) into Egs. (2.10)
and rescale the time by 7=pt. The negative exponential
terms can then be neglected even for small 7. A further
step is accomplished by inserting the lowest-order terms
of Eq. (2.10b) into (2.11), so that we obtain for the field
and population inversion variables:

_k v? 2
9, F=—|—B(p)F +alp) |—+1—p* |F
u 4
+uh(p)(1—i8)WF (2.13a)
3, W=D(p)—uW— _‘ua—z |F|?
ke isppe Vg
2(1+8%)? 4
V2
—(1+i8)2FTF* , (2.13b)

where we have introduced the two complex parameters

—i8)2
alp)=ia 1—kh(p>ﬂlj’§2—) , (2.142)
, (1—i8)?
=(1—i8 1—kh(p)———— |, (2.14b)
Bp) i8)g(p) (p) 52
and the three real parameters
glp)=1—h(p), (2.14c¢)
pp=—AXP2__ (2.14d)
h(p)1+8°)
k

o(p)= [g(p)38*—1)+8a(1—p?)], (2.14e)

(1487
which are functions of the radial coordinate p. Note that
g(p), the new loss function, tends to zero for small p and
to unity as the pump rate drops to zero at large distances
from the beam center. D (p) is the new pump parameter
normalized to the on-axis laser threshold.

A first check about the correctness of the AE of the po-
larization is accomplished by studying the asymptotic be-
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havior of the solutions at large distances from the beam
center. In this case, Egs. (2.13) reduce to

_k . .| v? )
a,F—p— —(1=ib)+ia |=-+1—p | |[F, (2.153)
ow=—pw—LEL (2.15b)
i K re '

which implies that the field F vanishes like a Gaussian
while W relaxes smoothly to zero.

Equations (2.13) together with the expressions (2.14)
are the first key result of this analysis and constitute a
properly derived ‘‘rate equation” model for ring lasers
with transverse effects. In spite of the complicated form
of the coefficients, our model introduces great advantages
for both the theoretical (as shown in Sec. ITI) and numeri-
cal analysis of laser systems. For example, we have re-
moved the intrinsic stiffness of the complete model (2.1)
arising from the very different relaxation scales, so that
the time step of numerical computations can now be of
the same order of magnitude of the characteristic oscilla-
tions of the system. Moreover, we show in the following
section that AE techniques less refined than the CM
theory lead to erroneous predictions of spatiotemporal in-
stabilities.

II1. SPATIOTEMPORAL INSTABILITIES

The model (2.13) represents a realistic ring cavity in
presence of spherical mirrors and pumping processes
which decrease with the distance from the beam center.
It is, however, quite difficult to obtain analytical results
from this set of equations. The radially dependent
coefficient originate terms in the Fourier space which are
difficult to handle. We therefore start the study of the
spatial and temporal instabilities associated with the adia-
batic elimination of the polarization by considering the
model of almost plane mirrors and flat pump. This mod-
el is obviously less suitable to describe real lasers than
(2.13). However, the instabilities detected in the approxi-
mated equations have generally served as guidelines for
more realistic models. Starting from Egs. (2.4), (2.1b),
and (2.1c), considering spatially uniform pump mecha-
nisms and repeating the same steps shown in Sec. IT we
obtain

aTF=£[aV2F+p(1—i5)WF] , (3.1a)
3, W=D —pw — 1 EW g2
8
+—tka (1 —isRFrveF
2(1+82)2
—(14+i8)’FV*F*], (3.1b)

where the pump parameter D and the complex parameter
a are now independent of the transverse coordinates.
Note that the same equations can be obtained from the
model (2.13) by imposing 4 (p)=1 for all p and applying
the scaling considerations which yielded Eq. (2.4). The
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spatially homogeneous, time-independent solution W=0
and |F|*=D (1+8?) satisfies Egs. (3.1) and we can ana-
lyze the departure from the uniform state by studying the
temporal growth of small perturbations. The linear sta-
bility analysis of the plane-wave solution allows a com-
parison with models based on the adiabatic elimination of
the polarization by setting its time derivative equal to
zero [from now on referred as standard AE (SAE)]. Re-
cently, for example, Jakobsen et al. [9] reported about
the existence of infinitely short-wavelength instabilities
which led to temporal oscillations in a model based on
SAE. One of the main results of our analysis is to show
that the results based on SAE are often incorrect. They
either produce spurious effect (an infinite wave-number
tail for the case of 6 <0) or suppress important instabili-
ties (such as in the case of 6> 0).

