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We discuss the generation of quantum noise in interferometers. A heuristic model is described that
enables different characteristics of the noise to be understood and calculated. In particular, the effects of
modulation on signal and noise in interferometers are discussed. It is seen that the mixing in of quantum
noise from different modes of the vacuum can degrade the signal-to-noise ratio of a measurement in a
variety of apparently different physical situations. Michelson interferometers with both internal and
external phase modulation are specifically considered, but the results are easily extendable to any type of
interferometer. We also comment upon some implications for the use of squeezing in interferometers.
For examples, we argue that it is possible, even in lossy narrow-band interferometers, for squeezing to
reduce significantly the effective quantum-noise power.
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I. INTRODUCTION

Optical interferometers are commonly used to make
measurements of phase. Very high sensitivity can be
achieved, for example, in laser-interferometric gravita-
tional-wave detectors (see Thorne [1] for a review). In
these instruments it is usual to employ rf phase modula-
tion as a means of mixing the signal of interest up to fre-
quencies at which the intensity fluctuations of the light
source are low. For Michelson interferometers operating
on a dark fringe, this has the additional advantage that
light recycling can be used [2—4] to enhance further the
sensitivity of the instrument. If maximum information is
to be extracted from an interferometer, it is important
that the particular modulation technique adopted does
not significantly degrade the signal-to-noise ratio. Schil-
ling [5] and Man et al. [6] have pointed out situations
arising when ‘“‘extended modulation” is used in which the
ideal signal-to-noise ratio cannot be attained. With
“internal” phase modulation, Schnupp [7] and Niebauer
et al. [8] have shown that the nonstationary nature of the
noise means that the signal-to-noise ratio may be worse
than optimum unless the demodulation waveform is radi-
cally different from that of the modulation. In order to
understand both of these results fully, we will discuss a
specific model of how quantum noise enters an inter-
ferometer. We shall then argue that the physical origin
of the poorer signal-to-noise ratio in these apparently
disparate situations is, in fact, exactly the same: namely,
the mixing in of (optical) noise from frequencies at which
there is no signal.

Throughout this paper we shall confine our attention
to that noise which manifests itself as fluctuations in the
power of the detected light. We shall specifically ignore
the back action on the interferometer resulting from radi-
ation pressure fluctuations. This is of negligible magni-
tude in almost all situations of interest. Thus, while we
shall describe the photon counting fluctuations as quan-
tum noise, it must be emphasized that this is not the same
as the “standard quantum limit” [9] to the sensitivity of
an interferometer.
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II. SIGNAL IN A MICHELSON INTERFEROMETER

We need to understand the detection of a phase change
by an interferometer. Consider a sample Michelson in-
terferometer, such as that indicated in Fig. 1. A change
in the relative phase of the light in the two arms of the in-
terferometer may be detected by conversion into a change
in power at the photodetector, via interference at the
beamsplitter. If E; and E, are the emerging rms field
amplitudes, with a phase difference ¢, from the arms of
the interferometer, then the power I, incident on the
photodetector is

I,=E?+E3+2E E,cos¢ . 1)

If we are looking for a small time-dependent signal
8¢ =s (1), it is sensible to modulate the phase difference so

that
o(t)=m+m(e), (2)

where m (t) is an arbitrary function. The modulation
could, of course, just be a dc offset. However, m (1) is
usually chosen to be a periodic function at some high fre-
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FIG. 1. The optical layout of a simple Michelson interferom-
eter.
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quency: this has the great advantage that it transfers the
signal to around this frequency (where the power fluctua-
tions of the light source may be quantum limited). This
upconversion can be seen by observing the form of the
power change 81, corresponding to a signal s (#):

81,~2E E,m (t)s(t), (3)

where small modulation depth about the bottom of a
fringe [sinm(z)=m ()] has been assumed. The signal
amplitude modulates the carrier formed by m (¢). Note
that the emerging light power varies as m (z).

The signal must now be extracted from the intensity
change 8I,;. The information needs to be transferred
from around the modulation frequency back down to the
signal frequency. This is done by coherent detection: the
waveform 8I; is demodulated by multiplication with a
function d (1), giving a signal voltage

V,(6)=~2E E,m (t)d (1)s (1) . ()

This result may also be expressed in the frequency
domain:

V. (o)<g(w)*5(w), (5)

where §(w) is the Fourier transform of q(z)=d (t)m (t)
and #* indicates convolution. In other words, the signal
that we would see on a spectrum analyzer is the convolu-
tion of the modulation-demodulation function §(w) with
the signal spectrum 3(w). For example, if §(w) is a 8
function then the original signal spectrum is reproduced.
But we can see already an interesting feature—the only
case in which signal only appears at its original frequency
is when g(w) is a & function 8(0), i.e., when d (¢)m (¢) is
time independent. This is easily seen if we imagine the
action of convolution being the sliding of two waveforms
past each other, the convolution at each position being
proportional to the overlap at that position. Any g at a
frequency @’ other than zero will shift the signal by o'.
Since a signal being diverted to spurious frequencies
must, in some sense, be a waste, it would appear that all
situations in which d (#)m (¢) is time dependent will give
poorer performance than the ideal situation. We shall see
that this is indeed the case [although the general form
d (t)sinm (t) must be kept when the modulation depth is
high—see Sec. IV]. However, for full understanding it is
also necessary to consider the noise in the interferometer.

