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Intensity maps from an experiment on a laser with a saturable absorber, in the case of strong dissipa-
tion, are compared with theoretical one-dimensional (1D) maps. These 1D maps are derived in the limit
of infinite dissipation, starting from 2D maps for a dissipative saddle cycle with stable and unstable man-
ifolds approaching a quadratic tangency and giving rise to a structurally unstable homoclinic orbit.
They are multibranched, each branch corresponding to a particular number of turns around the saddle
cycle. The good agreement between theory and experiment indicates that the origin of the complicated
behavior of a laser with a saturable absorber is a saddle cycle. A multibranched structure is also present
in maps of time of flight between planes in phase space. Depending on the choice of these planes, it is
possible to obtain time-of-flight maps that give the same symbolic dynamics of the intensity maps.

PACS number(s): 42.50.Tj, 42.55.Em

I. INTRODUCTION

Homoclinic orbits have assumed great importance in
the investigation of nonlinear-dynamical systems. These
orbits are at the origin of chaotic behavior. Well known
experimental evidence of the role played by homoclinic
orbits has been provided by chaos in the Belousov-
Zhabotinskii (BZ) reaction [1], in the feedback laser [2],
and in the optically pumped far-infrared laser [3]. Obser-
vation of chaos in a laser with a saturable absorber (LSA)
has also been associated with the presence of homoclinic
orbits [4-7]. Until now experimental chaos in lasers was
connected with systems having a homoclinic orbit associ-
ated with an equilibrium point of saddle type. The
present investigation is concerned with another
configuration, a tangent homoclinic orbit to a periodic
motion, which is well known in dynamical theory for giv-
ing rise to chaotic behavior [8,9]. Thus we consider sys-
tems having a homoclinic orbit with a periodic motion of
saddle type, and on which the stable and unstable mani-
fold of the periodic solution are tangent so that the
homoclinic orbit is structurally unstable. The homoclinic
tangent bifurcation is itself embedded in an infinite set of
bifurcations, typically saddle node and period doubling,
and cannot be encountered as the initial change one sees
for the birth of a strange attractor. Nonetheless it has
been demonstrated by Gavrilov and Sil’nikov [8,9] that,
with a particular geometrical configuration of the stable
and unstable manifolds, it is possible, varying the control
parameters, to start with a single global solution, and fol-
low a sequence of bifurcations which lead to the develop-
ment of increasingly complicated dynamics. Finally the
control parameter allows the system to reach chaotic dy-
namics even if the stable and unstable manifolds have not
yet had their first intersection. The relation between
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tangent homoclinic orbits and the mixed mode oscillation
in the thermokinetics of hydrocarbon oxidation has been
well established by Gaspard and Wang [10]. In quantum
optics, Hammel, Jones and Moloney [11] have proven the
influence of homoclinic tangency on the dynamics of a
plane-wave intracavity field in ring resonators, while in
the LSA that relation has been supported by a systematic
numerical analysis [12].

Nonequilibrium behavior can be modeled by nonlinear
systems involving a small number of variables. Thus
one-dimensional (1D) or two dimensional (2D) return
maps of the experimentally recorded variable and of the
return time have been used to account for the chaotic dy-
namics. For instance, for the homoclinic chaos in the BZ
reaction, 1D maps were used by Simoyi, Wolf, and Swin-
ney [13] and Pikovsky [14], while 2D maps were used by
Gaspard and Wang [10] to analyze the homoclinic orbits
in the thermokinetics. Concerning LSA experiments, re-
turn maps of the laser intensity were initially derived by
Tachikawa et al. [5]; later, laser intensity return maps
have been used by Hennequin et al. [15] to show the
analogy between LSA and BZ chaotic behavior. Return
time maps have been introduced by Arecchi et al. [2] for
the laser with electronic feedback to analyze homoclinic
chaotic behavior. These maps are much easier to extract
from experimental data because they do not require the
reconstruction of the embedding space, which is usually a
nontrivial problem. Return time maps for the LSA have
been previously reported in Refs. [7] and [16].

The purpose of this paper is to derive 1D maps for sys-
tems approaching homoclinic tangency to a periodic
motion in the hypothesis of infinite dissipation, and to use
these maps in order to analyze intensity return maps and
return maps for time of flight and return time recorded in
LSA experiments. It is not the main purpose of this pa-
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per to investigate the conditions for the occurrence of
homoclinic tangency to a periodic motion in LSA as a
function of the control parameter or the comparison with
numerical results of LSA models. These topics are
planned to be presented in a separate paper. Here we use
the 1D maps to test for the periodic motion homoclinic
tangency in LSA experimental data.

Another original and important result of the present
paper is the derivation of the time return maps for sys-
tems approaching homoclinic tangency to a periodic
motion. The hypotheses here applied to obtain time re-
turn maps are quite different from those applied in Ref.
[2] for the case of a homoclinic orbit to a saddle focus. In
the former the system spent most of the time around the
saddle focus, in a region where the dynamics is deter-
mined by the linearization of the flow, while the time
spent along the homoclinic curve was almost constant.
In our case the time spent by the system in the region of
phase space far from the periodic motion, during the
reinjection process, directly provides important informa-
tion on the dynamics. This behavior is illustrated by in-
spection of Fig. 1 where the region of phase space visited
by the system during the reinjection process, the periodic
motion L, and the section planes S| and S, are shown.
The time of flight from S, to S, constitutes the time of
the reinjection process measured by us. When the homo-
clinic curve to a saddle cycle exists, it turns an infinite
number of times around the saddle cycle. Even if the
time corresponding to the homoclinic orbit is infinite, the
time corresponding to each single turn around the saddle
cycle is bounded and could provide information on the
chaotic dynamics. A result of this paper is that 1D maps
may be used to identify systems in which stable and un-
stable manifolds of a structurally stable periodic solution
of saddle type are approaching the tangency of the homo-
clinic bifurcation. When the tangency is realized, a
structurally unstable homoclinic curve, i.e., a path
biasymptotic to the periodic motion, is generated.