The linear stability analysis in the Fourier space of

Egs. (3.1) yields a cubic polynomial of the form
A3+ A (n)A*+B(n)A+C(n)=0, 3.2)

where n is the magnitude of the transverse wave vector, A
the exponents of the linear stability analysis, and

2 2
A(n)y=p |D +1-4—5an0_ (3.32)
u(1+86%)
2,2 4 2 2
Bm=%21" 1okp — K98 14 p1482)], (3.3b)
u +8
2 2
c(m=29""an(D +1)—2D5] . (3.3¢)

We then separate two cases depending on the sign of the
detuning 8. For atomic frequencies smaller that the cavi-
ty frequency (negative &) all the coefficients in (3.3) are
positive and the instabilities occur only via a Hopf mech-

anism, whenever the inequality
A(n)B(n)—C(n)<0 (3.4

is satisfied. Simple algebra shows that there are no Hopf
instabilities if either
172
3
1

Otherwise, for any value of the parameters there is an in-
terval of values of an? between

u<<k, k<<u? or |8]<3u(D+1) (3.5)

172
2 2
animg‘“——_ﬁgl), a ﬁmzllf —-—-—D(12+8) (3.6)

such that the corresponding wavelengths are unstable to
small perturbations. The most unstable wave number is
given by

2 _ i | D(1+8) .
ang= | T e , (3.7a)
which, in terms of unscaled variables, yields
4, 4n [ypDa+8 |7
n2= KAnong=H e , (3.7b)
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where c is the speed of light, and v, and v, are the uns-
caled decay rates of the population inversion and polar-
ization, respectively. The corresponding Hopf frequency
172

2
D(1+8%) i 3.8)

Q= 6

+2kD

associated with the spatiotemporal instabilities, may be
orders of magnitude larger than the frequency of the re-
laxation oscillations [the second term in large parentheses
in Eq. (3.8)]. For example, for the single-longitudinal
mode Nd:YAG microchip laser [10] (where YAG
denotes yttrium aluminum garnet), the inclusion of trans-
verse effects may result in the generation of ultrashort
pulses by wusing the same modulation techniques
developed for nanosecond pulses. More importantly, the
presence of unstable wave numbers at low pump values
allows one to easily excite temporal oscillations on a spa-
tial scale of the order of millimeters. Figure 2(a) shows
the results of the inequality (3.4) for k=p=10773,
8= —0.2, and D=3 and 5, i.e., within ranges easily acces-
sible to experiments for both gas and solid-state lasers.
The short-dashed lines correspond to the SAE case show-
ing the short-wavelength catastrophe, which is removed
by a proper application of the CM theory. In order to
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FIG. 2. The Hopf instability condition (3.4) vs the scaled
wave number squared for (a) k =p=10_3, =-0.2, D=3
(upper curve) and D=5 (lower curve); and (b) k =p=10"3,
8=0.2, D=3 (lower curve) and D=5 (upper curve). The short-
dashed lines correspond to the SAE case.
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confirm that this effect is not a spurious consequence of
the AE procedure, we have numerically evaluated the
largest real part of the eigenvalues of the linearization of
the full five equation model of Lugiato, Oldano, and Nar-
ducci [8] [corresponding to Egs. (2.4), (2.1b), and (2.1c);
the revised coefficients of the fifth-order polynomial are
presented in the Appendix] and compared it with the re-
sults of both Egs. (3.3) and the SAE model. The agree-
ment between our theory and the equations without AE
is so close that they cannot be distinguished within the
resolution of the graphics of Fig. 3(a), which simultane-
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FIG. 3. Maximum real part of the eigenvalue associated with
the linear stability analysis of the five-equation model (Ref. [8]
and the Appendix) (solid line), model (3.1) (dashed lines, some-
times indistinguishable from the solid lines), and the model after
SAE procedures (short-dashed lines), vs the scaled wave number
squared. The parameters are (a) k=pu=10"3, D=3, and
8=—0.2 or (b) and (c) 5=0.2.
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ously demonstrates the deficiencies of the SAE.