II1. NOISE IN A MICHELSON INTERFEROMETER

From now on let us assume that our interferometer is
illuminated by a laser beam which is in a perfect coherent
state. This means that the fluctuations in amplitude and
phase are limited by purely quantum, rather than techni-
cal, noise. One way of modeling this situation is to imag-
ine that the laser beam “itself” is perfectly stable and
noise-free, any noise arising from this field being super-
posed by vacuum fluctuations [9,10]. Fluctuations in
phase or photon number may be regarded as being due to
the interference of the vacuum fluctuations with the laser
field. While this model should not be pushed too far, it
does have some nice features: it is a great aid to physical
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intuition; it gives some results (e.g., for single sideband or
sine-wave modulation) very easily; and it allows the effect
of squeezing the vacuum at different frequencies and at
different places to be seen easily.

As an example of noise generation in this picture, let us
consider the fluctuations in power of a monochromatic
laser beam. This could be light emerging from an ideal
laser, or it could be out of an interferometer with a static
offset from a dark fringe. Photon number fluctuations at
angular frequency o are produced by the beating of the
laser light at w; with noise sidebands at w; o (see Fig.
2). Note that we are treating the vacuum fluctuations as
being essentially classical noise. This is certainly not
strictly correct. However, the only place this ever makes
any difference is if we try to observe the beating of the
vacuum fluctuations with themselves—the fact that
@,10) =0 guarantees that this cannot be seen. With the
vacuum fluctuation sidebands having rms amplitudes
E, . ,E,_ and the laser beam being of rms amplitude E,
(average power I,), the power is

I=(E,+E, +E,_)NEt+E* +E* ), 6)

with % indicating complex configuration. For an
unsqueezed vacuum, the vacuum fluctuations at the two
frequencies will be of the same magnitude [10] but un-
correlated:

El, =E! =lf#o, . M

The noise spectral density is therefore
8I =8I E2=2Iyfiw; . (8)

This is a standard shot-noise formula. Our picture of
noise generation as the interference of ‘“‘carrier” with
noise sidebands makes it clear why the rms shot-noise
level scales as the amplitude of the light.

One thing to note about the previous argument (ima-
gining that the light is at the output of an interferometer)
is that the vacuum fluctuations which produce the noise
couple into a measurement in exactly the same way as
does a signal: the relevant sidebands have the same fre-
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FIG. 2. An indication of the spectral composition of the field
associated with a propagating laser beam. For any frequency o
away from the laser light, the effect of vacuum fluctuations is to
produce uncorrelated noise sidebands, E, ,E, . All of the
quantum noise on the light may be regarded as being the result
of the interference of these sidebands with the carrier at ;.
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quencies and phases. There is no extra noise. So a modu-
lation m(z) which is simply a small offset from dark
fringe should give the optimum signal-to-(quantum) noise
ratio. Note that m (¢)d (¢) in this case is time indepen-
dent. For a monochromatic signal s (w) and an incident
laser power I, this optimum signal-to-noise ratio (S /N)

. . opt
is given by

Is*(w)

v

9)

where Af is the measurement bandwidth.

As Caves [9] has pointed out, this signal-to-noise may
be improved if the vacuum is “squeezed,” so that the
noise in one phase is reduced at the expense of increasing
that in the quadrature phase, the product satisfying
Heisenberg’s uncertainty relation. The vacuum fluctua-
tions at each frequency have a magnitude that is greater
in one phase than the other. Since orthogonal phases of
the vacuum fluctuations produce orthogonal phases of
noise (e.g., phase and amplitude) on the detected light,
reduction of the appropriate phase of the vacuum fluctua-
tions may lead to a decrease in the detected noise. Note
also that the fluctuations E, , and E, _ in the two modes
that contribute to the detected noise are correlated; the
squeezed vacuum is really a two-mode quantum state
[11].

The place at which the most important vacuum fluc-
tuations are generated may not be immediately obvious.
Any fluctuations entering the interferometer along with
the laser beam cannot exit the photodetector as long as
the interferometer is exactly on a dark fringe, for they
must be reflected back toward the laser in the same way
as the laser light. Such fluctuations, therefore, cannot
contribute to the noise in an ideal interferometer.

It might be thought that the most important source of
vacuum fluctuations would be the two arms of the inter-
ferometer. But the production of fluctuations with ran-
dom phase requires the presence of dissipation [12]. Just
as in the classical dissipation-fluctuation theorem, the
coupling-in of random noise from other modes occurs at
the same rate as that of the reverse process, damping of
the mode of interest. If the quality of the optics is high,
and the number of reflections is not too great, so that lit-
tle power is absorbed, then fluctuations generated within
the arms of the interferometer will not contribute much
noise. Another way of expressing this is to say that the
noise generated within the arms of the interferometer has
a correlation time 7, which is comparable with the max-
imum light storage time 7, of the inteferometer,

T.=~l/cA*, (10)

where [ is the length of the interferometer and 4?2 is the
loss coefficient of the mirrors. If the signal is stored in
the interferometer for a time 7;, the effective noise power
of the internally generated vacuum fluctuations will be

’
T /T,

El=lfio (1—e ), (11

Equivalently, the squeeze factor of light injected into the
. =7,/
interferometer will decay as e Ts/Te, So, as long as the
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signal is stored for a time which is short compared with
the correlation time, the phase uncertainty resulting from
internal fluctuations will be small. For laser-
interferometric gravitational-wave detectors, this will be
true as long as bandwidth is not narrowed too much (see
Ref. [13] for a discussion of the relation between band-
width and signal storage time).

