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Dynamics of stochastic systems in nonlinear optics. II.
The case of a stochastic configuration interaction

A. A. Villaeys and A. Boeglin

5 rue de I'Uniuersite, 67084 Strasbourg CEDEX, France
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In the preceding paper we have developed a formal theoretical approach to describe the dynamics of
stochastic systems in nonlinear optics. The main emphasis has been on the description of the equation of
motion of the free system, since the optical fields are usually treated by perturbation expansion. Here we

explicitly develop the dynamics of complex models, which should be helpful in realistic situations. Two
different models are considered. The dynamics of a stochastic three-level system is introduced first.
Then the case of two configurations stochastically coupled is explicitly treated. This last model is of in-
terest in order to understand the effects of nonradiative transitions on the nonlinear-optical properties of
stochastic systems.
PACS number(s): 42.65.Bp

I. INTRODUCTION

The study of nonlinear-optical processes like two-
photon absorption [1],the dynamical Stark effect [2,3], or
the different types of wave mixing [4] has gained consid-
erable interest in recent decades. One important motiva-
tion for these developments comes from the fact that they
provide information about the ability of materials to offer
better or new possibilities in optoelectronics. Alongside
the developments that have taken place in the field of
inorganic semiconductor materials [5], today, organic
compounds offer an interesting alternative for future ap-
plications [6,7]. Because of the large variety of organic
materials, as well as the development of newly syn-
thesized compounds, it becomes very important to define
criteria to select, in some way, the system which fits best
the applications of interest.

For many years, spectroscopic methods have been used
to study the internal dynamics of material systems and
information that has been obtained from the analysis of
the absorbed or emitted light. At that time, most of the
descriptions and experiments were concerned with opti-
cal methods in the linear regime. They have been very
helpful in showing that nonradiative transitions deeply
affect the dynamics induced by an external optical field in
a molecular compound [8—10]. In fact, a tremendous
number of works have been devoted to the evaluation of
nonradiative decay rates associated with electronic or vi-
brational relaxation processes. They were as different as
the energy dependence of electronic relaxation processes
[11,12], the search for criteria for irreversible electronic
transitions [13,14], the dependence of these criteria on
the nature of the nonradiative processes under considera-
tion, or even the real nature of the true molecular eigen-
state [15]. When these studies were developed, little at-
tention had been paid to the dephasing processes which
can take place during the course of nonradiative transi-
tions [16]. For this reason, all the studies were done in
Hilbert space and are inadequate for more general

descriptions involving dephasing. Therefore, the problem
of how a dephasing process affects a nonradiative transi-
tion is still an open question. In addition, concerning
these previous descriptions, the interaction responsible
for the nonradiative transitions has always been con-
sidered as a purely quantum interaction which depends
on the particular process of interest, such as internal con-
version, intersystem crossing, etc. It results from these
observations that a realistic description of these processes
is a big challenge, in part because the required Liouvillian
formalism implies a Liouville representation whose di-
mension corresponds to the square of the one needed in
Hilbert space, but also because in this representation the
structure of the coupling is much more intricate. This
makes the matrix inversion, always a necessary step in
the resolvent technique [17],very difficult.

More recently, there has been a burst of developments
in the field of dynamics of stochastic systems [18]. Sto-
chasticity has been a very helpful concept in tackling
problems as varied as the energy transfer in molecular
crystals [19,20] and the occurrence of interactions in the
intermediate states during the course of resonant second-
order optical processes [21,22]. It has to be noted that an
interesting consequence of the statistical distribution of
the stochastic interactions is a decoupling of the dynami-
cal equations of the averaged density-matrix elements as
opposed to the microscopic quantum case. Therefore, a
study of the internal dynamics of a system induced by
stochastic couplings and undergoing dephasing processes
can be carried out [17]. The study of localization and de-
phasing effects in a time-dependent Anderson Hamiltoni-
an done by Wolynes and co-workers [23] is a striking ex-
ample of the interplay of these two processes. However,
in this work, the enhancement of transport by dephasing
for states which are localized in the absence of dephasing
and the inhibition of transport for delocalized states has
only been established numerically. The search for an
analytical solution is, of course, desirable.

It is the goal of this work to present an analytical
description of two applications which are relevant to a
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II. DYNAMICS INDUCED BY STOCHASTIC
PERTURBATIONS IN A THREE-LEVEL SYSTEM

Recently, we have developed the dynamics of a three-
level system in order to analyze how a third nonradiant
state can affect the nonlinear-optical properties of an op-
tical transition [24]. From this model, it was established
that the quantum interaction enhances the optical non-
linearities. A stochastic counterpart of this model is
developed here. It will be very suitable to describe, for
example, the occurrence of Auctuations in the intermedi-
ate states during the course of a resonant second-order
optical process, as observed in P carotene [21,22]. How-
ever, only the Markovian and the weakly colored noise
cases will be considered here.