FIG. 1. Schematic representation of a periodic orbit P (heavy
line), revolving around the saddle cycle L. The boundary of re-
gions explored by the system during the reinjection process is
sketched. The section planes S, S, and S, are used to investi-
gate the orbits.
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The 1D maps here presented may be used to reproduce
most of the interesting features detected in chaotic sys-
tems with a homoclinic curve to a saddle cycle. The ex-
periments we consider refer to strongly dissipative sys-
tems, so that the limiting case of infinite dissipation may
be used as a rough approach to analyze the experimental
results. We may ask which experimental features will be
preserved in the simplified model of infinite dissipation
and which features will be lost. It has been proven by
Holmes and Whitley [17] that a decrease in dissipation
may change the order of the different bifurcations but
does not introduce any new orbit. Another feature of 2D
maps, absent in the 1D case, is the presence of wild hy-
perbolic sets at the homoclinic tangency, as pointed out
in Guckenheimer and Holms [18]. In the experiments we
consider, the chaos is produced before reaching and far
from the homoclinic tangency, so that the wild hyperbol-
ic sets are not very important for our analysis. In most
experiments, the dissipation is large enough to produce a
sequency of appearance of stable periodic solutions
equivalent to that of the 1D model. In particular, the 1D
model explains and reproduces two main experimental
features associated with an unstable homoclinic curve: (i)
the chaotic signal appears as a mixture of a few stable
solutions in regions of the control parameters space close
to the chaotic region and (ii) the experimental return
maps of either the intensity or the return times are multi-
branched. As a final important result of this paper the
comparison between the LSA maps and those of a
structurally unstable homoclinic curve confirms the inter-
pretation that LSA is moving in a region along the homo-
clinic path formed by the stable and unstable manifolds
of the saddle cycle.

Section II recalls the basic experimental setup for LSA,
the basic observations of chaotic evolution, and the pro-
cedure adopted to analyze the recorded signals of the
laser output intensity versus time. This material has been
already presented by us in previous papers [4,7], so that
the LSA review will be very sketchy. The connection be-
tween the LSA analysis and that applied for the BZ reac-
tion by Argoul, Arneodo, and Richetti [19] will be point-
ed out. The key point for the comparison to the theoreti-
cal 1D maps is the derivation of the return maps for the
laser intensity, and the return maps for the return time
and time of flight, obtained from Poincaré sections of the
phase-space reconstruction. In this paper we will present
an analysis of LSA chaotic behavior using CH;I as the
saturable absorber, a molecular gas already investigated
in Ref. [6]. An important part of the LSA analysis is the
correlation between the observation of multibranched
structured chaotic behavior and the spectroscopic param-
eters of the absorber. This point will be discussed in de-
tail in a following paper [20]. In Sec. III the 2D maps
reproducing the trajectories in phase space lying in the
neighborhood of homoclinic curve are presented, and
their reduction to 1D maps in the hypothesis of infinite
dissipation is recalled. Section III deals also with the re-
gion of bistability and instability within the 1D maps.
Section IV contains the derivation and application of re-
turn time maps. In Sec. V the return maps obtained from
the 1D maps are compared to LSA experimental data.
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Section III contains some very mathematical parts
describing the analysis of the theoretical 1D maps and
the associated maps of return times and times of flight.
These mathematical parts are not required for a general
comparison between 1D and LSA maps. Thus a prelimi-
nary reading of the paper may be restricted to Sec. IIT A.

II. LSA EXPERIMENTAL SETUP AND DATA

The measurements were made on a CO, laser operating
on the 10P(32) line with the saturable absorber CH;I gas
in the presence of He buffer gas, in the 1:10 pressure ra-
tio. The basic laser setup, essentially identical to that
used in Ref. [7], is composed of an infrared cavity con-
taining both the discharge CO, amplifier and an absorber
cell. The I laser output intensity is recorded versus time
as function of the laser control parameters. Stable LSA
conditions were achieved by control of the discharge
current. The experimental parameters are the discharge
current, the absorber pressure, and the laser frequency
detuning.

A short section of a typical time series is shown in Fig.
2(a), with a chaotic sequence of pulses defined as P*) and

1 (a)

Laser intensity
(arb.units)

0 120 240
Time (us)

(b)

X=I(t)
Y=I(t+1)
Z=I(t+27)

FIG. 2. In (a), sample of the laser output intensity I vs time ¢
recorded on the LSA operating on the 10P(32) CO, laser line at
13.2-mA discharge, with saturable absorber CH;I:He mixture
0.17 mbar total pressure in 1:10 ratio. In (b), corresponding
3000 point phase portrait in a three-dimensional space obtained
with a time delay embedding. On the three axes I(2), I(t +7),
and I (¢ +27), respectively, with 7=0.8 us.
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P in Ref. [7]. Recall that in the region of LSA instabil-
ities and chaos the laser intensity pulse starts, from zero
value, always with a large peak followed by a variable
number of smaller peaks. Long-time series, up to 32 000
8-bit data, were stored in a microcomputer by use of a di-
gital scope. Three-dimensional phase-space portraits
were derived from the stored data, by plotting I (¢ +27)
versus I (¢t +7) and I(t), where 7 is a variable delay. Our
space phase portrait is a three-dimensional projection of
the attractor reconstructed through the time delay
embedding. For different values of the delay time + and
for different viewing angles of the three-dimensional
figure, one obtains some insight into the spatial structure
of the attractor underlying the data set. Figure 2(b)
shows the phase-space portrait reconstructed from the
pulses reported in Fig. 2(a) through the time delay
embedding. The underlying attractor of the chaos con-
tains a well-determined hole, produced by the smaller
pulses in the laser intensity, if the delay is of the order
1/20th of a period. For longer delays the attractor ap-
pears folded in a very strange manner with flat parts like
wings of different orientation in phase space.

The phase-space portrait of Fig. 2(b) and its compar-
ison with Fig. 1 suggest that, when the small peaks in the
laser intensity are observed, the system is moving in the
neighborhood of a saddle cycle. Furthermore, when the
laser intensity goes below the detection limit and in-
creases again with a large peak, the system moves far
from the saddle cycle and is then reinjected back into the
saddle cycle.

