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Controlled competitive dynamics in a yhotorefractive ring oscillator:
"Winner-takes-all" and the "voting-paradox" dynamics
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We investigate a system through which a variety of competitive dynamics can be optically realized.
The interaction between the dynamical variables, in this case the intensities of resonator modes, can be
controlled and even programmed. Photorefractive media are used to establish the coupling between the
optical modes. We illustrate the properties of such a system through two different instances. The first is
a "winner-takes-all" system in which the mutual competition between the modes leads to multiple stable
fixed points in which one mode oscillates while the other ones are suppressed. The second system em-
ploys circular coupling between the modes giving rise to a dynamically recalled sequence of modes, often
referred to as "voting-paradox" dynamics.

PACS number(s): 42.65.Pc, 42.80.Jr

I. INTRODUCTION

Competitive interactions play a ubiquitous role in the
nonlinear sciences. In biology, for example, species com-
petition has been used to describe predator-prey popula-
tion dynamics [1]. Qualitatively similar competitive in-
teractions have been used to model the dynamics of sys-
tems as disparate as market economics [2], computer net-
works [3], and multimode lasers [4]. The practical in-
terest in understanding complex dynamics is also varied,
from weather prediction to artificial self-organizing neur-
al networks [5]. One usually has little control over the at-
tributes of a natural system, and it is for this reason that
artificial systems have a great deal of pedagogical as well
as practical value: By studying the spatiotemporal be-
havior of a multimode laser for example, we expect to
learn much about analogous natural versions and perhaps
discover more than we presently know about the univer-
sal character of such systems [6].

Even in artificial systems, however, one rarely has ac-
cess to the detailed interactions that take place. In the
case of a laser, for example, one can easily control the
number of modes, the gain, and degree of feedback; these
are global parameters. It is much more difficult to estab-
lish detailed control over the dynamical parameters. Yet
we know that detailed properties such as the coupling
among modes of the system can have dramatic bearing on
its behavior. Here we investigate a photorefractive opti-
cal system for which we have direct access to the dynami-
cal parameters, such as the degree of coupling among the
modes, of a resonator. This control allows us to syn-
thesize and observe a variety of dynamical behaviors in a
single multimode optical resonator.

Many competitive systems, including the multimode
laser, can be qualitatively described by a set of coupled
di6'erential equations, known as the Lotka-Volterra equa-
tion [1]:

Here I. is the activity of the jth competing quantity. In
our case I denotes the intensity of a resonator mode.
The parameters n and 0 k are the linear gain and satura-
tion coefficients. For ease of discussion we will take all
a's to be equal. The specific dynamics of a system de-
scribed by Eq. (1) is determined by the saturation
coeKcient 0 k. In this context, we will use the Lotka-
Volterra equations to discuss two particular dynamical
classes, known as "winner takes all" and "voting paradox
[7,8]."

The winner-takes-all system is a multistable system in
which the different modes are coupled purely competi-
tively. This leads to a dynamics in which the modes com-
pete with each other until one mode wins the competition
and suppresses the oscillation of the remaining modes.
Any mode can be the winner and the actual outcome of
the competition is determined by the initial mode intensi-
ties.

The voting paradox arises from a competitive interac-
tion leading to a contradiction in the underlying dynam-
ics. If, in a voting process, three groups have mutually
conAicting interests and group 2 has veto power over
group 1, group 3 has veto power over group 2, and group
1 has veto power over group 3, then no final state can be
reached. In such a case the modes will cycle through a
given sequence in which each mode oscillates one after
another. The mode coupling will determine the details of
the dynamics such as the cycling sequence and the time
spent in each mode.

In the following section we will present a further dis-
cussion of these two dynamical classes and report on an
optical implementation of both types using a photorefrac-
tive ring resonator.

II. WINNER- TAKES-ALL DYNAMICS
AND THE VOTING PARADOX

The first dynamical system we want to discuss is the
winner-takes-all competition. Here many modes interact
with each other in such a way that only one mode at a
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time can oscillate in a stable manner. When the system is
presented with an input pattern over the different modes
it decides which of the modes it will support. This de-
cision can be based on the input intensities to the
different modes, or it can be weighted through some
internal bias of the modes. The system will then start to
suppress the oscillation of aH modes other than the
chosen one. In the final state all the energy is concentrat-
ed in the only oscillating mode which constitutes a local-
ized center of activity.