The starting point of any dynamical study of a system
undergoing stochastic quantum perturbations is the equa-
tion of motion of the average density matrix [25—27]. It
takes the form

d(p'(t))
[L,+R (t)](p'(t—) )—,dt

(2.1)

where L, = [H„] is the Liouvillian of the system with a
zeroth-order Hamiltonian

stochastic approach to nonradiative transitions. By tak-
ing advantage of the formalism presented in the preced-
ing paper [17], hereafter referred to as I, we present in
Sec. II the study of the dynamics induced by stochastic
perturbations in a three-level system undergoing relaxa-
tion and dephasing processes. This description is valid in
the Markovian or the weakly colored noise cases. For
the sake of simplicity, in the latter case, the various con-
stants have not been expressed in terms of the various
correlation time e, ' of the stochastic parameters. How-
ever their introduction can be carried out straightfor-
wardly if necessary. The free evolution needed in non-
linear optics for any type of study based on perturbation
expansions has been explicitly developed. Section III is
devoted to a particular model frequently encountered in
the study of nonradiative transitions in molecular sys-
tems. The peculiarity of our model consists in using a
stochastic interaction to couple the radiant state to the
isoenergetic nonradiant configuration. Then, relaxation
and absorption spectra are evaluated and discussed in the
last section.

which correspond to Gaussian, non-5-correlated energy
interactions. For the sake of convenience, we have intro-
duced the operator

R (t) = —iA'[l, lt)+I (t)] . (2.&)

The Liouville operator I,(t) accounts for the stochastic
properties of the system and its properties have been dis-
cussed extensively in previous papers [17,25,26]. Similar-
ly, the damping operator I (t) describes spontaneous
emission like any other purely dissipative effect of the
baths coupled to the system. While I (t) will always be
assumed to be purely Markovian the stochastic operator
I,(t) will be described either in the Markovian or in the
weakly colored noise limits [17]. Both cases can be han-
dled easily because the time dependence of I, (t) can then
be neglected.

From the formal development

Ã —12

(p'(t) ) = g M, (t)J,
i=0

and the commutation properties of the generators J;, the
general equations of motion take the form

(2.6)

dMJ(t)
dt

8= —g K,, (t)M, (t) K... — (2.7)

where the nonzero A;. coefficients are given in the Ap-
pendix B. We still have to relate the parameters a and P
of relation (2.2) to the transition frequencies

2u,
A'co3i = —a —P&3,
A'co32=a —P&3,

(2.8)

where the notation co; =(E, E)lfi has b—een used. We
can check on this simple model that the structure of the
set of differential equations (2.7) satisfies the general
properties previously established [17]. Moreover, a great
simplification resulting from the Markovian limit or from
the weakly colored noise limit is obvious here. %'ith
these assumptions, formal solutions to the equation set
(2.7) are obtained by the Laplace transform. For the
three-level system, the differential equations are coupled
pairwise. Any given set of equations can be written:

H, =aJ3+13J8

and an interaction Hamiltonian
8

H(t)= g R4, (t)J,

(2.2)

(2.3)

(2.9)
(p+K, , )M, (p)+K; M (p) =M;(0) K;0. —

"p

K, i&;(p)+(p+K )M (p)=MJ(0) —"K~o-
p

described in terms of the SU(3) generators J; (i =1,8)
given in Appendix A. Moreover, the stochastic variables
4, (t) satisfy the statistical properties defined by the rela-
tions [28]

(&,(t))=o,

where 4;(p) represents the Laplace transform of M, (t)
The solutions are given by

[pM, (0)—K;0](p+K ) —K, [pM (0)—K 0];(p)=
p (p —

A, ,+, )(p —X," )
(2.10)

(4, (t)p (r)) =A, ,
—e ' 5J. (2.4)

[pM, (0)—K,O](p +K;; ) K, [pM, (0)—K0]—.

p(p —A+)(p —
A,, )
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with

A.,+J= —
—,'[(K;;+KJJ)—[(K,, —K J) +4K,K,J]'J ],

(2.11)

M;(t)=M, 0+M;~e ' +M, e

A, +t
M, (t)=M,,+M, +e '~ +M, e. J',

(2.12)

A, ,J
= —

—,'I(K;;+KJJ)+[(K,, —KJ ) +4K,K,, ]'~ ] .

From the inverse Laplace transform the final expressions
for the coefficients M;(t) and M (t) are deduced:

where the indices i and j are pairwise coupled in the fol-
lowing way: (i,j)= I(1,2), (3,8),(4,5),(6,7)]. For any cou-
ple of indices (p, q) the M constants are given by

M 0=
—K~0K +Kq0K

+
w pq

[A,
+ M (0)—K ](A,

+ +K )
—K„[A,+ M (0)—K 0]

pq w w

[A,~qM~(0) —K 0](A, +K ) Kpq [A—. M (0)—K 0]

(2.13)

(p'„(0) & =-,' — M, (0),
3

(p', 2(0) & =M, (0)—iM2(0),

(pl3(0) & =M~(0) —iM3(0),

(p'„(0) & =M (0)—iM, (0) .

(2.14)

In addition, when the pair of constants Xpo and K 0 are
zero, we have no pole for p =0. Following the methodol-
ogy developed in I, we still have to calculate the V ma-
trix. It is defined by the relations

(pl l(0) &
=

—,
' +M3 (0)+ —M8 (0),1

3

(p22(0) &
=

—,
' —M3 (0)+ —M8 (0),1

3

It must be noted that the three other matrix elements are
deduced by complex conjugation, taking into account the
real nature of the M;(t) coefficients. From these previous
considerations, it appears that we have all the required
information to calculate the free evolution of a stochastic
three-level system. It is contained in the G, kl(t, 0) matrix
elements which are necessary for any perturbation expan-
sion, like those used in nonlinear optics. Their expres-
sions are tedious. They are obtained from the
identification of the (p; (t) & expressions with the formal
development

(p',, (t) & =g G,,~q(t, 0)(p',, (0) & . (2.15)
p~9

To this end, from relations (2.14), we extract the expres-
sions of M (0) for j =1,8. From the density-matrix ele-
ments associated with the populations

k+t
1 38

(p';;(t) &
=

—,
' +M30+ —M80+

3 A3+8(A3+8 A38)
K30(~38+K88)+K38K80+ [ K80(~38+K33 K83K30]+ 1

3

+
A, 38( A, 38

—A, 38)