The most important vacuum fluctuations, as Caves [9]
first pointed out, are usually those entering the inter-
ferometer from the exit port (but see also Sec. IV). These
fluctuations can be imagined to originate at the dissipa-
tion associated with the photodetector. They then
bounce off the effective mirror formed by the interferome-
ter, return to the photodetector, and interfere with light
emerging from the interferometer to produce noise. Note
that this latter picture avoids worries [9,14] about the
phase shift on reflection at the beamsplitter. It is clear
that there will be one phase of the fluctuations (relative to
the laser light) which will be detected and will produce
noise. While noise in the quadrature phase results in
differential radiation pressure fluctuations inside the in-
terferometer, it does not directly produce any first order
power changes at the photodetector.

Now let us consider the general case of a Michelson in-
terferometer with arbitrary internal modulation m (¢) and
demodulation d (¢) waveforms. We saw that the signal in
this case is given by Egs. (4) and (5). Since we are model-
ing the noise as a signal with uncorrelated frequency
components, we can rewrite (4) to give the noise voltage

(V1)) =21 ko, {mX(t)dX1)) , (12)

where ( ) represents an average over the modulation
period. Using the convolution theorem, we can write the
equivalent expression in the frequency domain:

72(w)« [E,(0)xg(w)]* . (13)

We saw earlier, from Eq. (5), that it is only when
q(t)=m(t)d (¢) is time independent [so that §(w) is a 8§
function] that the signal occurring at w, appears only at
o, and not other frequencies. Equation (13) embodies the
obverse message: it is only when g(w) is a 8 function that
the only noise appearing at frequency w, at the output is
that originating at the same frequency o, as the signal. If
m(t)d (t) is time dependent, then noise from other fre-
quencies will be mixed in. (The importance of these two
sides of the same coin is a recurrent theme throughout
this paper.)

If the noise at different frequencies is white and un-
correlated (i.e., the vacuum is unsqueezed), so that noise
contributions must be added in quadrature, then

[Ev(m)*q(w)]2=ﬁ33f0°°q2(w)dw ) (14)

We saw from Eq. (5) that the signal size is determined by
the magnitude |g(0)| of the component of q at zero fre-
quency. Note that |g(0)| is dimensionless. For a mono-
chromatic signal, this means that the factor F by which
the signal-to-noise ratio is reduced from its optimum
value [Eq. (9)] is given by
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lg (0)]?

Fr=— .
[ 7w

(15)

This relation will be a little clear, perhaps, if we take a
concrete example: that of low amplitude internal sine-
wave modulation at angular frequency w,,. Consider the
case of equal modulation and demodulation waveforms.
The sideband structure of m (¢) is indicated in Fig. 3(a)
(but note that phase relationships are not explicitly
shown). Since the modulation amplitude is small, only
the first-order sidebands are significant. - The sideband
amplitude has been set equal to 1 (in arbitrary units). Us-
ing the convolution theorem, it is easy to see that the cor-
responding structure of §(w) is just that indicated in Fig.
3(b). [Remember that the value of the convolution is
equal to the overlap (product) of the two functions as
they slide past each other in frequency space.] It can be
seen that |g (0)|? is equal to 4 in our units. Note the pres-
ence of sidebands at tw,, which can mix down additional
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FIG. 3. The sideband structure of waveforms associated with
sine-wave modulation and demodulation. (a) the spectral com-
position 7 (w) with small-amplitude sine-wave phase modula-
tion, each line being a & function; (b) the structure of the
modulation-demodulation function §(w)=7i(w)*d(w); (c) the
structure of §(w), but now with the demodulation waveform
having the phase which minimizes the coupling of the signal.
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noise from these frequencies: the integral in the denomi-
nator of Eq. (15) has the value

J 7 @do=(1+4+1)=6. (16)

The integral is made particularly easy by the fact that
(o) is composed of 8 functions. This noise power is a
factor of 2 higher than if no additional noise had been
mixed in. In other words, light which leaks out of a
Michelson interferometer due to the internal sine-wave
modulation, and which is demodulated with the same
sine wave, has intensity fluctuations which are a factor of
2 greater (in power) than the same power of light which
leaks out due to a static offset from the dark fringe. The
signal size |g(0)|? in the two cases is, however, exactly
the same. So mixing in extra noise in sine-wave modula-
tion and demodulation produces a degradation of the
possible signal-to-noise ratio by a factor F =1/ 2.

It is interesting to note what would happen if the
demodulation waveform were in the quadrature phase.
In this case, the sideband structure of §(w) would be that
shown in Fig. 3(c). There is now no contribution from
the noise (or signal) from the zero-frequency peak, the
only noise now coming from *2w,,. The fluctuations
which produce this noise are in the orthogonal phase to
those detected in the demodulation phase that is most
sensitive to the signal, but have the same magnitude for
normal vacuum. The noise power in this quadrature is
evidently only 1 that in the signal quadrature, or J that
of unmodulated light. It might be thought surprising
that such strongly phase-dependent noise could be pro-
duced from phase-independent vacuum fluctuations. We
shall describe an experimental test of this result in Sec. V.