In order to compare the experimental observations
with maps, we use the technique applied successfully by
Argoul, Arneodo, and Richetti [19] to analyze the BZ re-
action. Once we have a 3D faithful phase-space recon-
struction of the phase space, as in Fig. 2(b), we intersect
the orbit in this space with a 2D plane conveniently
chosen to be quasitransverse to the trajectories switching
from one side to the other of the section. A 2D Poincaré
map is obtained through that intersection. In the large
majority of investigated cases the whole set of experimen-
tal points in the Poincaré map lie along a smooth curve
that attests to the presence of a strong transverse packing
associated with the presence of strong dissipation. If the
points on the Poincaré section lie on a unidimensional
manifold, we may define a coordinate system on the man-
ifold and define a 1D return map by plotting the z;
coordinate versus the z; coordinate, where the subscripts
i and i +1 denote successive intersections with the 2D
Poincaré plane. Application of this procedure to the data
of Fig. 2 has produced the laser intensity return map of
Fig. 3(a). Two branches are observed on that return map,
and a closer inspection of the LSA data allows us to iden-
tify each branch with laser pulses having zero small
pulses after the first large one (n=0), and laser pulses
having one small pulse after the large one (n=1). This
identification corresponds to orbits in the phase space
with zero or one revolution along the saddle cycle, as in
Figs. 1 and 2(a).

Concerning the return maps of time, let us notice first
that in LSA the planes of Fig. 1 are defined by constant
laser intensity. In effect the laser intensity is the observed
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variable and one of the variables of the embedding space.
Thus the times of flight between the S; and S, planes of
Fig. 1 are obtained by defining two thresholds for the
laser intensity and measuring in two consecutive pulses
the times when, at the end of the ith pulse, the intensity
goes below the first threshold to the instant, at the begin-
ning of the (i+ 1)th pulse, where the intensity goes over
the second threshold. In this way a time related only to
the reinjection process is measured. This approach has
been applied to derive from the records of Fig. 2 the data
of Fig. 3(b), where maps of the time of flight are reported
for the same experimental parameters used in Fig. 3(a).

In Figs. 3(a) and 3(b) two branches corresponding to
n=0 and 1 are observed. As explained in the following,
because the two maps have the same number of branches
with the same slope, they are equivalent from the point of
view of the symbolic dynamics [21]. In LSA, as well as in
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FIG. 3. Intensity return map, in (a), and time-of-flight %2
return map, in (b), from the records of Fig. 2. 102 data points,
derived from the experimental recorded long-time series, are re-
ported in the plots.
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systems with homoclinic tangency to a saddle cycle, the
time return maps give the same information as the Poin-
caré section laser intensity maps described previously,
but with the enormous advantage that time return maps
are much easier to be extracted from experimental data.

On an LSA experimental record similar to Fig. 2, ex-
cept for the absorber pressure and the number of small
peaks after the large pulse, we have also measured the re-
turn times between two consecutive interceptions on the
plane S, i.e., the total time 7™ between the starting of
the ith pulse and the starting of the next (i+ 1)th pulse.
This time is related to both processes, the motion near
the saddle cycle and the reinjection. The experimental
results for the map of the return time 7™ are shown in
Fig. 4(b), while Fig. 4(a) reports the times of flight,
defined as the time required to have the laser evolving be-
tween two constant intensity planes in the region of zero
laser intensity. In the experimental map of Fig. 4(a) we
observe three different branches, corresponding to
n=0,1,2. The return time return maps are composed of a
greater number of branches than in the case of the time
of flight.

II1. 2D AND 1D MAPS

A. Global maps

Before studying the 1D maps, we give here a brief re-
view of some mathematical results obtained with 2D
maps in the hypothesis of a structurally unstable homo-
clinic orbit originated by a quadratic tangency between
the stable and unstable manifolds of a saddle cycle [8,9].

Consider the one-parameter family of three coupled
differential equations with control parameter u

dX

—E— =G”(X) ’ (1a)
where G, is C k with k >3, and we suppose these equa-
tions to have a periodic orbit of saddle type. The stable
and unstable manifolds W*, W" of the saddle orbit are
supposed to have a point of quadratic tangency along
some homoclinic curve I doubly asymptotic to a periodic
orbit L of Fig. 1 at u=0. As pointed out by Gavrilov
and Sil’nikov [8,9], the study of the trajectories which lie
entirely in small neighborhoods of the periodic saddle or-
bit and of its manifolds may be reduced to the study of a
one-parameter family of maps of R? defined on Poincaré
plane S transverse to the periodic orbit L (see Fig. 1).

On this plane we may use a reference frame whose ori-
gin is the intersection of the saddle cycle with the plane
itself, and whose x and y axis coincide with the local
stable and unstable manifolds. In this reference frame it
is possible to reduce Eq. (1a) to the form

dx

z = Ax +¢(x,y,0)x ,

L By +y (3,00 , (1b)
ae _

dt L
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where ¢ and y vanish at x =y=0, and 4 <0, B >0 [22].

The global maps introduced by Gavrilov and Sil’nikov
are constructed with the help of two maps Ty and T';. T,
is used to mimic the motion near the saddle cycle and is a
linear map, T'; is used to imitate the reinjection process (2a)
due to the motion near the unstable manifold and has a

fold. Maps T'; and T, take the form

T (x,p)=(xg+aly —yp),bu+ex+1d(y —yy)?),

quadratic form due to the geometry of the unstable mani- To(x,y)=(Agx,A,y) , (2b)
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FIG. 4. In (a) time-of-flight 7% return map; in (b), return time return map as obtained from a LSA record with LSA operating
on the 10P(32) CO, laser line at 10.8-mA discharge, with saturable absorber CH;I:He mixture 0.10 mbar total pressure in 1:10 ratio,
for 229 data points. In (c), theoretical time-of-flight Ts"s2 return map [Eq. (27)]; and (d) theoretical return time return map [Eq. (28)]
obtained for the following control parameter values: b=1,d=6, A, =2, u=0.18, €,=0.48, A; (1+€&)=1—¢€,a=T=T*=1.
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where y, is the vertical coordinate of the point which lies
on the unstable manifold W* and is mapped by T, into
the point with minimum vertical coordinate, whose hor-
izontal coordinate is x . Parameters a, b, ¢, and d
characterize the T quadratic map. The T, map has at
the origin unstable and stable eigenvalues A, ,A, respec-
tively. In the following, we assume for simplicity that
these eigenvalues are independent of the parameter u.
Recall that for a map, unstable and stable eigenvalues are
such that |A,/<1<]|A,|. Moreover, we suppose

J
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|A,l <1/|A,|, which implies the saddle orbit to be dissi-
pative. Since the flows are orientation preserving in 3D,
we have either A, ,A; <Oor A,,A,>0.

