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Quantum coherence and classical chaos in a pulsed parametric oscillator with a Kerr nonlinearity

G. J. Milburn
Department of Physics, University of Queensland, St. Lucia 4072, Australia

C. A. Holmes
Department of Mathematics, University of Queensland, St. Lucia 4072, Australia
(Received 15 January 1991)

We consider a parametric amplifier driven by a periodically pulsed pump field inside a cavity contain-
ing a Kerr nonlinearity. The dynamics of the device is modeled as a kicked nonlinear system. The
pulsed parametric amplifier constitutes the kick. In between kicks the dynamics is determined by the
Kerr nonlinearity and damping. In the absence of damping, a classical description of the device exhibits
a rich phase-space structure including fixed points of multiple period and chaos. We contrast the classi-
cal behavior of the mean intensity with that predicted by quantum dynamics. The mean photon number
inside the cavity is shown to undergo regular collapse and revival in the regular region of the phase
space and irregular revivals in the chaotic region. When damping is included, the quantum recurrences
are rapidly suppressed, and the classical behavior is restored. In this case a stable steady state is possi-
ble. The damping represents the effect of photon-number measurements on the system. We also discuss

the photon statistics in the steady state.

PACS number(s): 42.50.Tj, 42.65.Ky, 05.45.+b

I. INTRODUCTION

Classical chaotic behavior is drastically modified if not
eliminated by quantization. For example, the energy
diffusion exhibited by the kicked rotor in the globally
chaotic region does not survive in the quantum model
[1,2]. The diffusion is suppressed due to complicated in-
terference effects reminiscent of Anderson localization
[3]. In this phenomenon we see the signature of quantum
coherence, a feature at the heart of the less intuitive as-
pects of quantum mechanics. However, the quantum be-
havior can reflect the classical dynamics, be it regular or
chaotic. This is quite evident in the dynamics of periodi-
cally kicked nonlinear Hamiltonian systems. Early work
focused on the change in the quasienergy statistics of the
quantum problem as the corresponding classical realiza-
tion moved into the chaotic region [4]. More recently it
has been shown that the classical transition to chaos is
reflected in the appearance of irregular collapses and re-
vivals in the evolution of certain moments [5].

It has proved very difficult to find experimental realiza-
tions of kicked Hamiltonian models that exhibit chaos.
The one example to date is the microwave ionization of
hydrogen, where the quantum suppression of diffusion
appears to have been confirmed by experiment [6]. The
major problem in the search for such realizations is the
unavoidable presence of dissipation. At the very least, in-
formation must be extracted from the system and this
measurement necessarily entails introducing noise and
possibly damping into the quantum dynamics. It is well
known that quantum coherence effects are extremely sen-
sitive to such nonunitary effects and may not occur at all
if the scale of the system (as measured, say, in terms of
the initial energy) is too large. It is in this context that
quantum optics offers some hope. At optical frequencies
the temperature of the environment may be taken as zero
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and all that remains is the unavoidable coupling to the
vacuum. Further, optical nonlinearities exist that enable
direct realization of simple nonlinear Hamiltonians, for
example the twist map in the case of a Kerr nonlinearity.

In this paper we discuss a simple optical system that
realizes the perturbed twist map [7]. The system may be
modeled classically or quantum mechanically with dissi-
pation included in both cases. Consider a single-mode
field propagating in a cavity (or fiber) containing a Kerr
medium (which exhibits an intensity-dependent refractive
index). This single-mode field is well described in terms
of a simple harmonic oscillator. The effect of the non-
linearity is then to introduce an energy-dependent phase
shift of the oscillator’s complex amplitude, that is, a rota-
tional sheer in the phase plane [8]. The mode is periodi-
cally “kicked” by parametric amplification, which for a
very short time turns the origin in phase space into a hy-
perbolic fixed point, thus stretching and shrinking the
phase plane in orthogonal directions. Such devices pro-
duce squeezed states and now operate successfully in a
number of laboratories [9]. This device might be con-
structed as a cavity containing the Kerr medium and a
parametric amplifier pumped by an intense periodically
pulsed field external to the cavity. See Fig. 1.