The above results can also be obtained without explic-
itly involving convolutions by considering directly the
beating of the sideband field produced by the modulation
with the field representing the vacuum fluctuations. In
some cases this can be very simple. For example, if the
modulation is single sideband, it can be seen that noise at
~2w,, is detected in the same way as noise (and signal) at
the signal frequency, so the signal-to-noise ratio must be
a factor of V2 worse than optimum. It is also interesting
to observe what happens when some of the third harmon-
ic is added to sine-wave phase modulation. We saw that
the excess noise in sine-wave modulation and demodula-
tion is due to the mixing in of fluctuations separated from
the light frequency by twice the modulation frequency. If
we add some modulation which produce sidebands at
+3w,,, with the correct phase, then we can tend to cancel
out the noise contribution from 2w, at the expense of
introducing noise from +4w,,. If the third harmonic has
an amplitude a compared with the first, the total noise
power N [with the same units as the previous result (16)]
is

N=[(14+1?+(1—a)P+(1—a)l+a?+a?]E?
=[6—4a(l—a)]E? . 17

So the fact that the amplitudes of the contributions from
+2w,, must be added before squaring (which stems from
the coherence of the modulation sidebands) enables the
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overall noise to be reduced. With the optimal choice of
a=1, the addition of the third harmonic decreases the
noise power of 6E2 with pure sin-wave modulation and
demodulation to SE2. This reduction in noise power by
the addition of extra light power may be somewhat
counter intuitive, but it is easy to understand with the
picture of the noise generation process that we are using.

Similarly, the addition of some third harmonic to the
demodulation waveform will help even if the modulation
is a pure sine wave. This may be understood by realizing
that fluctuations at w; +2w,, beat with the modulation
sidebands to produce noise components at both »,, and
3®,,, which can partially cancel in the demodulated sig-
nal if the demodulation waveform also contains both w,,
and 3w,,.

One consequence of the picture that we have been
describing is that if squeezed vacuum is to be used to
reduce the equivalent phase noise of the interferometer,
together with sine-wave modulation and demodulation,
then it is easily seen that squeezing is important both at
the laser frequency and at +2w,,. It is clear that perfect
squeezing at only w; +2w,, would allow the “classical”
ideal signal-to-noise ratio, F =1. However, the fluctua-
tions at the laser frequency are the most important: they
contribute 2 of the noise power. Furthermore, the pres-
ence of any light at the original frequency, perhaps re-
sulting from poor contrast in the interferometer, will mix
in noise from *w,,. This will reduce the signal-to-noise
ratio from its ideal value, irrespective of the modulation-
demodulation combination. Squeezing at tw,, will help.
However, if the poor contrast is a result of aberrations,
the emerging light will be in higher-order spatial modes,
so the squeezing at *tw,, will also have to be in these
high-order modes—a tough requirement. This reem-
phasizes the importance of ensuring that the fringe con-
trast is very good [14,15].

The frequency domain approach gets complicated
when the modulation or demodulation waveforms pro-
duce rich sideband structure. In these situations, it is
often simpler to calculate in the time domain. The ex-
pression for the signal-to-noise ratio reduction factor F is
found by comparing the time average of the signal (4)
with the noise (12):

o {m(0d (1)
(m2(1)d?(t))

This relation allows the signal-to-noise ratio to be calcu-
lated for any combination of modulation and demodula-
tion waveforms. In particular, it is clear that not only
does square-wave modulation and demodulation give the
optimum performance, so also does any combination
with a time-dependent m (¢)d (¢). This latter characteris-
tic, however, is only true if (as we have assumed) light
leaking out from the interferometer due to bad fringe
contrast is negligible.

The expression (18) has previously been obtained by
Schnupp [7] and Niebauer et al. [8], who emphasized
that it is the nonstationary character of the noise pro-
duced by a time-dependent light power that leads to the
remarkable fact that the demodulation waveform should

(18)
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not be the same as that of the modulation, but its inverse.
We would like to stress, however, that the requirement
for d(¢)m (¢) [more accurately, d(¢)sinm (¢)] to be time
independent for optimum signal-to-noise ratio is not
confined to situations in which the noise is nonstationary.
Instead, it is a general requirement that reflects the fact
that the ideal signal-to-noise ratio can only be obtained if
noise is only produced by light which also produces sig-
nal. For an internally modulated interferometer with a
general modulation waveform, this is the same as saying
that the detected light power is time varying, so the noise
is indeed nonstationary. It is also true, however, that the
symmetry between m (t) and d(z), which leads to the
conclusion that given an arbitrary modulation shape m (t)
the best d (t) is 1 /m (t), only arises when the noise is non-
stationary. These points are further exemplified in the
case of the stationary noise that occurs in external modu-
lation.