An unsuspected Hopf instability affects the spatiotem-
poral evolution of the system (3.1) for positive detuning 6.
By similar calculations to those previously described, we
obtain the well-known saddle-node instability [8] for

2D%
D+1

2

an*< (3.9)

corresponding to change of sign of C(n). This long-
wavelength instability coexists, however, with a Hopf bi-
furcation obtained via Eq. (3.4),

1/2

2
Da+sy) | (3.10)

2>ji
an 5

k

which is a short-wavelength instability [see Fig. 2(b)].
Again, we have checked that this feature of our model
(3.1) is not an artifact of the AE procedure. In Fig. 3(b)
and 3(c) we show the largest real part of the eigenvalues
in a comparison between the full five equations model [8],
Egs. (3.1), and the model obtained from SAE. The first
important observation concerns the fact that the SAE
wrongly suppresses the Hopf instability, which is a
genuine feature of the original system of equations, show-
ing again its unreliability. The second comment regards
the excellent agreement of the CM results with the origi-
nal model, which starts to break up only at the limit of
the approximations, i.e., when the laplacian of the field
cannot be treated in a perturbative way any more [see
Fig. 3(c)]. For cases where short distances are relevant to
the dynamics, one has to include the spatial derivatives at
the zeroth-order in the perturbation expansion, i.e., to
know the solution of a partial differential equation exact-
ly. The third feature is the unexpected character of the
Hopf instability for positive detunings. As Fig. 2(c) clear-
ly shows, a correct description of the spatial and tem-
poral dynamics involves both long wavelengths via the
saddle-node mechanism and oscillations on extremely
short scales inducing serious limitations on realistic com-
puter simulations. At present, the physical origin of the
latter instability is not completely clear. By using the
unscaled formalism of (3.7b) for the case of a Nd:YAG
laser, we found that the spatial scale of the oscillations is
comparable with the laser wavelength (i.e., of the order of
micrometers). This may be due to the unphysical as-
sumptions of infinitely extended plane mirrors and pump,
and absence of transverse boundary conditions. For this
reason, our present efforts focus on the numerical in-
tegration of realistic models such as (2.13) which contain
physical hypotheses on the transverse dependence of pa-
rameters. We are numerically testing the mechanisms of
instability under the conditions specified by the inequality
(3.10).

In conclusion, we have shown that the presence of the
transverse Laplacian term in the original equations re-
quires the application of the CM theory even for the case
of very large decay rate of the polarization. Note that
this case is well known to be “regular” in the plane-wave
approximation where the system (3.1) reduces to a set of
ordinary differential equations. The use of CM theory
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following the outline of the present calculations is then
appropriate whenever partial differential equations for
laser dynamics are analyzed.