The classical dynamics of this system exhibits a rich
structure of regular and chaotic motion, with the
amplifier gain being the control parameter. The phase
space is divided into two regions: bounded but possibly
chaotic motion and unbounded motion some distance
form the origin where trajectories escape to infinity. We
discuss the classical motion in detail in Sec. II. When
small dissipation is included, the stable fixed points be-
come attractors and a stable steady state is possible.
With large damping and large parametric gain the pres-
ence of a strange attractor is apparent and consequently
the model exhibits a transition to a dissipative chaotic
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FIG. 1. Schematic representation of the model discussed in
this paper. The box labeled NL represents the Kerr medium.
The box labeled PA represents a parametric amplifier, pumped
by a pulsed field.

structure. In order to compare the classical and quantum
models we consider the mean energy of the classical mod-
el for an initial distribution of position and momentum
taken to have the same spread as characterizes an oscilla-
tor coherent state.

In Sec. III we consider the quantum theory of the mod-
el for initial coherent states (including the vacuum). We
show that the mean photon number exhibits a collapse
and revival sequence. That is to say, the mean photon
number oscillates with an amplitude that initially decays
but that periodically or quasiperiodically returns close to
the initial amplitude. For initial states localized in the
regular region of phase space these revivals are quite reg-
ular, almost periodic. However, in the irregular region
the revivals become quite irregular. Damping is included
in the quantum model using the method described in Ref.
[10]. We find as expected that typical quantum re-
currence features are rapidly suppressed and the mean in-
tensity approaches that expected from the classical
description. The model used for damping may be
equivalently interpreted as due to continual photon
counting measurements being made on the intracavity
field. Thus we also describe in a very natural way the
effect of measurement on a quantum system that is classi-
cally chaotic.

In the absence of dissipation, the dynamics in the
period between kicks is determined by the Hamiltonian

(8]
HNL=22€(aT)2a2, (1.1)

where Y is proportional to the third-order nonlinear sus-
ceptibility and a,a’ are the complex amplitude operators
for the field. These operators obey the commutation rela-
tions [a,aT]Z 1. To enable a more direct classical repre-
sentation it is useful to write the complex amplitude
operators in terms of dimensionless position and momen-
tum operators (or quadrature phase operators) X ; and X 2
by

a=2X +iX, . (1.2)
The Heisenberg equation of motion for a is
%‘f—=-—ixa7aa (1.3)
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(units have been chosen such that #i=1). As the energy
operator a 'a is a constant of motion, Eq. (3) has the solu-
tion

a(t)=eina'ag(g) (1.4)

where p=yxt. Equation (1.4) describes an energy-
dependent phase shift.
The parametric kicks are described by the Hamiltonian

HK=iﬁ§[(aT)2—a2] . (1.5)

In writing this Hamiltonian it is assumed that the pump
carrier frequency is twice that of the intracavity field and
a transformation to the interaction picture has been
made. The coupling constant « is the product of the
pump field amplitude and the second-order nonlinearity
in the parametric gain medium. Thus « is increased by
increasing the pump amplitude. The Heisenberg equa-
tion of motion following from Eq. (1.5) is

% =xa' (1.6)
and a corresponding Hermitian conjugate equation. The
solution is

a(t)=a(O)cosh(s)—!—aT(O)sinh(s) , (1.7)

where s =«t. In the case of a pulsed pump field, s is
determined by the integrated time-dependent amplitude
of the pump.

We will assume that the pump is turned on and off so
rapidly compared to the free dynamics that the Hamil-
tonian describing the parametric process may be approxi-
mated by

Hpn=Hy S 8(t—n7), (1.8)

n=-—ow

where 7 is the period of free evolution between each
pump pulse. The effect of the parametric process is then
from Eq. (1.7) given by

a(t;))=a (s, )coshr +a'(z; )sinhr , (1.9)

where ¢, (¢,) is the time just after (before) the passage of
the nth pulse and r is the effective parametric constant
for the pulse.

