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Photoionization of the hydrogen atom: Three-dimensional results
and pseudo-one-dimensional model
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Photoionization of atomic hydrogen by a linearly polarized laser is numerically studied using a
method based on an expansion of the wave function in angular-momentum components. The numerical
method presented is quite efficient to compute photoionization of three-dimensional atoms. Moreover,
the main advantage of the method is that it allows a clear comparison with one-dimensional models. As
a consequence, we propose a family of models that have the same complexity as a one-dimensional mod-
el, but that are closer to real atoms.

PACS number(s): 32.80.Rm, 32.80.Fb, 42.50.Hz

I. INTRODUCTION

With the availability of very intense laser pulses, giving
peak intensities close to or beyond atomic unity, a new
experimental domain has recently appeared. Its descrip-
tion implies the study of the interaction of an isolated
atom with a laser field so intense that standard perturba-
tion techniques fail. This leads to a set of different, and
more exact, approaches to the problem [1]. Obviously, it
is generally accepted that a satisfactory description of the
laser-atom interaction can be obtained numerically by in-
tegrating the Schrodinger equation in the dipole approxi-
mation. But, even for a single-electron atom, this is a
very diIIicult problem, and few numerical studies on real-
istic atoms have been available until now. However, it is
been proposed by different authors [2—6] that a first qual-
itative insight to this problem can be obtained solving
one-dimensional models, instead of real three-
dimensional atoms.

Until now, one-dimensional models have been under-
stood as first approaches to the problem. It is not yet
clear how to distinguish in a one-dimensional model the
effects that are intrinsic to the model from the phenome-
nology that should be expected in a real three-
dimensional atom.

We want to present, in this paper, a method to solve
real three-dimensional single-electron atoms. The
method is based on an expansion of the wave function in
spherical harmonics, closely related to other previously
published treatments [7,8]. But the central result is that
by reducing the number of terms in the expansion we can
make a smooth transition from three-dimensional results
to one-dimensional models. This helps to clarify which
features of the one-dimensional models are meaningful in
real atoms and which are intrinsic details of one dimen-
sion without projection to real atoms.

II. THEORY

A. Wave equation

We consider the time-dependent Schrodinger equation
for the hydrogen atom

where the Hamiltonian of the system has been split into
two parts. The Ho term is the atomic Hamiltonian,

(2)

Observe that, for convenience, atomic units
(m =e =Pi= 1) have been used throughout. The Ht part
of the Hamiltonian accounts for the laser-atom interac-
tion, in the electric dipole approximation,

HI ( r, t ) =r.E( t ) sincoL t,
where coL is the laser frequency and E(t) is the electric
field envelope. In this research we will consider only
square envelopes, E(t)=ED during the pulse and zero
elsewhere. We also consider a laser linearly polarized
along the z axis, r E(t) =rE(t) cos8, and we take advan-
tage of the expansion in an angular-momentum basis, as
standard in this kind of problems [7,8].

The time-dependent wave function can therefore be ex-
panded as

For simplicity only spherical harmonics with m =0 have
been introduced. This kind of simplified expansion is
correct provided that the atom is initially in an m =0
state, since a laser polarized linearly along the z axis does
not couple states with different m. On the other hand,
the decomposition of the radial parts as r g&(r, t) is
standard in this kind of problems and it is well known
that that contributes to simplifying certain forthcoming
expressions.

Substituting the expansion (4) into the Schrodinger
equation and projecting on particular spherical harmon-
ics, one gets
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Since these coefFicients are going to appear many times in
the paper, we will introduce a simplified notation, calling
them c&*, where cI+ is the coupling constant between the
lth harmonic and the l + 1 (and analogously for cI ):

We observe that the 00 part of the Hamiltonian does not
couple components with different l. The HI Hamiltoni-
an, however, couples the Ith harmonic with the (l+1)th
and (l —1)th harmonics. The coupling constant is given
in terms of the Clebsch-Gordan coefBcients

1/2

+ rE (t)sin(coL t)c, y, (r, t), (9b)

C. Standard one-dimensional models

where the notation y„y has been introduced instead of
Xo and X

This model has essentially the same computational
complexity as a one-dimensional model, but also has
some important differences. Thus we will refer to it as
the pseudo-one-dimensional limit of the spherical har-
rnonics expansion. To understand the similarities and
differences we will describe in a parallel form the stan-
dard one-dimensional models.