IV. THE ADIABATIC ELIMINATION
OF THE POPULATION INVERSION

For completeness, we now proceed to eliminate the
population inversion variable W by taking advantage of
the form of Egs. (2.13), in the case of lasers with long
photon lifetime, i.e.,

k _k

— = <<1.

u 14
Note that in agreement with Oppo and Politi [11] one
cannot consider k /u as the smallness parameter because
such scaling would originate a singular perturbation ex-
pansion (see also the end of this section for further com-
ments on this point). The zeroth-order equation for the
population inversion can be solved exactly by regarding
the field F as a constant forcing:

_D(p)1+8)—|F|?
w(1+8%+|F|?)
As usual, the first-order corrections are studied by intro-

ducing the fluctuation of W from the value given by its
long-term solution

_D(p)1+8*)—|F|?
u(1+8%+|F|?)

and by writing its corresponding differential equation

(4.1)

(4.2)

u=w (4.3)

(1+83)[D(p)+1]
w(1+8%+ |F|?)?

d,u=09,W +3,|F|? (4.4)

After some manipulations one obtains

. 1+ 8%+ | F|?
du=—p|———
1+ 82

T

u+o(p)|F?

: 2
lka [(1_18)2F*VTF

+W
2(1+82)2

—_—

2
—(1 +i8)2FVTF*

(1+8%)[D(p)+1]
w(1+82+ | F|?)?

+9.|F|? ‘ , (4.52)

2
3.F= —B(p)F +alp) —V4—+1~p2 F

T >

h(p)(1—i8)[D (p)(1+8%)—|F|*]
1+8°+|F|?

+ F

+ph(p)(1—i8)uF | . (4.5b)

It may seem that this form of the equations is not suitable
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for the CM theory because of the |F|? dependence of the
decay rate of the variable u. However, as |F|? is always
positive, its effect is to accelerate the relaxation of the
variable u to its long-term value justifying better and
better the application of the CM method. More impor-
tant, the cutoff of large wave numbers n? necessary when
considering the Laplacian terms of Eq. (4.5b) to be small
is now shifted to sizes of the order of u?/(ka) due to the
characteristic decay time of the variable u.

Considering terms up to the first order in k/u?
evaluating the time derivative of |F|? at the zeroth order

J

h(p)1—id)
,F2 — n\pA1—1i0)
7(p, | FI*)= 1821 | FP?

D(p)(1+8%*)—|F|?
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in k and renormalizing the time by 7' =(k /u)r=kt we
obtain the single equation

2
3,F=—B(p)F +alp) VT+1—p2 F+n(p, | FIF

2 2
+E(p, |FIF F*V—F—FVTF*

P ) (4.6)

where we have defined the following complex quantities:

1—o(p)(1+8?)

2k (1+8%)2[D (p)+1] ‘ ()— HEID (p)(1+8Y) —|FI*)

ikah(p)(1—i8)(1+8*)?[D(p)+1]

)=
&ip, IFI%) L1+ 8+ |FJ2)

Note that both 7 and ¢ yield k /u* terms which are obvi-
ously larger than k terms because of the smallness of p.
This is an a posteriori proof that Eq. (4.6) is valid in the
limit (4.1) while Eqgs. (2.13) have to be used in any other
case in agreement with Ref. [11].

A linear stability analysis of stationary states of (4.6) is
not available because of the explicit dependence of the
parameters on the transverse coordinates. Again, we an-
alyze the case of lasers with flat pump and almost plane
mirror cavities. By repeating the calculations shown in
Sec. I, we have investigated the stability of the uniform
solution to small perturbations of a certain spatial size.
The only instability found in Sec. III which survives the
limit (4.1) is the saddle-node bifurcation (3.9) showing
that the mechanism related to the onset of spatiotem-
poral oscillations is strictly related to the slow dynamics

I

p(1+8%+|F|?)? 1+8%+|F|?
(4.7a)
(4.7b)
A(p)=(1—i8) |h(p)D(p)—g(p)
—i5)2
+kg(”)h(p)(21 ) (4.92)
1+6
B(p)=—h(p)1—i8)[D(p)+1]
1 2k
—+ = —h(p)D( , 4.9b)
Y #z[g(m (p)D (p)] (
_is)2
alp)=ia l—kh(p)%s%)— , (4.9¢)
and
E(p)= ikah (p)(1—i8)[D(p)+1] . (4.9d)

of the population inversion. These results are correct up
to magnitudes of the wave vector of order u’/(ka).
Shorter wavelengths require the use of more sophisticat-
ed CM techniques.