The number n of times that T, has to be applied coin-
cides with the numbers of turns that the flow performs
around the saddle cycle before escaping along the reinjec-
tion path. The existence of an infinite set of periodic or-
bits accumulating at ©=0 and their bifurcations have
been studied by Gavrilov and Sil’'nikov using the maps
T o T defined as a combination of the above maps:

T1o To(x,y)=(A{[xgx+aly —yu),AL[bu+cx +d(y —ygy)?/2]) . (3)

It has also been proven by the same authors that, at
©=0 and for all n > k, where integer k depends on system
parameters, each map T';o T§ has a horseshoe. Depend-
ing on the signs of the parameters c¢,d,A ,A,, different
geometrical configurations of the manifolds arise. The
one we are dealing with in the following, observed experi-
mentally in LSA, is obtained when c¢,d,A;,A, >0. Then
for u—0, with stable and unstable manifolds of the sad-
dle cycle approaching each other without having their
first intersection, periodic solutions, which are fixed
points of T'jo T§ at increasing high n values, are generat-
ed through saddle-node bifurcations. Each of these fixed
points undergoes a period-doubling cascade of bifurca-
tions which, for some n values, leads to formation of a
horseshoe for the T,o Tg map. In the limit of infinite dis-
sipation A}—0, maps of Eq. (3) may be written as 1D
maps

T1o T5(x,p)—fL(»)=A;[bu+d (y —yy)?/2]

+O(A1An) . 4)

The analysis to be developed here may be applied also
to the maps T'go T';, defined as

Tho T (x,y)=(xyg—a(Aly —yy),bu
+AX +1d(Aly —yg)?) . (5)

In the limit A]—0 the dependence on x disappears and
we have study the following 1D maps:

T8o T'y(x,p)—>gk(y)=bu+1d(Aiy —yy)?

+O(ALA]) . (6

If we multiply Eq. (6) by A and use the renormalized
variable A}y instead of y, we get exactly the same maps of
Eq. (4), so that the same bifurcation sequence is obtained.
The bifurcations are the same as in the 2D case. De-
creasing the p parameter, first f, approaches the first
quadrant diagonal where a couple of fixed points of f},
stable and unstable, are created through tangent bifurca-
tions. Then the stable fixed points undergoes a period-

doubling cascade eventually leading to chaos, while f7 !
approaches the tangent bifurcation, which is equivalent
to that reached in type-I intermittency.

Two different situations arise depending on a condi-
tion, to be derived in the following subsections, on the d
parameter, which is related to the reinjection process. In
one case, for an interval of the control parameter u where
neither f, or f Z“ have stable fixed points, the full maps
of Egs. (4) and (6) are explored by the system. The main
difference between the two maps is that the one of Eq. (4)
gives parabolas with the vertex aligned on the vertical
line y =yy, while that of Eq. (6) gives parabolas with ver-
tex aligned on the horizontal line at coordinate bu. For
Eq. (4) the vertex position scales as A"bu and vertical
separation between different parabolas increases increas-
ing the number n. For Eq. (6) the vertex position scales
as A, "yy and horizontal separation between different
parabolas decreases increasing the number n. This be-
havior is represented in Fig. 5 where the theoretical maps
fp and g, are plotted for the same values of control pa-
rameters. This overall behavior is based on the simul-
taneous presence of period-doubling bifurcations for f "
and a tangent bifurcation for /7, *'. Notice that the pres-
ence of multibranched maps is evidence of this specific
chaotic behavior. An important result derived from the
above analysis is that the branches are denoted by the
number n of turns that the flow performs around the sad-
dle cycle before escaping along the reinjection path.

In the other case, for different values of the d parame-
ter, intervals of bistability between stable fixed points of
f}.and f,*" are present. In this situation it is almost im-
possible to observe branched maps, period-doubling cas-
cade, and chaotic behavior. A small amount of noise
unavoidable in the experiments, induces switches among
the coexisting stable solutions and the map shows points
distributed on a lattice, each point corresponding to a
particular transition f v .. between a couple of solu-
tions. In the experiments, we have observed branched
maps using CH;I as the intracavity absorber, and maps
with a lattice structure using SFs. The laser intensity
versus time signal was surprisingly similar in the two
cases, because we have in both cases an unstable saddle
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cycle with very similar geometry of the stable and unsta-
ble manifolds. We wish to point out here that our
simplified model explains both the experimentally ob-
served behaviors, even if we need to introduce a small
amount of noise in order to explain the lattice.

The limit A —0, studied here, can be obtained either
with A;—O0 or with n— . The first case refers to sys-
tems with infinite dissipation, while the second case refers
to orbits of arbitrary high periodicity in systems whose
dissipation may be low. It should be noticed that most
experiments concerned with homoclinic orbits are per-
formed in strongly dissipative systems, so that the A, —0
limit applies for comparison with experiments. On the
contrary, orbits of very high periodicity (the limit n — o)
are unlikely to be detected experimentally, because their
attraction basins are very small and the experimental
noise masks all high-frequency components. A case of
infinite dissipation was studied by Gaspard and Wang
[10], who considered the limiting case of T, maps
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FIG. 5. In (a), return maps y; = f,(y;); and in (b), return
maps y;+1=8,(y;) for the following control parameter values:
b=1, d=6, A,=2, u=0.05, €,=0.4, A;(1+¢,)=1—¢,. The
400 point maps shown in each case correspond to random initial
conditions.
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infinitely contractive to a single point of Il;, independent-
ly of the initial condition in IT;. The different case stud-
ied here shows results similar to that investigated by Ar-
goul, Arneodo, and Richetti [19] for a saddle focus.
Roughly speaking, in our case the region of infinite dissi-
pation is a neighborhood of the saddle cycle, while in the
Gaspard and Wang case the infinite dissipation comes
from the reinjection process, i.e., from a region around
the homoclinic path, far from the saddle.