1
K30(~38+K88 )+K38K80+ [ K80(~38+K33 )+K83K301

3

X [(p' (0) &+ & p' (0) &+ (p' (0) & ]

e+ + +
~38( ~38 ~38 )

~38(~38+K88 ) K83 ~38
+ + 1

3

38
1+ ~ ~38(~38+K88) K83~38

A, 38( X38
—

A,38 ) 3

38

+ + +
38( A 38 A 38)

K38A38+ A38(A38+K33 )
+ 1 + +

3

A.38'e

A38(A38 A38)

1
K38~38+ ~38(~38+K33 )

3 6
[&Pll(0) &+ &P'22(0) &

—2&P33(o) &] (2.16)
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we get the elements G»»(t, O), G»22(t, O), and G»»(t, O). Their expressions are given in Appendix C. Similarly, the
expression of the population (pz2(t)) is deduced from the one of (p»(t)) by the simple change M30~ M30 and
M3+ ~—M3+, and finally (p33(t) ) is obtained using the probability conservation

(2.17)

They give the elements G22»(t, O), 6222&(t, O), Gz233(t, O) and G»»(t, O), 63322(t, O), G»3~(t, O), respectively. Again,
their expressions are developed in Appendix C. We still have to consider the expressions for the coherences. Using the
explicit expressions of the coeKcients M;+ and taking into account that for homogeneous differential equations the
coefficients K~0 and K o are zero in relation (2.13), we have no pole for p =0. Consequently, the coherences take the
form

x+~

(p',,(r))=
'

[[A.,+, (A, ,+, +K,, )+iK,, X,+, ]M, (0)+[ K,,X,',—iX,.+, (X,+, +K,, )]M, (0)]
A,;.(A, ,

+. . —A, ," )

+ [[A,,"(A, +K )+iK;A",; ]M~(0)+. [ —K,"A,," iA, —(A, +K, ;; )]M (0)] .
A, , (A, ,

—
A, ,+")

(2.18)

If we introduce the expressions

M~(0) =—'[(p'; (0) ) + (p';(0) )],
M, (0)=—[(p,', (0) ) —(p'„(0)]1

(2.19)

the matrix elements are easily deduced:

a+t
/J

G;J,J(t, 0)= —,
' [A,,J. (X,+"+K )+iK ;A, ,

+ ]+"—.[K. ;..A, ,+"+iA, ,+(A, ,+"+K;;) )

T[A, ,.J (A, ,~ +K~J )+iK~; A,) ]+ [,K, A, , +iA—
, (A, "+K,,, ) ] (2.20)

and we have the additional relation

G, , (i,O)=G'...(r, O) .

Following the same procedure, we also get

(2.21)

A, . t
LJ

G,",(t, O) = —,'[A, ,+"(A,,++K, )+iK, A,+, "]
——.[K,"A,,++iA,) (A,

+ +K,,, )],"

iE;

+ —,[k,, (A, +K J )+iK;A;, ]— . [K, A,;, +i A, (A—, +K";; ),]"," (2.22)

again, with the following symmetry relation

G, ,"(r,O) =G,.*",. (r, O) . (2.23)

It is not our aim here to enter into a more detailed
study of such systems. However, it is quite obvious that
any field, like those used in nonlinear optics for instance,

treated by a perturbation expansion requires the
knowledge of the free evolution of the system alone.
Then, all the problems of this type can be handled
straightforwardly on a stochastic three-level system in
the Markovian or the weakly colored noise case. In Sec.
II we will emphasize more on the internal dynamics of
the material system.
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III. STOCHASTIC CONFIGURATION INTERACTION (H,"(t)H„,(s) &=A A, , „, e
2

(3.l)

For many years, the Freed-Jortner model [29] has
played a central role as a prototype in the study of nonra-
diative decay in organic compounds. This model is based
on a quantum interaction which depends on the nature of
the nonradiative transitions. Stochastic approaches o6'er
an interesting alternative to the description of these pro-
cesses. In addition, the simplification resulting from the
statistical distribution enables the introduction of the de-
phasing processes. As previously mentioned, we will be
concerned by the Markovian or the weakly colored noise
cases. Also, for the sake of convenience, we introduce
the stochasticity in terms of the correlation function of
the interaction

where the constant is defined by

~ij kl ~ijji ~il ~j k (3.2)

This characterization has the advantage over the previ-
ous definitions of keeping the various stochastic variables
completely independent so that diagonal as well as nondi-
agonal stochastic coupling can be treated simultaneously
on the same footing. Also, we observe the same decou-
pling in the equation of motion of the populations and
coherences. We still need the explicit expressions of the
stochastic operator R, (t) which drives the evolution of
the average density matrix of the system alone. It takes
the form

[R,(t)(P(t) & ]V
= — g A, ,pp, epp,EJ 2 EPPE EPPE

1
(e,.i +in). )t

(p(t) &„
~piip + ~ ~ip

—(e. . +in) . )t
l —e

&P(t) &V ~p "P~V ep p"
~iPPi + l COPE.