The form of the Eq. (4.6) is valid for any values of the
laser intensity and of the detuning 8. However, a physi-
cal interpretation is difficult because of the complexity of
the terms. We then introduce a revised version of the
Ginzburg-Landau equations by taking the limit of Eq.
(4.6) for small intensities, i.e., | F|>—0,

2
3,F= A(p)F +B(p)F|F|*+alp) —Z—H—pz F
2 2
reor [P Lr-r T | 49

where

pi(1+82)

A first difference between (4.8) and an equivalent equa-
tion obtained by SAE procedures is represented by the
“diffusive” term due to the real part of the coefficient
(4.9c). Such a term changes its sign with the detuning
originating the unusual process of “antidiffusion” for pos-
itive 8. We mention here that the integration of Eq. (4.8)
for negative 8 has revealed the existence of new and unex-
pected solutions [12] where it is possible to study the in-
teraction of optical vortices [13]. Other peculiar features
of Eq. (4.8) are related to the presence of nonlinear lapla-
cian terms of the form |F|*V2F and to the explicit depen-
dence of the coefficients on the transverse coordinates, a
case not previously considered in the analysis of
Ginzburg-Landau equations. Our present studies are
focusing on the effects of these terms on the process of
pattern formation in lasers [12].
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V. CONCLUSIONS

The adiabatic elimination of irrelevant variables has
been shown to be very sensitive to the method used for
the perturbation expansions in the case of partial
differential equations which describe laser dynamics. The
center manifold theory supplies a solid mathematical
framework within which the fast variables as well as the
characteristic scalings of the long-term dynamics are
properly determined. More specifically, the laser equa-
tions, which have been already shown to take advantage
of these techniques in the temporal domain [7], require
the application of the CM theory whenever spatial effects
are taken into account. For example, we have proved
here that some instabilities determined by using standard
techniques do not have any counterpart in the complete
set of the original equations. A more refined application
of the CM is now under investigation in order to treat the
equations at large wave numbers. In this case one has to
solve partial differential equations exactly even at the
zeroth order of the perturbation expansion. This fact
makes the application of these techniques extremely
difficult in the case where no analytical solutions are ex-
plicitly known. The interaction of numerical methods
and computerized algebra can, however, overcome this
difficulty leading to reduced set of partial differential
equations easy to integrate. This will be the subject of fu-
ture communications.

ACKNOWLEDGMENTS

Useful discussions with J. R. Tredicce, L. A. Lugiato,
L. M. Narducci, J. V. Moloney, L. Gil, A. Kent, and A.
Politi are gratefully acknowledged. This work has been
partially supported by the CNRS (Nice, France), by the
SERC Grants Nos. GR/F 75087 and GR/G 12665, by a

SPATIOTEMPORAL INSTABILITIES OF LASERS IN MODELS . ..

4719

Twinning project within the SCIENCE program of the
European Community, and by the University of Strath-
clyde through the faculty funds.

APPENDIX

The coefficients a; of the fifth-order characteristic poly-
nomial

5 .
S a\l

i=0

of the linear stability analysis of the homogeneous solu-
tion of Egs. (2.4), (2.1b), and (2.1c) corresponding to the
case of almost plane mirrors and flat pump are

as;=1,

a,=2(1+k)+u?,

a;=2p*(1+1)+(1+k?)(1+8?)
+2k(1—8%)+k2an?(an?—28) ,

a, =p[(1+k)(1+8%)+2k (1—8%)+Iy(3k +1)]
+k2an2(2+,u2)(an2—28) ,

ay=2kp*l (1+k)+k2an?{an’[1+8*+uX2+1,)]

—u?8(4+1,)3 ,
a,=k*u’an*lan*(1+8*+1,)—281,] ,
where
I,=D(1+8%)

is the field intensity of the stationary solution.

*Also at the Laboratoire de Physique Théorique, Université
de Nice, Parc Valrose, 06034 Nice, France.
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