B. Branch limits

In this subsection we define more precisely the maps
introduced in the preceding subsection. Depending on
the geometry of stable and unstable manifolds, different
situations may arise, but the most interesting ones for ap-
plications are shown in Fig. 6. The intersection between
the S plane and L orbit is point O represented in Figs.
6(a) and 6(b), together with the stable and unstable mani-
folds on the plane S. Around point O there is a region of
the plane S where linearization of the flow of Egs. (1)
holds. Inside this region, there is a II, neighborhood of
the point M~ =(0,yy) which lies on the unstable mani-
fold W*. Due to the geometry of the unstable manifold

] i (a)

(b)

(0]

FIG. 6. Sketch of stable W* and unstable W* manifolds, set
I, around point M * and set II, around point M~ on the sec-
tion plane S for c¢,d,A;,A, >0 and (a) u=0, (b) £>0. The im-
ages of set I, by application of T, are also sketched.
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W*, the flow reinjects points of II; inside the lineariza-
tion region, into a II, neighborhood of the point
Mt =(xg,bu) which is the image of M~ and lies on the
unstable manifold W*. The point M * is the point of II,
with minimum vertical coordinate. Once in the II, re-
gion, the flow moves back towards region II,. The posi-
tions of M~ and M * points change with the u parameter
and when pu=0 these points, with coordinates
M~ =(0,yy), M t=(x ,0), are the intersections between
the homoclinic curve I' and the section plane S. We have
schematically represented all these regions in Figs. 6(a)
and 6(b), respectively, for the cases p=0, where the
homoclinic orbit to the saddle cycle exists, and pu>0,
where that homoclinic orbit does not exist. Notice that,
in the latter case, also in the absence of the homoclinic
orbit, the reinjection process is provided by the shape of
the manifolds.

The domain of the T, map is the region of lineariza-
tion on the plane S. T is used to mimic the motion be-
tween Il and II;. The domain of the T; map is the II,
neighborhood of the point M~ and its image is the II,
neighborhood of the point M*. The compositions of
these maps are defined as T\o T5: II;—II, and Tgo T';:
IT,—II,, respectively. T, is used to mimic the motion
between II, and Il and it has a quadratic form given by
the geometry of the unstable manifolds. Following im-
ages of II, under application of T, and T maps, it is
straightforward to realize that, in order to describe
without ambiguity the evolution of each point with itera-
tions of these maps, the following conditions must be
satisfied:

To,N1,=0, (7a)
Ty 'I,NI,=0. (7v)

Without losing generality, we shall put y;=1 in the
following. In the case where subsets II} of II; exist such
that

IL, D £ 1(11) ®)

at least for some u and n values and for a set of initial
conditions, the system remains confined in regions
around the stable and unstable manifolds, where the ap-
proximate 1D quadratic maps of Eq. (5) reproduce by
iteration the overall dynamics. Set II, is defined as

H1=(1~61,1+62) ) (93)

where €;,€,>0 are supposed to be independent of u for
sake of simplicity. The origin of the II; asymmetry with
respect to the point y; =1 is better understood in 2D. In
effect the horseshoe-shaped region T'G(II,) of Fig. 6(b)
may be only partially mapped into II;,. Moreover, the x
extension of the II, region, which we draw constant in
Fig. 6 for simplicity, may be larger near the stable mani-
fold, where the system is strongly pushed towards the
saddle cycle and the unstable manifold. In this case, the
part of the left vertical strip of region Tg(Il;) mapped
into II, is smaller than the part of the right vertical strip
of region Tg(Il,) mapped into II,. Even if II; asym-
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metric intervals may not allow formation of a horseshoe
for the T'jo T', maps, those intervals are still very useful
to understand the effect on the overall dynamics of the
stable and unstable manifolds.

The constraint of Eq. (7b) imposes that the II; exten-
sion satisfies the following condition:

A (1+6)<1—¢ . (9b)

When an equality holds, IT; has the largest allowed am-
plitude. Using Egs. (5), (8), and (9a) we deduce the fol-
lowing relation defining the y extension of the I} subsets:

1—e, A [bu+d(y —1)2/2]<1+e, . (10)

In the multibranched maps of Fig. 5, observed at a
given value of the u parameter, there are as many
branches as there are intervals II] satisfying Eq. (10).
The full extension of the branches is observable only in
chaotic regimes, while only few points are observed in
periodic regimes. However, the different periodic solu-
tions, their stability windows, and their bifurcations de-
pend on the global structure of the branches.

From Eq. (10) we find that, for the case p>0, if f
contains a subset I}, the control parameter u satisfies the
following condition:

sup{0,[A, "(1—€,)—d sup{e;,€,}2/2]/b}
<p <A, ™Ml+e)/b . (11)

It is straightforward to derive from Egs. (9b) and (10)
that there are no overlaps between IT? and I1? "!. When
IT, has the largest amplitude, and equality holds in Eq.
(9b) and there are no gaps between the extensions of sub-
sets I17 and TI7 1. In other cases, the presence of gaps
implies that, for some initial conditions inside II,, the or-
bit escapes from II;.

The fixed points of f, are found imposing

y=Atlbu+d(y —1)2/2] (12a)

a second-order equation with solutions y%. By introduc-
ing {=y —1 we may write the fixed-point positions as

Ch=A;"/dE[A;*"/d?*—2(bu—A; ") /d]V? . (12b)

By imposing the term under the square root to be posi-
tive, it results that real fixed points exist only when

L<ATM14+AT"/2d) /b . (13)

When an equality holds in Eq. (13), the two fixed-point
solutions £’ coalesce. In Fig. 5 these fixed points are the
intersections between the maps and the diagonal of the
first quadrant.