—(e, , +iso,. )t —(e " +in) )t
ippi pi 1 e JjJJP JP

~~pp'~j'e'pp + . (p( t) &pp +~pjjpepjjp . & p( t) &j'
EPPE PE PJJP JP

After some simplifications, its matrix elements can be expressed as

r„,„,(t)=r,"„'„(t)+r,"„'„,(t),
where

(3.3)

(3.4)

—(e.II. +Ecol. )t
1 —e

~illi +~~li
+~ljj l ~ljj l

—(eI "&+ice i)t
1 —e

~iJj l +~~jl
(3.5)

(2)
~ VPq P"P P"P2

—(e,i +ice,. )t

~piip + l CO,p

—(~, , +E~ . )t
1 —e

EPPE EPPE
~ippi + ~ ~pi

&(p(t) & [L,+R, (t)](p(t—) &
—r(p(t) &,

Bt
(3.6)

In the following, we will apply this approach to a ma-
terial system where the essential part of the internal dy-
namics can be described by a radiant excited state cou-
pled via a stochastic perturbation to a manifold of states
of a lower electronic configuration shown in Fig. 1.
Again, we will consider the evolution of the average den-
sity matrix by neglecting the time dependence of the
R, (t) operator. The starting point of our description is,
as usual, the Liouville equation:

(P&= I dte "(p(t)& .
0

(3.g)

If we introduce, in the Liouville space, the projection
operators P and Q, this equation becomes

pP(p &
—P(p(0) &

= ——P(L, +R, —iA'r)PP(p &

P(L, +R, —iA'r)Q—Q(p &,
(3.9)

pQ(p &
—Q(p(0) &

= ——P(L, +R, —iver)QQ (p &

where the relaxation and the dephasing processes have
been accounted for. With our previous assumption, the
Laplace transform of relation (3.6) is written as with

——Q (L, +R, —ilail )PP(p &

p(p& —
& p(0) &= —AL, & p&

—r. & p& —r(p

where (p & stands for the Laplace transform

(3.7) PL, Q=QL, P=O .

By solving the equation set (3.9), we obtain the formal
solution



4676 A. A. VILLAEYS AND A. BOEGLIN

p+ —Q [L, +R, —ifir]Q
Q (p(0) ) ——Q (R, —iirir )PP(p ) (3.10)

ana

p+ —P(L, +R, i—~r}P —P(R, i~r}Q —Q(R, —iver)P1 l

p+ —Q (L, +R, —iirir)Q
l

x P(p(0) ) ——P(R, —iver)Q
p+ —Q (L, +R, —iA'r)Q

Q(p(0) ) (3.11)

which constitutes the restriction of the density matrix with respect to P and Q. In the space spanned by Q, the matrix
elements can be developed into the form

((apip+ —QL, Q+QI', Q+QI Q~AiM)) =(p+ico &+r, Ii &+I ~ ~)6 5'„, (3.12}

where the notation R, (t)= —ih'l, lt) has been introduced. Therefore, the corresponding matrix representation is diago-
nal. Consequently, the factor included in the brackets of relation (3.11) is given by

((mn ip + P(L, +R—, —iA'I )P—g PR, ~aP))—+PI ~aP))
a,p

l
P+lCO p+ R p p+ j. p p

—„' (& ~p R,P+ && ap~ rP iuv )) .

0

0 a 1212 0

a 2121

~1122

0
(3.14)

~2211 0 0 a 2222

11 22

To simplify the notation, we introduce Latin letters for
the kets iij )) of the P space and Greek letters for those
of the Q space. In order to calculate the inverse of the
matrix given by relation (3.13), we write it as

where

a»» =P+~ 11»+~»11
a 1212 I + l 12+ ~s 12 12+ ~12 12 &

a 2121 I + l ~21+~s 21 21+~21 21

r„„„r„„,
+2222 p+r 2222+ r2222 X

u P+~s uu uu

The energy-level scheme has been given in Fig. 1. Also,
we have introduced the simplifying assumptions

r„»=1„»=r„„,=r„„,=r„„., =0
because we just want to retain in the internal dynamics
the inAuence of the manifold of states on the radiant state
~2). Then, the determinant takes the simple form

det 3 =p (p + iso, 2+ r, ~,~ )(p +i co~, + I 2, ~,

r„,„,r„„,
X p+I 22zz+r, 2@22

—g
U I S UU UV

(3.15}

The time evolution of P(p(t)) will require the inverse
Laplace transform of P(p ) . As is well known, its in-
tegral relation will have three roots:

FIG. 1. Energy-level scheme of the material system: the di-
agonal perturbation generates frequency modulation while non-
diagonal perturbations between states i2) aud Iiv) ) induce
equipartition of the populations.

I 2 ~12 ~1212 ~s 1212 s

P3 = i&21 F2121 Ps 2121

(3.16)
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plus the additional roots provided by the solutions of rs 2222 g rs22uv

~s 22 vv ~s vv 22
p + r22 22+ rs 22 22 X + II S Uv UV

(3.17)
In the same way, since I, „22=I, 22 „,we get

svuvu X svumm suu22
m (Wv)

The distribution of these roots will depend on the ener-
getic structure of the levels ~v &. Taking into account the
symmetry rules of the I", operator [16],we have

If all the I, „,„are identical to each other and if this is
still true for the I, „„22, then relation (3.17) gives two ad-
ditional roots:

p„=—
—,'(r„„+r„„,+r„„„)+-,'[(r„„+r„„,+r„„„)'—4[(r„„+r„„,)r„,„,—xr„,„,r„„„]]'".