Equation (1.7) may be written in terms of the Hermi-
tian phase-space operators:

RiH=eR (t,;)=g,(1,),
: (1.10)
22(tn+)=e_rj?Z(tn-)EE‘?Z(tn_) ’

where g =e" is the parametric gain.

II. THE CLASSICAL MODEL

There are a number of ways to give a classical descrip-
tion of the model presented above. We adopt the pro-
cedure of replacing the operators (a,a’) and (X 1,X,) by
classical commuting phase-space variables (a,a*) and
(X,,X,) [11]. The classical Hamiltonian constructed
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from the quantum Hamiltonian by this substitution will
give the correct classical equations of motion (Hamilton’s
equations), at least up to constant frequency shifts that
scale to zero in the semiclassical limit. The classical ana-
logs of Egs. (1.3) and (1.7) are then

da(t) _ . o ¢
7 ixlal’a S (2.1)

for the free evolution, while the effect of the parametric
kicks is given by

a(t,” )—alt, )cosh(r)+a*(t, )sinh(r) , (2.2)

where a =X, +iX,. Note that we have explicitly allowed
for the possibility that dissipation may be present over
the period of free evolution in Eq. (2.1) by including the
decay term proportional to y’. The solution of Eq. (2.1)
is

al(7)=al0)exp —-g——i¢|a(0)|2 , (2.3)
where

=E1—e), 2.4)

¢ v e

where the damping constant y is defined by y=y'r.
Combining Egs. (2.2) and (2.3) we find that the classical
dynamics from just after one kick to just after the next
kick is determined by the map

X' =ge ""?*[cos(pR?)X,+sin(¢R>)X,] , 2.5)

Xa:ée—r/l[—sin(fﬁRl)Xl+cos(¢R2)Xz] s (2.6)

where R2=X2+X2.

We first discuss the case of no dissipation (y =0) and
then ¢=p=yx7. The origin is an unstable critical point
for all nonzero values of » (u is simply a scaling parame-
ter). There are two other critical points in the disk
R <V'xr/u given by

R, =cos™! , 2.7
pio+ —c08 coshr @7

tan(0,)=—exp(—r), (2.8)
and in each annular region

@n—la | 2+ |
n T <R < (2n ) ’
u u
n=12,3,... (2.9

there are four critical points given by

2, =2nmtcos! = e .
UR L nmxcos woshr |’ n=1,2,3, (2.10)
tanf,= Fe?" . (2.11H

Since 6. is independent of n, these lie on one of the four
radial lines
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6=tan"le™"), (2.12)
6=m+tan" e "), (2.13)
6=—tan " e™"), (2.14)
O0=m—tan e "), (2.15)

All the critical points denoted (R, _,0_), n=1,2,3,. ..
(there are two for each value of n placed symmetrically
about the origin) are unstable, whereas those denoted
(R, +,0,.),n=0,1,2, ... are unstable (or stable) only if

1
oshr

From this it follows that for any fixed nonzero value of r
there is some value of n,n,, say, such that for n=n,
(R, +,0,) is unstable and for n <n,, (R, ,0,) is stable.
As r increases from zero, passing through the critical
values Tags given by P(n,rns)=2, the number of stable

1

P(n,r)= |m+cos™ sinhr > (or <)2.

(2.16)

critical points decreases until for » <r, all the critiral

points are unstable.

However, even if (R, ,,0 ) is stable, this is no guaran-
tee that solutions nearby will stay nearby since for all
nonzero values of r the system is chaotic. To obtain some
kind of estimate for the onset of chaos we follow the
work of Greene [12]. If we take action angle variables in
the vicinity of the stable critical points and including
only terms to first order in the action, then the absence of
damping ensures that the action is unchanged while the
angle undergoes a translation by 27¢, where ¢ is a con-
stant called the rotation number. Greene observed that
the final barrier to global stochasticity disappears when

=1, For the critical point (R, ,0;), ¢=+ when

F=ra» where P(n,rnc)=(\/§+1)/\/§, Thus for r <r,
the critical point (R, ,,0,) (which is stable r, <r, ) is

only locally chaotic. That is to say, bounding
Kol’mogorov-Arnol’d-Moser (KAM) tori, or at least is-
lets of stability, will be found nearby. (Note, however,
that r —r, is only an approximate upper bound for the

transition to global chaos.) For r, <r <, it is globally
c s

chaotic while still being stable. Since r| <r; <ry, <rg

4 s ¢ s

as r increases, the critical points in the first annular re-
gion become unstable before global chaos develops in the
vicinity of (Ry4,0,). However, this ordering is not
preserved for large n.