C. Stability, bistability, and instability

The 1D maps of Eq. (5) are real and may lose stability
only by tangent or flip bifurcations. This statement is
valid not only in the case of infinite dissipation, but also
in the 2D case when the area contraction of T'jo T'§ near
point O dominates any expansion elsewhere and a one-
dimensional center manifold is obtained. Under these hy-
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potheses the instability is associated with the passage of
simple eigenvalues of the Jacobian matrix of the map
To Tg through +1 [18]. The stability condition becomes
in our case

—1Sfim=AndE<1.

u (14a)

When Eq. (14a) is applied to the £ solution, it is
straightforward to demonstrate that that solution is al-
ways unstable. At the {” solution we have

=20 "/d < —[A " /d*—2bp—A;")/d]*Z0 . (14b)

The right-hand side (rhs) condition is always satisfied
when £” exists. The left-hand side (lhs) is satisfied when

pw=ATM1—3A;"/2d) /b . (15)

From (12b) and (15) we deduce that {” exist and is
stable whenever

A;M1=3A"/2d)/b <p<A;"(1+A;"/2d)/b . (16)

The width Auj of the stability region associated with
the II} subset is given by

Apt=2A1;%"/bd , (17)

which represents the leading term of the stability window
in the 2D case [10]. For the limits of the stability region,
we notice that at the lower limit, associated with the —1
eigenvalue, the stability is lost through a flip or period-
doubling bifurcation. At the upper limit, associated with
the 1 eigenvalue, stability is lost through a tangent bifur-
cation.

By applying Eq. (16) to 7 and £ *' maps, we find that
if the following condition is fulfilled:

}\’u—(n +1)(1+}\.u—(n+”/2d)/b
<p<A,™M1-3A."/2d)/b , (18)

we have an interval of u values where neither f nor
f ZH have stable fixed points. The condition of Eq. (18)
does not imply the presence of a horseshoe, but, if it is
fulfilled, a complicated behavior between the fixed points
of f}, and f n+1 js observed. From Eq. (18) we derive a

w
condition on the parameter d

d>A;"A2+3)/[2(1—=A D] . (19)

In between the stability intervals, we obtain the p value
instability interval which is an interval of width Auf}
Apl=A;"/b(1—A;H+0 (A ™), (20)

n

where f, undergoes a sequence of period-doubling bifur-
cations eventually leading to chaos and f ZH approaches
the tangent bifurcation, giving rise to {” and {”. Inter-
vals Au? and Apul, are shown in Fig. 7(a) for different n
values and for the same control parameters of Fig. 5. If
condition (19) is not fulfilled, intervals of bistability be-
tween stable fixed points of f, and f ZH are present, as is
shown in Fig. 7(b).

The d parameter of the T, map has an important role
in the occurrence of complicated dynamics in our system.

4647

(a)

W N
R

N

_k

—
o

=

v Ang Y

s

O = N WA WO
L L
=

0.4 0.8 1.2
"

@
o

FIG. 7. Parameter u intervals for existence, stability, and in-
stability of the f(y) map with n from O to 5. In (a), same con-
trol parameters as in Fig. 5; in (b), A, =2, b =d=1, €;=0.48,
Ay W1+€,)=1—¢,. Thick horizontal segments define the re-
gions Au? of fixed point stability; the dashed lines denote the pa-
rameter u instability intervals. The Aufl, intervals are defined as
the regions in between stability regions of f and f1*'. In (a),
for each n value, stability is lost on the right side through a
tangent bifurcation, and on the left side through period-
doubling bifurcation. In (b), tangent bifurcations are observable
only for f}, with n >4 while period-doubling bifurcations are
observable only for f with n 2.

At a given A,, Eq. (19), the condition for chaotic behav-
ior, imposes a relation between the n and d values. An
increase in d corresponds to a decrease in the n value
where it is possible to have a region of instability between
fixed points of f, and f ﬁ“. Equation (20), a scaling law
for the chaotic windows, leads to larger windows at low n
values, i.e., windows which are more easily detected ex-
perimentally. Furthermore, the d parameter controls the
expansion of the map in the region along the reinjection
path. In effect in the 1D limit we have

Ty(x,9)—>f1,0)=bp+1id(y —1)7. 21
The expansion or contraction rate of f 1u(¥) is given by
Ifi.=dly —1] (22)

and it is independent of the parameter u. A large d value
leads to very wide structures in phase space, easy to
detect experimentally on the recorded variable and to an-
alyze for chaotic behavior. In conclusion, all the require-
ments for the occurrence and detection of complicated
dynamics are enhanced by increasing the d parameter.
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IV. HOW TO USE THE TIME RETURN MAPS
IN ALMOST 1D SYSTEMS

The return time maps have been introduced by Arecchi
et al. [2] for the study of an experimental system whose
instability was explained in terms of homoclinic orbit as-
sociated with a saddle focus. The theoretical map was in
that case derived under the approximation that the sys-
tem spends most of the time near the saddle focus. Here
we study systems where this approximation is no longer
valid. The aim of our work is to find some reasonable hy-
potheses under which it is possible, starting from maps of
Egs. (4) or (6), to derive analogous maps for the time of
flight or return time. Although these hypotheses are not
generic, they appear to apply to a large number of physi-
cal systems. In these systems, as clearly shown for the
LSA data in Sec. II, the time return maps give the same
information as the maps described previously, but with
the enormous advantage that these maps are much easier
to be extracted from experimental data.

The time of flight between two planes S, and S, is a
function of the initial condition x; on the starting plane

S;. More precisely, the time of flight 7% is the line in-
tegral of the reciprocal of the velocity G,(x) along the
trajectory from plane S, to plane S,, as denoted in Fig. 1:

G, (X(x,))
|G (X(x)*

S

S %2
T =F,x)= [ “dX(x)) 23)

where X(x,) is the orbit solution of Eq. (1) with initial
conditions x;. The point x, is the first intersection of the
orbit X(x,) with the plane S, and depends on x,. Thus
the time of flight between planes S| and S, is a function
of the initial condition X, on the starting plane S;. We

may introduce also the return time Tet=T""1 a5 the
time of flight from plane S; back to the same plane.