We are now ready to calculate the various matrix elements of the Liouville operator 6 (t, O) defined by

p;, ( )=+6;, (,0)p, (0) . (3.18)

It gives the evolution of the free system, which is required in most of the calculations in nonlinear optics. To this end,
we begin by calculating the matrix elements of & p &. If the couple (i,j ) of indices pertains to P, from Eq. (3.11) we have

&p&;~ =[P&p&];J.=g
~

['(cofact)];.k!"' H (p —p;)

X [P&p(0) &]„—y —'P(R, —Ar)Q

while if the couple (a, f3) belongs to Q, we get

klap I + ~ap+ s apap+ apap
[Q&p(0) &], (3.19)

&P&.,=(Q &P& ).,= 1

@+ice p+I, p p+I
(v &@&),, (3.20)

We still have to calculate the transpose of the cofactor
matrix. It takes the form

b2121 P (P P2 )(P —P4 )(P —
P5 ) /(P +r„„,)

B= '( cofact A ) = 0
b1212

0

~ 1122

0 0

b2121
(3.21)

b2222 =P (P —P2)(P —P3),

b1122 ——r1122(P P2)(P p3) .

0 0 0 b 2222

where

b11» =(p —p2)(p —p3)(p —p4)(p —p )/(p +I,„„„),
b1212 P (P P3)(P P4)(P P5 )/(P +r, „,)

With the previous results, it is quite easy to obtain the
various matrix elements of 6 (p, O). To this end, we just
need the explicit form of the matrix elements, given ei-

ther by (3.19) in P or by (3.20) in Q, which will be
identified with the definition (3.18). Therefore, we finally

get matrix elements of the type

BijkI
G,,kl (P, O) =

+ (p —p;)
i=1

(p +r„„,„) for P-P; (3.22)

1
GJ l3(»0)= XGJkl(P 0)(r. k! P+rkl P)

k, l + + ~ ~ap+ I s apap+ ~apap
for P-Q; (3.23)
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G pkI(p 0)= g(1, p, +I p, )G,,k&(p, O) for Q-P;
P +E~.p+ r, .p.p+ r.p.p, j

(3.24)

1
G.pk„(p o) =

P +I~ p+~sapap+~apap

X n.,Sp„+ y (r p„+r.p„)G,,„,(P, O)(r, „„„+„„„)
i,j,k, I P+E~zp+ szpXI + ~I XI

for Q-Q .

(3.25)

These quantities will enable us to explicitly set down the
dynamics of a system undergoing a stochastic
configuration interaction as well as pure dephasing pro-
cesses.

previously described, the one of the field defined by

F [~~kakak (4.2)

and the one which accounts for the field-system interac-
tion

IV. RELAXATION OF THE SYSTEM
AND ABSORPTION SPECTRA L'=iy[ ak12)( ll —

aktl 1 )(21 ] . (4.3)

Bo l l(L +R )o ——1 o — (L +L')o. —
Bt F (4.1)

which includes, besides the Liouvillian of the free system

In Sec. III we calculated the functions G(p, O) which
drive the evolution of the free system. From the Laplace
transform of these functions the evaluation of the one-
photon absorption probability is straightforwardly car-
ried out and the absorption spectra is deduced.

For this purpose, we introduce the Liouville equation
of the total density matrix o.:

In the previous expressions, ak and ak stand for the an-
nihilation and creation photon operator in the k mode.
In addition, for a one-photon process, the main contribu-
tion to the perturbation expansion of the density matrix
will be given by the second-order term. Therefore, if
G(t, ~) describes the free evolution of the system alone
from the initial time ~ to the final time t, a perturbation
expansion with respect to L' can be performed.

In the present case, the second-order contribution to
the total density matrix will be expressed by

(2) 1 —(i /A)L~( t —v.
l ) —(i /A)L~(7. )

—7.
2

—(i /fi)LFo' (t)= — dr& dr2G(t r&)e ' L'G(r&r2)e ' ' L' G(r 2 )Oe 'o(0) . (4.4)

If we assume at the initial time t =0 the material system in the ground state 11) and n photons present in the k mode of
the radiation field, then

o(0)= 1)(11 ln )(n
1

. (4.5)

The evaluation of (4.4) can now be done if the inverse Laplace transforms of the G(p, O) matrix elements are known.
Their expressions depend on the nature of the kets introduced. The various types of matrix elements are the following:

G;,k&(t, O)=g. e "R(p„) for P-P, (4.6)

5
where the quantity R(p„) stands for the residue at the pole p„of the function B,"kI(p)[Q & (p —p;)]

(4.7)

p„t I
G, p(t, O) = —g e "A(P„)(r,„, p+ I „, p)

u, k, l +u ~~ap s apap apap
—(l Map+ ~s ai3ap+~ ap ap)t—g G; kI( ice p 1, p

—
p
—. I p

—
p, 0)(l, k~ p+I kI p)e

' for P Q, -
k, l

—1 p„t6 pkI(t, O) =g . g (I, p;J +I p;I )e "A(p„)
+u ~ap s apap apap l,j

—e P 'PP PP g(1, p;. +I p;)GkI( imp 1, p
—
p 1 p

—p0) forQP—,
l,j

(4.8)
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x 5 p5p„+ g (I, p; +1 p;. )G;ki( —ia) p
—I', p p

—I p p, O)(r, ki),„+rkiz„)

x
& ~a13 ~s aPa13 ~aPaP+ & ~gp+ ~s /pe+ gp gp

+g
g I u + ~ ~aP+ ~s aP ai3+ ~aP aP

p„t 1x g (r, ,+r, , )e "A(p„)(r,„„„+r„,„„)Pu+'~Xp+ ~s XpXp+ ~XpXp

1

gp I s gp gp ~gp gp+ ~aP+ I s aP aP+ aP aP

y (r, , +r.p,, )G„.„,( —~,„—r„„,„—r,„„„,o)
&~J»

(4.9)