C l

Cl

1/2
(l +1)

(2l +3)(2l + 1)
' 1/2

l2

(2l +1)(2l —1)
(7b)

Because three-dimensional numerical simulations, even
with linear polarization, imply very long numerical corn-
putations, it is generally accepted that a first insight on
the ionization phenomenology can be obtained with the
use of one-dimensional models.

A lot of very interesting work has been done [2—6,9,10]
solving one-dimensional models of the form

for l & 0, and for 1=0

yo(r, t)
1

+rE ( t)sin(coL t )co y, (r, t) .

1
i g ( ot)r=

Bt 2 Qp
2

(8b)

B. Pseudo-one-dimensional limit

With the expansion in the spherical harmonics basis,
we have a precise following of the angular momentum of
the system. Of course, in any practical calculation it is
necessary to introduce a cutoff in the angular-momentum
expansion, considering Eq. (8) from l =0 to a maximum
value l,„. Therefore, depending on the multiphoton or-
der of the process and on the intensity of the radiation,
one can also analyze the inAuence of the dynamics of the
cutoff value l,„.

Pushing this to the limit we are going to study in the
present paper the dynamics of our system when just two
angular-momentum components (l =0 and 1) are con-
sidered. In this case, the differential equations describing
the evolution of the system reduce to

Equation (5) finally becomes

i yr(r, t) = —— ——+. a 1 a' 1 l(1+1)
y, (r, t)

9t 2 Qy2 r 2p2

+rE(t)sin(toL t )[cI+y(+((r, t)+c( y), (r, t) ]

(8a)

1
i P(x, t) = —— + V( )x+ Ex(t)si ( n&tto) f(x, t)

3t 2 /~2

(10)

f, (x)=f(x)+g( —x), (1 la)

(1 lb)g, (x)=g(x) —g( —x)

for x )0, and f, (0)=2/(0) and P, (0)=0, we easily ob-
tain a symmetric function g, and an antisymmetric one,

Substituting in the one-dimensional Schrodinger equa-
tion (10), it is straightforward to find the time evolution
equations for g, and g, ,

1
i g, (x, t)= —— + V(x) g, (x, t)

2 /&2

+xE(t)sin(coL t)g, (x, t), (12a)

for many different choices of the potential V(x), trying to
simulate either atoms or ions.

We want to study how our pseudo-one-dimensional
model, defined in (9), resembles this standard one-
dimensional model (10). The analog of a three-
dimensional central potential is a symmetric one-
dimensional potential, and the standard one-dimensional
analog to angular momentum is parity. Therefore we
must introduce well-defined parity wave functions.
Defining, as usual,
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a 1a'
g, (x, t)= —— + V(x) g, (x, t)

Bt 2

+xE (t)sin(coI t)P, (x, t) (12b)

III. RESULTS

A.. Method of solution

where x )0.
Now the similitude between (9a) and (9b) and (12a) and

(12b) is evident and justifies the name of "pseudo-one-
dimensional" given to the limit (9a) and (9b). There is,
however, a very important difference between them. In
the standard one-dimensional model, the atomic part of
the Harniltonian is the same for both equations. This is
not true for the pseudo-one-dimensional model, where
the "centrifuge" potential appears in the equation that
gives the evolution of the p states. In our opinion this is
the crucial point to understand the physical meaning of
the one-dimensional models. This also explains why in
most of the standard one-dimensional studies the atomic
potential V(x) is not simply 1/~x~ but a more complicat-
ed function to avoid the singularity at x =0. Perhaps the
physical interpretation of these nonsingular potentials is
that they are, in some sense, an averaged way to intro-
duce the effect of the "centrifugal" repulsion in the evolu-
tion of the antisymrnetric part of the wave function.