Let us comment on the continuity of Eq. (23). In gen-
eral, if we choose the section planes such that no tangent
intersections exist, because as long as GH(X)#:O, the in-
verse of the velocity has the same regularity of the equa-
tion G,(x), a discontinuity may arise only from the
length of the path between the section planes. In our sys-
tem, see Fig. 1, the function F #(x) has a discontinuity if,
between the starting and arrival planes, orbits turn a
different number of times around the saddle cycle. This
is the case when we measure the total time between two
consecutive laser pulses. Geometrically, this means that
the flow associated with the orbits and originated by
points on the starting plane is broken into different parts,
each one with its own trajectory. The function F,(x) has
discontinuities also if, before the arrival plane drawn in
Fig. 1, the different parts of the flow are merged. This
discontinuous behavior may be understood as a type of
memory effect due to the integral form of the Eq. (23).
Between planes S| and S, shown in Fig. 1, there are no
discontinuities in the function F,(x). This choice of the
planes S| and S, corresponds to the measure of time be-
tween the end of one laser pulse and the beginning of the
next. On the contrary, by choosing S, as the starting
plane and S, as the arrival plane of Fig. 1, discontinuities
in the time of flight appear. This choice of the planes S,
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and S, corresponds to measuring the full duration time
of the laser pulses. Moreover, in the first case, the time of
flight is finite also along the homoclinic orbit, while, in
the second case, the time of flight along the homoclinic
orbit is infinite.

The function F,, depends on the choice of the section
planes and under a suitable chose it may provide an
amplification of the sensitivity. For instance, if the sec-
tion planes are placed in regions where the flow may be
linearized around some equilibrium solution, as the sad-
dle focus of Ref. [2], or the saddle cycle, this
amplification is exponential. This amplification may be
verified taking only the first-order terms in x and y in
Egs. (1b). Similar equations holds for the saddle focus
case.

If the system is almost undimensional, the points on
the Poincaré section planes lie on a undimensional mani-
fold which is parametrized by the variable z, as it applies
for instance to the LSA data analyzed in Sec. II. In this
case the time of flight or the return time are functions
whose only variable is z. If F,(z) is continuous, it is in-
vertible in each interval between two local maximum and
minimum. Let us introduce now the index i to denote the
number of iterations of the global map, which corre-
sponds to the number of reinjections into the neighbor-
hood of the saddle cycle. Furthermore, n; is the number
of turns around the saddle cycle performed by the flow
after the ith reinjection, before escaping from the saddle-
cycle region and coincides with the number of times the
T, map has to be applied before reinjection. If T;
denotes either the time of flight or the return time corre-
sponding to the ith reinjection we may write

T,=F,(fi (F,'T,_)),

n (24)

where F ! is the inverse function of F,. When F, is
monotonic, it has only one inverse function defined on all
the domain of F, and then Eq. (24) has exactly the same
number of branches and the same number of critical
points of Eq. (4). Thus we may code the dynamics of the
system studying Eq. (24) as well as Eq. (4), i.e., from the
point of view of symbolic dynamics, Eq. (4) and Eq. (24)
provide the same information. As standard in the sym-
bolic dynamics of undimensional maps [22], the number
of symbols is given by the sum of the number of semi-
branches with positive slope plus the number of semi-
branches with negative slope plus the number of critical
points. When F, is not monotonic, F !is multivalued as
is also Eq. (24), with different branches having a common
point that is the image, under Eq. (24), of a local max-
imum or minimum. This happens, for instance, if there
are particular symmetries in both G,(x) and the starting
and arrival planes. In this case we cannot derive the sym-
bolic dynamics of the system from Eq. (24), but the re-
turn time map is still very convenient to detect a multi-
branched structure in f;;. Let us notice that by defining
the planes S| and S, as planes with constant laser intensi-
ty, it is possible to derive 1D maps avoiding the phase-
space reconstruction.



IR

V. MAP COMPARISON

When the maps of Fig. 3(a) derived from the LSA ex-
perimental results are compared to those of Fig. 5(b), de-
rived from the theoretical 1D maps of Eq. (7), a very
striking similarity becomes apparent. This similarity be-
tween LSA and 1D maps becomes more complete if the
transformation y — —y is applied to Eq. (6). This trans-
formation is equivalent to a reparametrization of the uni-
dimensional manifold on the Poincaré plane. The simi-
larity of these maps confirms the result of a LSA chaos as
being associated with the presence of a tangency of
homoclinic bifurcation in a system with a reinjection to a
saddle cycle.

Laser intensity maps similar to those of Fig. 3(a) have
been obtained for all the CH;I data we have analyzed
through phase-space reconstructions and Poincaré sec-
tions. If the used Poincaré section crosses orbits that
leave or enter the phase-space region where the saddle cy-
cle is contained, the experimental map is to be compared
with Eq. (4) or Eq. (6), respectively. Actually, the possi-
bility of observing these two different maps depends on
the separation between the orbits, or more precisely on
the expansion or contraction of the flow. This orbit sepa-
ration is in some regions of phase space greater than in
others and it is not always possible to compare the exper-
imental results with both Egs. (4) and (6).

Considering the discussion of the function F,(z) intro-
duced in Sec. IV for the time of flight, the equivalence of
the intensity and time-of-flight maps of Fig. 3 confirms
that for those experimental observations the function
F #(z) is continuous, and moreover is invertible. We
deduce also that the laser flow is confined in one region of
phase space.