At this stage of the calculation, we really need to know
what are the matrix elements of G(t, O) which participate
in the evaluation of the total density matrix o( '(t). Tak-
ing into account the simplifying assumptions previously
introduced, the only nonzero matrix elements of I will be
(rzz zz, r» zz, r, z,z, rz„z„r„,,„) and those that can
be deduced by symmetry rules. Similarly, for the sto-
chastic operator, only the matrix elements
(r, zzzz, I,z„z„,I,zz„„,I,„,„) will be required, all the
others being neglected. Consequently, the nonvanishing

matrix elements of the Liouville operator wi11 be

G 1111 G 1212 G 2121 G 1122

6)1,Gzz for P-Q;

Q

Gp pG pp forQQ.
From the previous observations, we get the matrix ele-
ments of o' '( t) in the form

l2~2] I t 1
—su(~1 —t)) leo( r1 &2)

&Z, n —1!o(2)(t)!z,n —1)=, «1 «2Gzzzz(t &))[G)212(&1 &2)e
' +G»» rl rz '

0 0

(4.10)

zr& I&i%2] l 1 —i~(~, —~, ) leo(51 72)
( v, n —1!(T' '(t)!v, n —1)= z dr) dwzG„„22(t, rl)[G)2)2(&1,&2)e +Gzlzl(rl rz)e

0 0

where the notation ~@1= (p, n —1!H I l, n ) has been introduced. The role of the isoenergetic manifold of states of the
ower electronic configuration consists in a supplementary contribution to the one-photon absorption probability given

by the second term in relation (4.10). If we evaluate the different factors participating to the integrals, one successively
obtains

l co( 7
1 vg ) i~(~, —r, ) 1 P4(t T1) P5(t —~1)

G2222( &l)[G1212('rl'&2) ' +Gz)21(r), 'rz)e ' ]= [(p~+ r, „„„„)e' ' —(ps +r, ....)
' '

]
P4 Ps

(P2 —i')(r) —T2) (P3+is)(r) —r2)Xe +e
(4.11)

—i~(~, —~, ) 1$(7
1 7P)

22( 1)[G1212(+l,rz) +G2121 +1'rz e
p(t — ) ~ 22 p(t —~)4 1 + 5 1

(p~ —ps) (ps —p~)

(p2 lCO)(T T)2) (p3+ico)(r) —T2)Xe +e
Therefore, we are now able to determine the transition probability for a single-photon absorption process. It takes the
form
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P(t)=(2, n —l~cr' '(t)~2, n —1)+g (v, n —
1~(AD' (t)~v, n —I) . (4.12)

If we note that all the contributions can be expressed as

At d dr e ) ~ 2 ~
(

(a+P+A)t e At) (e(a+A)t e At)
o

'
o p(a+p) pa

(4.13)

the probability is finally given by the expression

P(t)= g (1—e ' )—
; a;+

4 XB,
t)(,;(v;+A, ; )

(a,. +A,. )t A,. t
(e ' ' —e ')

p, a,

(v,. +~,. )~
(e ' ' —e ') (4.14)

if we keep in mind that all the states ~v ) play the same role because of our previous assumptions. The first term de-
scribes the dynamics of the state

~

2 ) as if it were alone and the second term describes how they are altered by the isoen-
ergetic configuration. They will be written as P2(t) and P„(t), respectively. Also, we have introduced the notation

p2 p4 LCO

p3 p4+ l CO

p2 ps le

p3 ps +ECO

p4

ps

ps

p, +r„„„
p4 ps

Ai

pS+ ~s uu uu

ps p4

A3

—r„„,
p4 ps

Bi

—B 1

—B1

where

a, +p, +A,. =v, +t(,;+6,=0 Vi .

Section V will be devoted to a physical discussion of the probability P ( t).

V. NUMERICAL CALCULATIONS AND DISCUSSIONS

We have carried out some numerical calculations from
the analytical expression of the one-photon absorption
process given by relation (4.14). They will be helpful in
discussing the inhuence of the various physical parame-
ters such as dephasing and transition rate constants or
the number of nonradiant states. Also, it will be of in-
terest to note that for each separate set of figures, tick
marks indicate the relative scale.

The general shape of the variations of P ( t) is
represented in Fig. 2. For a system initially unexcited,
these variations show a monotonic increase with time
with a zero derivative at the initial time t =0 and an
asymptotic constant limit for long times. This observa-
tion is still true for both contributions previously dis-
cussed, that is to say, the one corresponding to the popu-
lation of state ~2) and those generated by the population
of the nonradiant states ~v). Nevertheless, the second
contribution increases more slowly than the first one at
short times. This is because states ~v ) can only be popu-
lated from state ~2). If the configuration interaction cou-
ples only one nonradiant state to ~2), the asymptotic
values would be the same as shown on Fig. 2. In addi-
tion, this result is independent of the relative values of

the transition rates I »22 and l", „22. Taking into account
the behavior of P (t) in the long-time limit, a discussion of
the results presented in Fig. 3 can be given. Here, we
have analyzed the separate variations of Pz(t) and P, (t)
like those of the total one-photon absorption probability
P(t) for different values of I, ,„z2. At short times, the
second contribution [Fig. 3(b)j increases more slowly for
small but nonzero values of I, „22 than for higher values.
However, the reverse situation is observed at long times.
The first contribution reaches its asymptotic limit on a
time scale defined by I »2z, that is to say, more rapidly
than the second one. Finally, when 1,,„22 becomes negli-
gible, a situation which corresponds to a two-level system
with no stochastic interaction, P„(t) will start to increase
for infinitely long times, so that only the first contribution
will subsist. Of course, this result can also be established
from the analytical expression (4.14) because in this limit,
the pole ps will be zero. In Fig. 4, it is shown that if
I »22 « I, „22 both contributions have similar behavior.
This is because I »22 defines the time scale on which the
excited state can be populated taking into account that
nonradiant states can only be populated from state ~2).