Figures 2 and 3 show phase portraits for the map. In
Fig. 2, r2, <r<r,c(r close to rlc) so that (R, ,0,) and
(R4+,0,) are stable and (Ry,,6,) is locally chaotic,
while all the other critical points are unstable. Since 7 is
close to r, and ri, is only an upper bound for the transi-

tion to global chaos, we do not expect to find much regu-
lar behavior near (R, ,6,). However, regular behavior
near (R,;,,0,) is evident as is the period two critical
point farther out. In Fig. 3, ro, <r<rj_ so that

(R;4,60,) is the only stable critical point and it is locally
chaotic.
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FIG. 2. Phase portrait of the classical map in the absence of
dissipation. g=1.2, u=0.017.

When dissipation is present but y <2r, critical points
continue to exist, in the same region of phase space as for
the undamped case, and are given by

_ h(y /2)
R — 1 | COS
HEo+ =008 coshr
_ h(y /2)
R2, =2nmt+ 1| cosmty/2) , =1,2,...
HR ;4 nTIcos coshr n ’
172

sinh(r —y /2)

=4 T
tan6, =te sinh(r +v /2)

For y=2r, the two critical points denoted (R,,,0,)
coalesce with the origin and all other nonzero critical
points coalesce in pairs so that for ¥ > 2r the origin is the
only critical point. As for the undamped case, (R, _,0_)
are unstable saddle-type critical points. The critical
points (R, ,,0, ) are stable for P(n,r,7) <2 and unstable
(saddlelike) for P(n,r,y)> 2, where

cosh(y /2)

cosh(r)

% V'sinh(r —y /2)sinh(r +7v /2)

P(n,r,y)= |2nm+cos™!

cosh(y /2)

FIG. 3. Phase portrait of the classical map in the absence of
dissipation. g=1.5, u=0.01.
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FIG. 4. Phase portrait of the classical map. g=3.35,
p=0.017, y=0.914.

However, (R, .,6,) are now asymptotically stable
(spirals or nodes) when stable and their domains of at-
traction divide up the phase space.

In Fig. 4 we plot the phase portrait in the case of large
gain (g=3.35), and moderately large damping. This pic-
ture seems to indicate the presence of a strange attractor
and consequently we see a transition to a dissipative
chaotic motion. In Figs. 5(a)-5(c) and 6(a)-6(c) we plot
the mean energy (X2 +X3) for an initial uniform circu-
lar distribution of points. The radius of this distribution
is chosen to be 0.5, to give variances for the phase-space
variables equal to that for a quantum system prepared in
a coherent state, that is, 0.25, in order that a comparison
may be made with the quantum evolution in the follow-
ing section. This means an initial circular distribution
centered on the origin will have a mean energy of 0.5. In
Fig. 5(a) the initial distribution is centered on the origin
and there is no dissipation. After some initial oscillations
the mean settles down to a steady-state value somewhere
near the energy corresponding to the two critical points
close to the origin. What appears to happen is that the
distribution, initially centered on the saddle point at the
origin, splits into two parts with each part drawn onto
annular regions surrounding the critical points. The dis-
tribution is probably doubly peaked and uniformly distri-
buted around each of these critical points. In Fig. 6(a)
the initial distribution is centered on a=(1,0), which is in
the chaotic region surrounding the origin when g=1.5.
Again there is an initial oscillation of the mean energy,
this time at a higher frequency, followed by a steady state
that appears to diffuse slowly in energy. We have only
taken the evolution out to 200 kicks in this case, as for
larger times some points escape to the unbounded region
leading to an error in the numerical evaluation of the en-
ergy. When dissipation is included, the critical points
near the origin become attractors. Now the distribution
is pulled on to the critical points and the mean energy ap-
proaches a new steady state, which is the mean energy of
each of the two attracting points. This behavior is shown
in Figs. 5(b), 5(c), 6(b), and 6(c) for various values of the
damping constant.