IV. SIGNAL AND NOISE IN EXTERNAL
MODULATION

A Michelson interferometer employing external modu-
lation is shown in Fig. 4. The local oscillator field which
converts the signal into a first-order intensity change is
now not produced by differential internal phase modula-
tion. Instead, it consists of light split off from the light in
the interferometer (or from the laser) which is then inter-
fered with the signal field at an external beamsplitter.
This external reference beam is phase modulated (or fre-
quency shifted) in order to mix the signal up to a frequen-
cy at which the laser light is quantum limited. This idea
was first suggested in the context of optical interferome-
ters by Drever [16], the motivation being to remove any
phase modulators from the parts of the interferometer at
which the power is very high (since they suffer from non-
linearities), or at which the losses and distortions limit
the power buildup in recycled interferometers. The
efficacy of external modulation has been demonstrated
experimentally in a variety of situations [17,6,18]. It now
forms an integral part of current proposals for laser-
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FIG. 4. A possible optical arrangement for an externally
modulated Michelson interferometer.
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interferometric gravitational-wave detectors [19]. This
latter fact makes it especially important to know how the
signal-to-noise ratio depends on the modulation and
demodulation waveforms, both in shape and depth.

Let us first consider how a signal (differential phase
change) s(z) in the interferometer is detected in this
scheme. The field leaving the interferometer and travel-
ing towards the photodetectors is

E,=E """ —E,e *W2~iE5(1), (19)

where we have assumed emerging fields both equal to E,,
and a small signal. This field is then interfered, at the
external beamsplitter, with the reference field. If we im-
pose pure phase modulation m (¢) on this rms local oscil-
lator field E; , then the field incident on each of the pho-
todetectors is

1 P .

Edz\/—i[ELe m LB s(1)] . (20)
Note that we have chosen the phase of the local oscillator
so that we maximize our later signal with simple phasing,
d(t)=m (t). The power at our photodetector is then

I;~L[E e™Y+iE s(t)][Ege ™Y —iEs(1)], (21)
which is just
I;~1E}+E E,s(t)sinm (1), (22)

to first order in 5. If we take the component at our signal
frequency and sum the outputs of the two photodetec-
tors, we obtain the analog of Eq. (3), the intensity change
due to a signal:

81, =2E, E s(t)sinm (1) . (23)

When demodulated with d (), the resulting signal voltage
is

(V,(1))=~2E, Es(t){d(t)sinm (1)) . 24)

Note that sinm (z) cannot be approximated as m (1),
since, as we shall see, optimal modulation depths are
large. With this difference, the signal is of the same form
as with internal modulation.

Now the light producing the noise in external modula-
tion has a constant power (in contrast to internal modula-
tion). The noise is, therefore, stationary. The magnitude
of the (summed) noise power is just

8T j(w)=2E}#w . (25)

This result can, of course, be derived explicitly using
our model. Note that in the optical arrangement indicat-
ed in Fig. 4, there are two places from which vacuum
fluctuations can reach the final photodiodes: the exit port
of the interferometer and the beamsplitter used to sample
the circulating light in order to produce the external
reference beam. The vacuum fluctuations at each photo-
diode, with a sampling beamsplitter of transmission,
reflection, and loss coefficients, T35, Rz and AZp, re-
spectively (T35 +R3% + A%;=1), are of magnitude

EX =E?

v

=1(1+T+Ri+ Al o, . (26)
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Since the sampling beamsplitter has a low reflectivity, al-
most all of the fluctuations that it couples in are those
transmitted through it; but a small fraction of the fluctua-
tions on the laser beam are also reflected onto the photo-
detectors. [Even more complicated, if the sampling
beamsplitter is the normally unused (antireflection coat-
ed) side of the main beamsplitter, fluctuations can be cou-
pled in from either side of the beamsplitter.] The multipli-
city of sources for vacuum fluctuations in an externally
modulated interferometer will significantly complicate
the implementation of squeezing. Nevertheless, there
may be some situations in which there are compensatory
advantages. In particular, it is sometimes appropriate to
choose a large number of reflections in order to maximal-
ly enhance the signal or to filter the output light. In this
case, the losses may be so high that any squeezing is des-
troyed. It is then sensible to separate the signal light
(which benefits from the large number of bounces) from
the reference beam (which does not). This makes it possi-
ble to squeeze the reference beam, independently of the
losses associated with a round trip of the interferometer.
This can be seen by looking at the contributions to the
noise in Eq. (26). Half of the noise power enters via the
sampling beamsplitter, so (as long as 1 — T35 << 1) perfect
squeezing of the vacuum on its “unused” side would
reduce the detected noise power by a factor of nearly 2.
Yet this gain in signal-to-noise ratio is independent of the
losses or bandwidth of the interferometer itself.

This reduction of noise power in a lossy interferometer
might be thought surprising enough, but there are some
situations in which a further improvement may be possi-
ble. Long interferometers, such as the proposed
gravitational-wave detectors, can have signal bandwidths
much smaller than the signal frequency. These narrow-
band interferometers, whether they use resonant recy-
cling [2,4], detuned recycling [3,4], or dual recycling [4],
work by ensuring that a single signal sideband is perfectly
resonant within the optical system. The other sideband is
usually off resonance and is effectively not detected.
While this situation is not perfect, it still gives very good
signal-to-noise ratio. Furthermore, the lack of perfection
may allow some additional gain from squeezing. The
detected power fluctuations (the noise) are produced by
the beating of the reference beam with vacuum fluctua-
tions at the frequencies of both signal sidebands. So the
degree of phase dependence of the noise at both sideband
frequencies is important. When squeezed light is injected
into a narrow-band interferometer, the component at the
frequency of the resonant sideband is coupled efficiently
into the interferometer, bounces many times, and is dissi-
pated. But the component of the squeezed light at the
frequency of the nonresonant sideband does not couple
into the interferometer; it is reflected back with high
efficiency. One might naively argue that this means that
the component of the squeezed light at the frequency of
the signal sideband is destroyed, while that at the other
sideband is hardly affected. This result, however, should
be regarded with great caution, for it ignores the correla-
tions between the two modes present in a squeezed state.
A proper quantum-mechanical analysis is really required
here. Nevertheless, the squeezed light should see losses
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significantly less than unity, so the naive result may well
be a good approximation. This would mean that, with
perfect initial squeezing, the detected noise power could
be halved; or, including the gain resulting from squeezing
the reference beam, the effective power of the fluctuations
could be as low as + of the unsqueezed value.