In addition, it is quite interesting to study the time
dependence of the total probability with X, the number of
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nonradiant states. The first observation can be done on
Fig. 5 concerning P2(t) and P„(t), respectively. In these
figures, we introduce simultaneously the variations of N
and I »,22 by keeping the product NI »,22 constant.
This is purposefully done to have the same total lifetime
for the excited state

~

2 ) in both cases. We note an in-
crease of P(t) approximately linear with N, while P2(t) is
only weakly modified by these parameters. This comes
from the dominant population effect on the ~v) states,
the population retention being more e%cient when the
number of ~v ) states is large, even at the expense of the
transition rates I, ,„22. On the contrary, if we introduce a
change of N keeping I,„,22 constant, we obtain the re-
sults shown in Figs. 6 and 7. In the first figures, we note
that the increase in the number of levels is obtained at the
expense of the total lifetime of the radiant state and con-

sequently at the expense of Pz(t). On the other hand, this
variation is done for the benefit of the second contribu-
tion. Therefore, the total one-photon absorption proba-
bility will exhibit the first or the second type of behavior

OWI

P
8

200
(b)

50

time

I

IO
I

200

I

XO

I

400

XO . (c)

50

time
I

XO

I

400

FIG. 2. Time dependence of the contributions {a) P2(t) and
(b) P, (t) for di6'erent values of the pure dephasing constants I'&2'

equal to (a) 0, {b) O.OS, (c) 0.1S, (d) 0.4. The other parameters
are ci)2&=co=10 I l&22= 0.2 I 22= 0.2 N=1. The same
scale has been chosen for the vertical axis.

FIG. 3. Time dependence of the contributions (a) P2(t) and
(b) P, (t) to the absorption probability {c) P(t) for di6'erent
values of the stochastic transition constant: I,„,» equal to (a)
0.001, (b) 0.01, (c) O.OS, (d) 0.1. The other parameters are given
by &21=~=10, r1122= —0.2, r(1d) 0 N=2.
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depending on the relative values I »„zz) I'»zz [Fig. 7(c)]
I s uuzz I 1122 [Fig. 7(a)]. In the particular case

I,„22=I »22 both variations will compensate exactly
and the value of P (t = m ) is independent of N [Fig. 7(b)].

Finally, we show the absorption spectrum, that is to
say, the variation of P ( t = ~ ) as a function of the excita-
tion field frequency. Fig. 8 exhibits a quasi-Lorentzian
type of behavior and this is still true for both contribu-
tions Pz(t = ao ) and P„(t= ~ ). In addition, the ratio be-
tween the second and the first contribution is equal to N,
the number of coupled states. Therefore, here again, we
note the dominant role of the populations.

VI. CONCLUSION

In this paper, we took advantage of a general formal-
ism initially introduced by Faid and Fox, and later ex-
tended by ourselves to more complex systems, to study

the internal dynamics of material systems. While former
works were dedicated to the description of a stochastic
theory of the relaxation, we have emphasized more the
inhuence of the stochastic couplings on the internal dy-
namics, In the present study, the final thermalization of
the system is generated by a heat bath and is completely
independent of the stochastic interactions acting in the
excited states only. Our description is valid for diagonal
and nondiagonal interactions. Also, dephasing processes
have been introduced in the model. This point is of par-
ticular interest since the important role by coherence
effects in nonradiative decay has been demonstrated re-
cently [30]. Only the Markovian and the weakly colored
noise cases have been studied. The extension of our
descriptions to non-5-correlated stochastic processes,
similar to the slow fluctuation limit case of modulation
frequency, cannot be handled in this way. Because of the
time dependence of the autocorrelation function of the
stochastic variables, a specific evaluation of the model is

50

time I

200

50

time

time

300

I

400

FIG. 4. Inhuence of the transition constant I »» on the time
dependence of the contributions (a) P2(t) and (b) P, (t) to the to-
tal absorption probability. Different values are considered:
I »» equal to (a) —0.01, (b) —0.02, (c) —0.05, (d) —0.1. The
other parameters are co» =co= 10, I » =0, I, „,22= —0.2, N=2.(d&

FIG. 5. We sketch the time dependence of (a) P, (t) and (b)
P2(t) for different numbers of nonradiant states, but keeping the
product NI „„2z constant: N equal to (a) 4, (b) 8, (c) 12. The
other parameters are m» =~= 10, I »22= —0.2, I &2'=0,
Nl „,22= —0.2.
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d In fact no general mathematical methods arerequire . n ac,
avaia e o'1 bl t extend these studies to more comp ex y

ere as been noh' 1' it. Moreover, up to now, t ere as
ded uretreatment of the frequency modulation that inclu e p

de basing, even for simple systems.ep
Two different applications have been p resented here.

I h fi t one the dynamics of a three-level system hasnt e rs
in thebeen descri e .'b d. This model is relevant for explain' g

andff t resonance Raman scattering an
luminescence of the P-carotene molecule in the motiona

limit ,'31~. Here, electronic and vibrational de-narrowing unit ,'~. e
. The secondphasing can be introduced straightforwardly. e

d t d t the stochastic configuration in-application is evo e o
This stud can serve as a model for systemsteraction. is s u y

undergoing nononradiative transitions induce y a
chastic coup ing. er,lin . Here, the one-photon absorption pro-

h b evaluated and the contributions corre-
sponding to the excited state and to the manifo o n

inall theradiant states have been analyzed separately. in y,
f the decay and transition rate constants as

well as that of the number of nonradiant states have een
discussed.
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Fi . 5 except that hereFICx. 6. Same variations as in ig.
r„„„=—. .»v22= —0. 1. The values of X are (a) 2, (b) 5, (c) 10 (d) 20 and
the other parameters are kept the same.