In conclusion, we consider that the standard one-
dimensional models neglect some important part of the
physical interaction at the moment they consider the
same potential for the symmetric and antisymmetric
parts of the wave function. Therefore standard one-
dimensional models are only a preliminary approach to
have a first insight in the ionization dynamics, and for
this qualitative approach it is even better not to try to in-
troduce all the details of the Coulomb potential, but to
replace it by a 5 potential that leads to a ground state
more similar to the hydrogen ground state [11,12].

the electron. Therefore a control of the population close
to this cutoff is necessary for each computation. In many
practical cases this value does not have to be very large.
For example, with one- to five-photon ionization starting
to form the ground state, and intensities lower than the
atomic intensity unit, good results are obtained with 10
or 20 different angular mornenta. For wide integration
regions —as is the case in ionization studies, where the
electron can be far from the nucleus —the difference be-
tween 10 or 20, one-dimensional grids and a two-
dimensional grid can represent many orders of magni-
tude. When the electron wave function is spread over
many different angular-momentum components, the
present expansion does not represent a clear advantage.

For the specific method of solution of the system (Sa)
and (Sb) we have considered a combination of the previ-
ously published methods [7,8]. The time evolution of the
radial functions has been solved using an implicit Crank-
Nicholson scheme. We choose to use a three point for-
mula because it allows us to apply fast algorithms. The
coupling with the laser field, i.e., the interaction between
different y& wave-function components, has been con-
sidered in terms of a predictor-corrector method, using
between three and six iterations in each interval, with a
constant time step. This is, obviously, not the fastest
form to compute solutions of this kind of systems, but we
clearly prefer an explicit nonunitary algorithm to calcu-
late the inhuence of the laser field because in this way it is
more difFicult to introduce spurious solutions due to a too
long time interval,

In the calculations, the wave function has been expand-
ed in a basis of 11 spherical harmonics, I,„=10. The
spatial step is 5r =0. 1 a.u. , and we have considered radii
from 5r to r,„=250 a.u. , for each angular-momentum
component, which represents 2500 X 11 points in the in-
tegration grid. The chosen time step was 5t =m/50 a.u. ;
that is a rather short step, but as we said before, this is
due to our method of calculating the coupling with the
field.

We will show in this paper some numerical results on
the ionization three-dimensional hydrogen, and will com-
pare them with the results of the pseudo-one-dimensional
model. But before commenting on the results we want to
explain our numerical method.

With the present expansion of the wave function in the
spherical harmonics basis and with the field linearly po-
larized, instead of having a single partial differential
equation in two spatial variables, one has several ordinary
differential equations, coupled to each other, but now
each one of these equations involves just one spatial vari-
able. Working with a single equation with two spatial
variables, say in cylindrical coordinates, one needs to in-
troduce a two-dimensional grid of points that implies
huge requirements of numerical storage and long corn-
puting times. The advantage of the present method is
that we need a one-dimensional grid for each one of the
equations involved, and the number of equations is given
by the maximum value of the angular momentum, I~,„.
This value is, of course, dependent on the intensity and
frequency of the laser field, and also on the initial state of

B. Three-dimensional results

We present in this paper numerical results for the ion-
ization of three-dimensional atomic hydrogen by a laser
pulse of frequency coL=0.2 a.u. (equivalent to a free-
space wavelength of 163 nm), with a square envelope,
that lasts for ten cycles (314 a.u. ). We assume that the
laser field is linearly polarized and the atom is initially in
its ground state 1s. This value of the laser frequency cor-
responds to a three-photon ionization threshold, and has
been chosen because there are no intermediate resonances
with atomic states.

Computed results for a relatively low-intensity field
(I =E =10 a.u. =3.54X10' W/cm ) are shown in
Fig. 1 and 2. Figure 1 shows the time evolution of the
population of the ground state, the initial state. Figure 2
shows the population of different spherical harmonics
components, in particular the populations of the s, p, and
d states. Obviously these populations have been integrat-
ed over the radial variable,
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FIG. 3. Time evolution of the ground-state population for a
square pulse 100 times more intense than the case of Fig. 1,
F.o =0. 1 a.u.