It might be thought that it would be a good idea to
stop the coupling of vacuum fluctuations transmitted
through the sampling beamsplitter by placing a high
reflectivity mirror on its normally unused side. However,
this only helps a little. It does stop transmitted fluctua-
tions entering (and, in principle, allows more efficient use
of the light), but it also reflects back fluctuations generat-
ed at the photodetectors. So the total noise would be un-
changed. In this case squeezed light would have to be in-
jected in two places rather than three.

Our earlier comments about the required frequency
spectrum for the squeezing and the effect of poor contrast
are also valid for an externally modulated interferometer.

Returning now to the case of unsqueezed vacuum, we
can write the noise voltage in the externally modulated
system as

(V1)) =2E}io(d* 1)) , 27)

which means that the signal-to-noise reduction factor in
external modulation is

»_ {d(t)sinm (1))*
(d(1))

In contrast to the corresponding expression (18) for inter-
nal modulation, this does not embody a symmetry be-
tween m (¢) and d (¢). This is largely a result of the noise
being independent of modulation. It can also be seen that
optimization of the signal-to-noise ratio requires a high

(28)
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degree of modulation. For a static phase offset, it is easy
to see that the signal is maximum if m == /2 rad, so that
the signal and local oscillator fields have the same phase.
If a periodic modulation is used, the same maximum sig-
nal is obtained if the modulation is a square wave, chop-
ping between =*7/2 rads. That such a square-wave
modulation, with square-wave demodulation, is indeed
optimum is confirmed explicitly by evaluation of Eq. (28),
giving F =1. Note that the ideal signal-to-noise ratio is
obtained when d (¢)sinm (¢) is time independent: this is a
requirement in all situations. However, it is clear that
the time independence of d (¢)sinm (t) is a necessary but
by no means sufficient condition for obtaining the ideal
signal-to-noise ratio. Any modulation which spends a
significant time at a phase other than *+# /2 rads will not
give ideal performance.

Signal-to-noise ratio reduction factors F for several
cases of different modulation and demodulation
waveforms of interest are given in Table I. Some of the
these results have previously been obtained by Schilling
[51.

The traditional modulation-demodulation combination
has been sine wave—sine wave. This is significantly easier
to apply in practice than, say, square wave—square wave,
for two reasons. First, application of only a single fre-
quency to the phase modulator allows a tuned circuit to
be used to increase the voltage across the modulator, fa-
cilitating the achievement of the required modulation
depth. Second, detection of only a narrow frequency
range around the modulation frequency allows the use of
tuned detectors, with corresponding better noise perfor-
mance. The examples shown in Table I, in which some
third or fifth harmonic is added to the modulation
waveform, are attempts at approximating a square wave
without requiring infinite bandwidth. Note that adding

TABLE 1. Maximum signal-to-noise ratio reduction factors F,,, for different modulation m (¢) and
demodulation d(z) waveforms with external modulation. The corresponding optimum modulation

depth @, is also shown.

m (1) d(t) F o D, (rad)
sinwt sinwt 0.82 1.8
sin(sinwt?) 0.85 1.92
Square wave 0.79 2
Square wave Square wave 1.0 T/2
sinwt 0.9
d sinwt sinw? 0.888 ®,=1.9
+ ®sin3wt P;=0.45
sinm (t) 0.9 P,=1.8
(I>3 =0.8
®,sinwt sinwt 0.893 ®,=1.9
+ ®;sin3wt $;=0.5
+ ®ssinSwt $;=0.2
sinm (t) 0.946 P,=1.9
®,=0.5
®,=0.36
Single sideband sinwt 1/v2
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the higher harmonics improves the attainable signal-to-
noise ratio even with sine-wave demodulation. The
mechanism for this is not reduction of the detected noise,
as it is for internal modulation, but increase of the signal.
The maximum signal is obtained when the first-order
sidebands J, are maximized. An increase in J; by the ad-
dition of higher harmonics is only possible with large
modulation depths: it relies on sin[®;sinw,,t
+®,sin3w,,t ] having a larger component of sinw,, t than
does sin(®sinw,,t). However, the reason that increase
of the signal is important is that there is noise being pro-
duced by light which does not contribute to the signal.
By increasing J, for example, we are reducing the frac-
tion of the light which generates noise but not signal.
Once more we see the opposite sides of the same coin:
maximization of the signal reduces the contribution to
the noise from fluctuations at frequencies at which there
is no signal.