4708

III. QUANTUM DYNAMICS

To include the effect of dissipation in the quantum
model, we must proceed a little differently to the classical
case. It is not simply a matter of inserting a decay term
in the Heisenberg equations, analogous to the last term in
Eq. (2.1). In the quantum case the fluctuations, which
necessarily accompany dissipation, must be correctly ac-
counted for in order to preserve the commutation rela-
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tions for the system operators. To include the effect of
dissipation on the quantum dynamics between the kicks,
we assume that the intracavity field mode is coupled to a
zero-temperature heat bath. Standard techniques may
then be used to derive a master equation for the field den-
sity operator. This equation may be solved over the time
between kicks. The resulting density matrix is then sub-
jected to the unitary transformation describing the kick
and the master equation solved again with the post-kick
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FIG. 6. Classical mean energy for an initial circular distribu-
tion centered at (1,0). In all cases u=0.017,g=1.5: (a) y=0,
(b) y=0.01, (c) y=0.1.
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density matrix as the initial condition. The process is
then iterated.
Between the kicks the master equation is

%‘%: _i%[(a*)za{p]—l—%(ZapaT—aTap—paTa) .

(3.1)

If p(2) is the density operator just after the kick applied
at time ¢, the matrix elements of the density operator in
the number basis a time 7 later is given by [10]

(plp(t +7)|qg)=exp i—g—(p —q) |f(r) PO 2(plgn)=172

X § (nlp(t)|n —(p —q))

n=p
X{nl[n —(p —q)}'"?
a+is)~ "= (n—p)
(n—p) [1=7(n] ’
where
8=12%‘11 : (3.2)
k=1, (3.3)
X
0=xr1, (3.4)
f(r)=exp[—«60—iO(p —q)] . (3.5)

In what follows we always choose 7=1. At each kick the
matrix elements transform as

(plp't+Dlg)= 3 U, (nlplt +7)m)Uy, , (3.6

n,m=0

where

U,,, = m|exp ln) . (3.7

é[(aT)Z__aZ]

This unitary matrix element is zero if m —n is odd, other-
wise the explicit form is given in Ref. [7]. Of particular
interest in this paper are the moments of the intracavity
photon number,

A= n'py » (3.8)
n=0

where the photon-number distribution p,, is given by
Pan ={nlpln). Of course in determining these moments
numerically the infinite sums must be truncated. The
truncation number must be chosen sufficiently large so
that the trace of the density operator is very close to uni-
ty (within 1% was found to be satisfactory). The initial
states were taken to be coherent states | ), which have a
reasonable semiclassical limit and are defined by the num-
ber state expansion

= ) - _a”
=exp(— —n) . 3.9
la} =exp(—|al DIy n) (3.9)

Of special interest is the case where the cavity is initially
unexcited for which a=0.