We consider that this representation of the radial dis-
tribution of the population, in this case added up over the
angular momentum, is a direct way to identify the main
characteristics of the electron dynamics. In particular,
this indicates how the electron leaves the central
region —close to the nucleus —and shows when the
initial-state depletion actually corresponds to fast ioniza-
tion, as in the case, because the electron population is
steadily leaving the vicinity of the nucleus. We have not
introduced this kind of figure for the low-intensity case
studied at the beginning because, if only one-thousandth
of the population is modified from the initial state, the di-
agram would simply be set of nine horizontal lines.

In our opinion this diagram is very convenient for un-
derstanding the dynamics of the ionization process. Of
course, a better description is obtained by calculating the
ionized population, but this implies a set of projections of
the wave function that slow down the speed of computa-
tion. Other techniques are used that do not imply projec-
tions, like introducing absorbing boundaries and follow-
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FIG. 4. Time evolution of the populations of the s, p, d, and f states, for the case of Fig. 3, Eo =0. 1 a.u.
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FIG. 8. Time evolution of the ground-state population for
the same case as Fig. 3, Eo =0.1 a.u. , but now computed in the
pseudo-one-dimensional limit.

FIG. 10. Radial distribution of the electron population for
the case of Figs. 8 and 9, ED=0. 1 a.u. , in the pseudo-one-
dimensional limit. Compare with the three-dimensional result
shown in Fig. 5, for the same laser intensity and frequency.
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D. Harmonic generation

The time-dependent wave function ~lp(r, t)) is used at
selected times to compute the expectation value of the di-
pole moment, (f(r, t)lzlg(r, t)) =d(t); from d(t) we
compute the Fourier transform d (co) and the spectrum of
coherently scattered light is associated with ~d (co)

~
[14].

The computed spectra are shown in Fig. 11.
The similitude between the pseudo-one-dimensional

limit and the three-dimensional result is absolute for low
intensities, as happens with the analysis of the electron
population. For high laser intensities, both results
present some difFerences, although the main features
remain. As the laser intensity increases both results are
progressively di6'erent due to the population of the states
with I ) 1. Nevertheless, the pseudo-one-dimensional
model takes into account multiphoton processes of arbi-
trary order, which allows us to expect high —order har-
rnonic generation not equal but similar to the harmonic
generation produced in real hydrogen interacting with
linearly polarized light.

It is also clear that the pseudo-one-dimensional model
works much better when one considers linearly polarized
light. With circularly polarized light an expansion in
spherical harmonics is also possible. But in this case
two-photon processes would be explicitly excluded in the
pseudo-one-dimensional limit.

0.0
0

s

100

time (a.u. )

I

200
I

300

FIG. 9. Time evolution of the populations of the s and p
states for the same parameters as in Fig. 4, ED=0. 1 a.u. , but
now computed in the three-dimensional limit. There are certain
common features with the three-dimensional case, but the
agreement is not as good as it was with a less intense field, be-
cause angular-momentum components with l & 1 carry a
significant fraction of the electron population.

IV. CGNCLUSIGNS

We have presented a method to numerically compute
ionization of a three-dimensional atom by a linearly po-
larized laser. The method is based on an expansion of the
electron wave function in spherical harmonics. The
striking characteristic of this kind of expansion is that, by
controlling the number of angular-momentum com-
ponents in the expansion, it is possible to establish a
smooth connection between real three-dimensional atoms
and one-dimensional models. From this analysis we for-
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FIG. 11. Harmonic generation calculated for a three-dimensional atom (right) and compared with the pseudo-one-dimensional
limit (left), for the two laser intensities studies in this paper. The upper spectra correspond to Eo =0.1 a.u. and the lower spectra to
Eo =0.01 a.u. The photon spectrum is in logarithmic scale, with arbitrary units.

mulate a new limit, the pseudo-one-dimensional limit
that, having the same complexity as a one-dimensional
model, is closely related to real hydrogen interacting with
a linearly polarized laser. We conclude that the pseudo-
one-dimensional limit is a good starting point to begin
numerical simulations without excessive computing re-
quirements.
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