We saw earlier [Eq. (28)] that the signal-to-noise ratio
reduction factor F in external modulation is given by

2

1 27 .
o fo d(¢)sinm (¢)d ¢ -

v

F?=

i

— (29)
T2
ol CRTAEE

Here we have used ¢ =w,,t and written out the averages
explicitly. We would like to know, given a modulation
waveform m (t), what is the demodulation waveform d (¢)
that gives the highest signal-to-noise ratio, the maximum
value of F. If we differentiate Eq. (29) with respect to
d (t), we find the condition for F to be a maximum:

dv du __

uad 2vad—0. (30)
We also have

v _L 2

3d - 2m o 2d(¢)d ¢ (31)
and
du_ 1 2 | dsinm (¢)
ad 20 do sinm(¢)+d($) 3d dé . (32)

Using these relations it is simple to confirm that our
guess that

dop($)=sinm(4) , (33)

which gives the demodulation the same sideband struc-
ture as the modulation, is a solution of Eq. (30), and is,
therefore, the optimum demodulation waveform. Thus,
once again we see that although we want d (¢)sinm (t) to
be time independent in order to obtain the ideal signal-
to-noise ratio, it is not true that if we are given the modu-
lation waveform m (z) then the optimum demodulation
waveform is 1/sinm (2).

One of the demodulation waveforms used in Table I is
d (t)=sinm (t). However, in contrast to the case of inter-
nal modulation, this optimum demodulation waveform is
now not guaranteed to give the ideal signal-to-noise ratio,
F=1. For example, sine wave modulation gives F =0.85
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with d(t)=sinm(t) [or F=0.822 with d(z)=m(2)].
Note also that square-wave modulation with sine-wave
demodulation can give a greater signal-to-noise ratio,
F =0.9. This emphasizes the importance of getting the
modulation waveform right.

We have seen that failure to attain the ideal
signal-to—quantum-noise ratio using a particular modu-
lation scheme (whether internal or external) can always
be ascribed to the mixing in of quantum noise from fre-
quencies at which there is no signal. It is probably better
to restate this and say that the noise originates in modes
in which there is no signal. This generalized statement
then includes even the case of the demodulation
waveform having the incorrect phase.

V. MEASUREMENT OF PHASE-DEPENDENT NOISE

Our model of how noise is generated in an interferome-
ter has led us to make some rather surprising predictions
concerning modulation and signal-to-noise ratio in inter-
ferometers. We saw earlier that the noise power of light
emerging from an ideal Michelson interferometer, with
sine-wave modulation and demodulation, was predicted
to vary between 2 times the standard shot-noise value
(for the signal phase) to only 1 of the standard level (for
the quadrature phase). We decided to test this experi-
mentally.

The optical system was adapted from that used for
dual recycling and external modulation experiments [18].
The layout of the system used is shown in Fig. 5. Note
that an electro-optic phase modulator was inserted into
one of the arms of the interferometer. The 10-MHz
modulation was used both to keep the Michelson inter-

ferometer on a dark fringe and to produce modulated

/=—awm
A
v
e Prmmmmmeaann €)-oa%-- 0 o SLEER [I‘T
INPUT Phase
LIGHT modulator
D
>
PSL Feedback system

E; DMt

PS DM2
[#]

FIG. 5. The experimental arrangement for the observation of
phase-dependent power fluctuations. D, photodiode; .S, modula-
tion source; DM, demodulator; PS, phase shifter; PSL, cable
phase shifter; M, amplifier and monitor.
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light for noise measurements. The phase modulator lim-

ited the effective contrast of the interferometer to a give a

minimum output power of 0.040%0.002 of the input
power. (The typical input power was a few mW and the
output power a few hundred pW.) The modulation index
was chosen to produce an output power of three times
this at an interference minimum (to 2% accuracy).

The signal from the photodiode was band pass filtered
by the tuned photodiode amplifier. The tuned circuit
here had a Q of ~25, so there could be no contribution
from the demodulation of any frequencies apart from
those close to the modulation frequency. This means that
the shape of the waveform (provided it has its fundamen-
tal component at the modulation frequency) used for the
demodulation is not important as any shape will have the
same effect as a sine wave.

We wished to compare the photon shot-noise level, in
the case where the demodulation was in phase with the
modulation, to that with the demodulation in the quadra-
ture phase. So that we could be confident of the results,
considerable care was taken to ensure that the gain of the
rf electronics did not change between these two measure-
ments. The phase of the demodulation waveform was
varied either by altering the length of one of the cables or
by using an active phase shifter. Various different com-
binations of the two methods were used so that we could
be confident that the gain of the signal channel was not
changing: the observed noise levels were identical to
within 0.1 dB. The phase of the demodulating waveform
was measured by monitoring the size of the signal due to
a 6-kHz arm length modulation at the output. The
minimum of this signal corresponded to the quadrature
phase and the maximum to the in-phase case. The phase
was known to ~3°.

The signal from the photodiode was measured on a rf
spectrum analyzer (before the demodulation) and com-
pared to noise due to torch light producing the same pho-
tocurrent. Apart from excess noise at low frequency the
two results were the same within the accuracy of the in-
strument used (~0.5 dB). This measurement confirmed
that the laser power was shot-noise limited at the mea-
surement frequency.