The results of Fig. 3(b) may be reproduced supposing a
linear relation for the z dependence of the time of flight.
Let us suppose we have a point z* such that

F,(z*)=a70 . (25)
For points z near to z* we may write
T,=F,(z;)=F,(z*)+alz;—z*)=T*+alz;—z*),
(26)

where T* is the time of flight corresponding to the coor-
dinate z*. Making use of this relation between z; and T},
and applying the 1D maps of Eq. (4) to the z; variable, we
obtain

NN (T =T /al) . @7

T,-=T*—az*+a[f#

This functional relation between the times of flight of the
iteration has the same dependence as that of the 1D map
for the z coordinate as presented in Eq. (4). Thus, for a
linear relation between the time and the z coordinate, the
two experimental maps of Fig. 3 have the same shape.
For the experimental results of Figs. 4(a) and 4(b)
where maps of T™ return times and T°72 times of flight
are reported, we observe three different branches, corre-
sponding to n=0,1,2. The return time return maps are
composed of a greater number of branches than in the
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case of the time of flight, because the function F u(2), Te-
lating time to the z coordinate, has some discontinuities.
Again a linear approximation allows us to reproduce the
experimental results. If the time needed by the system to
turn n times around the saddle cycle is approximated as
nT¢, with T the period of the saddle cycle, we have

Tt =n,Tc+T*+T,
=n;Tc+T*+af ) (z*+(Tf —7*—n;_T¢)/a) .
(28)

The number of functions f "j with a different »n involved
in this equation is the same as in Eq. (27), but now each
branch corresponding to one f, is split into as many
branches as there are different possible n; _; in the preim-
age of f,. Recall that n; has been defined as the number
of turns around the saddle cycle performed by the system
after the ith reinjection. A clear evidence of this property
is shown in Figs. 4(d) and 4(c) where we have plotted the
maps corresponding, respectively, to the return time of
Eq. (28) and to the time of flight of Eq. (27). In Fig. 4(c),
as well as the experimental map of Fig. 4(a), we observe
three different branches, corresponding to n=0,1,2.
Moreover, in Figs. 4(b) and 4(d), experiment and theory
for T, respectively, we notice that no branches appear
in the lower right-hand corner. The missing branch cor-
responds to the sequence n =0—n=2, which is forbid-
den for this value of the control parameter. In principle,
this selection rule could have been deduced also by the
shape and the extension of the branches of Figs. 4(a) and
4(c). The utility of the return time return map is that
selection rules on the sequence of laser pulses with
different n are immediately detected.

Comparison between theory and experiment of Figs.
3-5 shows that the simple model presented here is able to
reproduce qualitatively the relative position, the shape of
the branches according to the number n, and also the
selection rules. In both Figs. 3 and 4 we have no evi-
dence of the appearance, for the same n value, of a
second branch with positive slope, as happens in the
theoretical maps of Fig. 5. This behavior happens for
two different reasons. The first reason is connected to the
already mentioned asymmetry in the interval II;. Points
with y <yy give rise to branches with negative slope, and
points with y >y, give rise to branches with positive
slope. Thus branches with positive slope are very difficult
to observe in the case where the position of the point yy
is very near to the superior extreme of the allowed inter-
val I1,. The second reason is related to the procedure
used to derive the experimental maps. The points are
reinjected in the section plane on a line which is folded,
as is shown in Fig. 5. In a strongly dissipative system it is
very difficult to resolve the folding of the manifold and
for this reason the two branches overlap in the intensity
map. Looking to the time map, we notice that the map
of our model has an inversion symmetry at the point yy
due to the quadratic term. If this symmetry is present
also in the function G#(x), then, as we mentioned before,
F;! is multivalued and the two branches cannot be

I
resolved. Fortunately, a small correction of odd order
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violates the symmetry and the two branches may be
resolved. This happens in some experimental data and
also in the numerical simulation of Ref. [15], where the
two branches appear on the same side with a small sepa-
ration.

As final remark, let us point out that in our experiment
we had observed chaotic signals with values of n ranging
from O to 4. Looking at the lower bound of Eq. (18), for
A, >1 and this low n value, the lower bound of the u pa-
rameter results in a value much larger than O, corre-
sponding to the homoclinic tangency.

VI. CONCLUSION

The most important results obtained with a simple
model of a quadratic homoclinic tangency associated
with a saddle cycle are the existence of branched struc-
ture in the return maps of flight, the return time and the
return intensity. Each of these branches corresponds to
laser pulses with the same number n of oscillation around
the saddle cycle. We have also found that, depending on
the choice of the starting and arrival planes, we may
define different time-of-flight return maps. Some of them
are equivalent to the intensity return maps because they
are equivalent in the codification of the dynamics. All
these 1D maps are very useful in pointing out a chaotic
behavior associated with a particular configuration of the
stable and unstable manifolds of a saddle cycle. Chaotic
behavior is experimentally observed when these mani-
folds are approaching each other, even in a region of con-
trol parameters far from the homoclinic tangency, where
the homoclinic orbit still does not exist.

The quadratic tangency is an approximation valid only
in a small neighborhood of the point y;. A more precise
model of the experiment requires the introduction of
higher-order terms both in the modeling of the reinjec-
tion process and in the modeling of the escape from the
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saddle cycle. These corrections will not affect, in the 1D
limit, the order of the sequence of the bifurcations lead-
ing to the complicated dynamics observed, but they will
modify only the extension of their stability regions. For
instance, let us consider the map used by Pikovsky [14] to
reproduce the BZ reaction, maps composed of a linear
part, modeling the escape from an unstable periodic solu-
tion, and by a nonlinear part, not simply quadratic, mod-
eling the reinjection process. The sequence of bifurca-
tions and the shape of the solutions both in those experi-
ments and model is surprisingly similar to those present-
ed in our model and observed in LSA. Note that the rich
phenomenology observed in both LSA and BZ cannot be
described only with this model. In other situations the
shape of the LSA experimental signal is no longer com-
posed of a mixture of pulses with large and small peaks.
In particular, we have not described here the bifurcations
leading to the saddle-cycle creation. However, we have
some preliminary indication that the geometrical organi-
zation of LSA phase space remains the same. Finally we
want to mention that we have observed both in the nu-
merical simulation and in the LSA experiment periodic
orbits that are compositions of some simple periodic or-
bits as described prior. These orbits have been theoreti-
cally predicted in the case of quadratic tangent bifurca-
tion by Gavrilov and Sil’nikov [8,9] and have been nu-
merically observed also by Pilovsky [14]. These orbits
give important information about the topological organi-
zation of the flow and are the subject of current investiga-
tion.
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