~ ~FIG. 7. Time dependence of the total transition probabslsty
P(t) for different numbers of nonradiant states. qe ual to (a) 2,
(b) 5 (c) 10 (d) 20. The other parameters are co2&=co=10,7 7 ~

I = —0.2,I ' '=0. The various figures correspond to a I »» ——12

I = —0. 1; (b) I „=—0.2, I,„=—0.2; (c) I „=—0. 1,s vv22



4684 A. A. VILLAEYS AND A. BOEGLIN

APPENDIX A

We give here the matrices corresponding to the SU(3)
generators:

5
frequency

FIG. 8. Frequency dependence of the absorption spectrum
P(t = ~ ). The parameters are m» = &0, I »» ———O. 2, r",,'=0.2,
I,„=—0.2, %=2.

0
I)= 1

0

1

I3= 0
0

0
0

0
I7= 0

0

1 0
0 0
0 0

0 0
—1 0
0 0

0 —i
0 0
0 0

0 0
0 —i
i 0

0 —i 0,
I2= i

0

0 0 1

0
0

0
0

I4= 0 0 0
1 0 0

0 0 0

= 1
r Is=~— 0 1

0 0
0

I6= 0 0 1

0 1 0

1 0 0

APPENDIX 8

I~ „=,'(r„„,+r„„,+r„„,+r„„,+r„„+r„„),
l

K2t (2icoqt+I ~2ui r~ i2iq I ~2iiz+r~ i22i+rzi2i I tzu) ~2

Irc„=——(2i~„+r„„,—r„„,+r„„,—r„„,+r„„—r„„),2

1~„=-,'(r„„,+r„„,—r„„,—r„„,+r„„+r„„),
Ic„=-,'(r„„,—r„„,—r„„,+r„„,+ r„„—r„„—r„„+r„„),

1rc„= (r„„,+r„„,—2r„„,—r„„,—r„„,+2r„„,+r„„+r„„—2r„„—r„„—r„„+2r„„),2 3

Ic„=-,'(r„„+r„„+r„„—r„„—r„„—r„„),
1rc„= (r„„,—r„„,+r„„,—I, —2I, „+2I„„,2 3

+r„„—r„„+r„„—r„„—2r„„+2r„„),
z„=-,'(r„„,+r„„,—2r„„,+r„„,+r„„,—2r„„,—2r„„,—2r„„,+4r„„,+r„„+r„„—2r„„

+r„„+r„„—2r„„—2r„„—2r„„+4r„„),
1rc„= (r„„+r„„+r „„+r„„+r„„+r„„—2r„„—2r„„—2r„„),6 3

l
+45

2
( ~ ~31+rs 3131 s 1313 rs 3113+rs 1331+r3131 r1313)

lIc„=——(2i~„+r„„,—r„„,+r„„,—r„„,+r„„—r„„),2

rc„=-,'(r„„,+r„„,—r„„,—r„„,+r„„+r„„),
1~„=-,'(r„„,+r„„,+r„„,+r„„,+r„„+r„„),

EK =2(2EM.+r. .—r.» —r. »+r. »+r ~
—r» )
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lx„=——(21~„+r„„,—r„„,+r„„,—r„„,+r„„—r„„),2

Ic„=,'(r„„,+r„„,—r„„,—r„„,+r„„+r„„).

APPENDIX C

We report the explicit expressions of the G; k&(t, O) matrix elements required to describe any time evolution of a sto-
chastic three-level system in the Markovian or the weakly colored noise cases:

38t—1
1 e + 1

1111( ~ ) 3 ™30+ M80+ ~ ~ — +30(~38++88 )++38+80+ I. +80(~38++33 )++83+30 1
~38(ks 48) 3

+
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1
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3
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3

A, 38te

~38( ~38 ~38 )

1
+30(~38++88 )++38+80+ I. +80(~38++33 )++83+301

3

A,38t
1 e + + 1 + 1 e 1

~38(~38++88 ) +83~38 — — ~ ~38(~38++88 ) z +83~38
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2 A38(A.38
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~38 ) ~38( ~38 ~38 ) 3 48(48 —t{3+8)

1 2
63322( t& 0)= —M80+ + + —[E80(k80+K33 ) K83K30 ]

4a(~38 4S)

+
A38(A38 A38)

1 38

&3 138(X38—

2 38
+[K80(~38+K33 ) K83K30 ] + + — K83 ~38

3 3 ~3+8(4+8 —~38)

1 e + + 1 e
K83~38 + + — ~38 ~38+K33 — — + ~38(~38+K33 )

4+8) 3 4+8(4+8 —~38) 3 &I 38(A,38
—

A, 38)

1 2
G3333 &

)= —M80 + + —[K80(A38+K33) Kg3K3Q]
3 A 3g{A 3g A 3g) 3

e 2 2 e + +
80(~38+K33 ) K83K30]+ + + ~38(~38+K33 )

~38(~38 ~38) 3 A, 3+8(A.3+8
—A, 38)

2 e+— A38(A38+K33) .
3 4s(ks —4s)

All the other elements can be straightforwardly deduced from the expressions (2.20) and (2.22).
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