The signal from the photodiode was demodulated to
provide separate control and measurement signals. With
a particular phasing, the demodulated (measurement) sig-
nal was amplified using a low-noise amplifier and spec-
trum analyzed in the region of 99 to 100 kHz. This fre-
quency range was chosen since there was no sign of any
noise in excess of photon shot noise. Several hundred
averages were used to reduce the measurement uncertain-
ty. The laser power supply was adjusted to maintain
the photocurrent to within 2% of the initial value
throughout the measurement period (~10 min). Mea-
surements were also made with torch light producing the
same photocurrent, and with unmodulated light from the
laser (attenuated with a polarizing beamsplitter).

The phase of the demodulation was then changed and
the above measurements were repeated. There was no
discernible difference between the two results produced
by the torch light or by the light directly from the laser
(within 0.15 dB). The noise levels produced by the modu-
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lated light did, however, change. This can be seen in Fig.
6: the noise in the signal phase is, indeed, higher. The
results shown must be corrected to allow for the presence
of electronic noise in the measurement system. This was
done by subtracting the noise power observed with no
light reaching the photodiode. The results of this are
shown in Table II. In order to calculate the expected
change in noise levels attributable to the modulation
effects it was necessary to allow for the noise power due
to the one third of the detected power which was unmo-
dulated. The predictions for this situation are shown in
the table for comparison. Also shown are results from
when the whole experiment was repeated with a different
light power and with a 3-dB attenuator placed on the sig-
nal input to the mixer. This changed the signal level on
the photodiode slightly. It can be seen that these results
were very similar to those from the earlier experiment:
the observations are in good agreement with the predic-
tions.

So the demodulated photon noise is, indeed, higher for
one phase than the other. Furthermore, the difference in
noise level is in good agreement with the predictions.
This gives us confidence that our model is a reasonable
representation of the mechanism of noise generation in an
interferometer.

VI. CONCLUSION

We have described a model of how quantum noise is
generated in an interferometer. This way of looking at
the situation enables considerable physical insight to be
gained. It provides a unifying conceptual framework in
which apparently very different phenomena can be seen
to have common origins. Thus, the production of strong-

) ~400 averages
1 h 1 4{”} Mﬂﬂ“ AIW\A,}IA{
Amplitude " VW N ! VV
(dB)
0 | !
4 A AA 1 L . (
IV |
-2
99 100

frequency (kHz)

FIG. 6. The noise levels observed on the spectrum analyzer.
The middle trace was produced by torch light (equivalent to un-
modulated laser light). Modulated laser light with the demodu-
lation waveform in the signal phase produced the upper trace,
while changing the phase of d () by 90° resulted in the lower
trace.
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TABLE II. A summary of the results of the experiment to investigate the effects of modulation on
measurement noise. All of the results are normalized so that the noise produced by torch light is 0 dB.
The first column of figures shows the noise level predicted with one-third of the light unmodulated.
The second column shows the measured noise levels and in the final column the electronic noise power
has been subtracted and the results renormalized to torch light. The two sets of results shown (1 and 2)
were obtained for the two slightly different signal levels, as described in the text.

Predicted Measured Corrected

noise (dB) noise (dB) noise (dB)
In phase 1 1.25 1.1+0.2 1.24+0.2
Torchlight 1 0 0 0
Quadrature 1 —1.76 —1.4£0.2 —1.6£0.2
Electronic 1 —10+£1
In phase 2 1.25 0.9+0.2 1.2+£0.2
Torchlight 2 0 0 0
Quadrature 2 —1.76 —1.2+0.2 —1.8%£0.2
Electronic 2 —5.1£0.5

ly phase-dependent white noise in demodulated laser
light; the reduction in signal-to-noise ratio in various
modulation schemes but with the possibility of recovery
by adding other sidebands; the somewhat different
characteristics of internal and external phase modulation;
the effects and requirements of squeezing—all can be un-
derstood to be the consequence of the beating of the laser
light with vacuum fluctuations. Furthermore, we have
demonstrated experimentally that the phase-dependent
noise does exist, as predicted.

Along the way we have analyzed the efficiency of
different types of modulation, with particular emphasis
on external modulation: square-wave modulation is best,
but the signal-to-noise ratio is only degraded by a small
factor in most other modulation schemes. Much of this
degradation can be avoided by the addition of higher har-
monics to the modulation waveform. We have seen that
a necessary, but not sufficient, condition for obtaining the
ideal signal-to-noise ratio in all situations is that the
modulation m (¢) and demodulation d (¢) waveforms must
be such that d(t)sinm (¢) is time independent. If this
condition is not met, noise will be mixed into the detec-
tion process from frequencies at which there is no signal,
spoiling the signal-to-noise ratio. Furthermore, degrada-
tion of signal to (quantum) noise can always be traced to
mixing in of noise from modes in which there is no signal.

We have seen that modulation schemes usually mix in
quantum noise from several different optical modes. If
squeezing the vacuum is to give its full potential benefit,
then the squeezing must cover these modes. Square-wave
modulation, for example, requires a greater squeezing
bandwidth than does sine-wave modulation. The relative
importance of different frequencies, of different spatial
modes and of different places in which fluctuations can
enter is made clear by our model of noise generation.
Thus, we have argued that perfect squeezing of an exter-
nally modulated, optimally narrow-banded interferome-
ter in which only a single sideband is resonant may
reduce the detected quantum noise power by a factor as
high as 4.

We hope that these results will help in the design of in-
terferometer for sensitive measurements.
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