The case of zero dissipation has been treated elsewhere
[7], however, for completeness this case is illustrated in
Figs. 7(a) and 8(a). The parameters have been chosen to
correspond to those taken in the classical phase portraits.
In all cases £ =0.017. Figure 7(a) depicts the mean pho-
ton number versus kick number for an initial vacuum
state when the phase space near the origin is dominated
by regular trajectories. Whereas the classical prediction
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FIG. 7. Quantum mean photon number for the parameters in
Figs. 5(a)-5(c).
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for the mean energy in the cavity approaches a steady
state [Fig. 5(a)], the quantum prediction deviates from
this except on a very short time scale, giving a regular se-
quence of collapses and revivals. The revivals are a pecu-
liarly quantum feature and reflect the underlying quan-
tum coherence between quasienergy eigenstates preserved
under unitary evolution. In Fig. 8(a) we change the para-
metric gain to access a region where classically there is
chaotic behavior near the origin. The initial state was
taken to be a=1, which is localized in the chaotic region.
Once again the quantum prediction for the mean intensi-
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FIG. 8. Quantum mean photon number for the parameters in
Figs. 6(a)—6(c).
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ty only follows the classical mean for short times [cf. Fig.
6(a)]. Now the departure from the classical result is
characterized by a highly irregular recurrence sequence.
Such an irregular revival sequence was also observed in
the chaotic region of the kicked top [5]. The transition
from a regular revival sequence to an irregular sequence
is a quantum reflection of the corresponding transition to
chaotic behavior in the classical model. It is evident in
these figures that the quantum and classical results differ
by 0.5 at the initial point. This is an artifact of the way in
which we have chosen an initial classical distribution,
which is meant to correspond in some way to the initial
quantum states. In Fig. 7(a) the initial mean photon
number is zero as the system starts from the vacuum
state, however the classical result, Fig. 5(a), starts at 0.5,
which is the sum of the initial phase-space variances.
Nonetheless, for large photon numbers the quantum and
classical results are quite close to each other. This is the
required semiclassical limit in the model as 7 has been set
equal to unity and thus we feel justified in choosing the
particular initial classical distribution.

The effect of damping is depicted in Figs. 7(b), 7(c),
8(b), and 8(c). The general feature is that it takes only a
relatively small amount of damping to destroy the quan-
tum revivals, be they regular or irregular, and restore the
classically expected approach to the steady state. How-
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ever, there are some small differences that can probably
be attributed to the fact that an initial uniform distribu-
tion of points in the classical model is not a perfect repre-
sentation of the quantum state. However, the agreement
between the classical and quantum results is quite impres-
sive.

In Figs. 9(a) and 9(b) we plot the photon-number vari-
ance versus kick number for the case of ¥y =0.1. Compar-
ison with the steady-state photon number reached in Fig.
7(c) indicates that the steady state of the device is quite
close to a coherent state. The agreement between the
mean and variance is best for the regular region. Thus
this device produces a continuous-wave steady state with
near shot-noise-limited intensity fluctuations. In fact, the
steady-state phase-space distribution is probably double
peaked, each peak centered on each of the stable fixed
points close to the origin. Overall the device has convert-
ed a pulsed field to a continuous-wave field at half the fre-
quency with a well-defined intensity and phase defined up
to a 7 phase shift. Further investigations of the quantum
statistical properties of the steady state are in progress.

IV. DISCUSSION AND CONCLUSION

We have shown how the different quantum and classi-
cal dynamics of a classically chaotic system become simi-
lar when weak dissipation is present. Furthermore, this
model is realistic enough to be subjected to an experimen-

tal test [7]. The gain parameters used in this paper are
relatively modest corresponding to squeezing of between
30% and 56%. These values have been achieved experi-
mentally [9]. The nonlinear phase-shift parameter u is a
scale parameter and fixes the photon-number scale of the
model. Typical values of u (107'7) would lead to quite
large photon numbers but possibly within reach of a
pulsed pump field.

There have been a number of papers recently discuss-
ing the effect of measurement on the quantum features of
a classically chaotic system [13-15]. The model of this
paper is in fact an example of how monitoring a non-
linear quantum system may restore classical behavior. In
our model it is necessary to measure the photon number
continuously. This is usually done by a demolition count-
ing scheme in which the photon detection process
represents a linear loss term from the cavity. This linear
loss is well modeled at optical frequencies by precisely the
master equation of Eq. (3.1). (See, for example, Ref. [16]
and references therein.) Thus we conclude that the effect
of measurement is to modify both the quantum and clas-
sical dynamics but that the predictions of both models
are arbitrarily close the more closely (that is the larger is
v) the system is monitored. Of course there may be other
forms of number measurements based on quantum non-
demolition schemes that do not have as much of an effect
on the quantum dynamics. We are currently investigat-
ing the application of such schemes to the model of this

paper.
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