Such a dynamical system finds application, for exam-
ple, in some models of self-organizing neural networks
[5,7]. Here the system has to select the best match of
some internal parameters to a given input. This selection
has to be made in a competitive way such that the system
can clearly determine which set of internal parameters is
the best match, or winner, in the comparison.

As discussed in the Introduction, the dynamics of
many competitive systems can be qualitatively described
by a set of Volterra-Lotka equations, given in Eq. (1).
Here we choose these equations as a mathematical
description of the system dynamics because of their sim-
plicity and easy physical interpretation. For the winner-
takes-all competition the saturation coefficients O.k are
given by the matrix

P 8 8
0

The set of diff'erential equations in Eq. (1), together with
the above coefficient matrix, has many steady-state solu-
tions, three of which are of particular interest:

0 for all j,
IJ = a/[13+(ItI —l)8] for all j,

a/P, I„=O for all kWj .

(3)

(4)

(5)

The stability of the above solutions depends on the pa-
rameters, a, P, and 8. It is easy to see that for a (0 Eq.
(3) is the only stable solution. If there is no net gain for
any of the modes, all the intensities have to be zero. We
therefore assume for the following that o.)0. It is also
plausible that for small cross coupling, i.e., 0=-0, the
modes are virtually independent of each other. Then one
expects that all modes oscillate simultaneously with equal
intensity which corresponds to Eq. (4). On the other
hand, if the cross-coupling coefficient is large, the strong
competition will not allow a coexistence of modes. Then
the stable solution will have only one mode oscillating at
a time. In fact, one can show that for 8)P only Eq. (5) is
stable, while for 8 (P the stable solution is Eq. (4), as ex-
pected. In order to implement winner-takes-all dynam-
ics, it is therefore necessary to make cross-coupling be-
tween modes stronger than self-saturation.

In Fig. 1 we have depicted a numerical simulation of
Eqs. (1) and (2) for the case 8)13. We have chosen the in-
itial conditions randomly so that the intensity of one of
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FIG. 1. Numerical simulation of the Lotka-Volterra equa-
tions in a winner-takes-all configuration. The intensities of five
competing modes are plotted with respect to time. The initial
intensity values are chosen randomly in the interval [0, 10 ].
The parameters in Eqs. (1) and {2)are a= 1, P= 1, and 8= 1.5.

the modes is slightly larger than the remaining ones. The
system then chooses that mode as the winner and in-
creases its intensity while decreasing the intensity for the
other modes. Finally, the strongest mode has gained all
the available energy and the remaining ones are shut oK
Note that such a behavior of the system is also valid in
the presence of noise.

We have employed photorefractive two-beam coupling
[9,10] to establish a physical system that exhibits winner-
takes-all dynamics. An optical oscillator that uses pho-
torefractive two-beam coupling gain in a resonator [11]is
not a laser. Nevertheless, the analogies between the laser
and photorefractive oscillator are strong: It has been
shown that the modes of the photorefractive ring resona-
tor are described by Lotka-Volterra equations in the
weak-field case and the qualitative behavior remains simi-
larly described in the strong-field regime [12]. In addi-
tion to providing gain for a multimode oscillator, two-
beam coupling in photorefractive media can be used to
establish mode coupling. The interference pattern of in-
tersecting beams causes charge redistribution and,
through the electro-optical properties of the crystal, a
subsequent index of refraction grating. In materials
where carrier redistribution is diffusion dominated, the
phase of the index grating causes energy exchange be-
tween the two beams [10]. We can think of the coupling
as gain for one of the beams and loss for the other.

Three qualities of photorefractive materials are partic-
ularly remarkable. First, enormous gains are possible.
Gains exceeding exp( 55/cm ) have been observed.
Second, they are very slow by nonlinear optics standards:
time constants are typically in the range 0.001—10 sec.
Third, increasing the intensity of a pump beam does not
increase the gain for an unsaturated signal; it merely de-
creases the response time of the material. The response
remains nonlinear even at very low light intensities
(below 1 mW/mm ). Gain is primarily determined by the
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geometry of the beam interaction and by the material
properties.

Our experimental optical circuit, shown in Fig. 2, is a
unidirectional ring oscillator with three photorefractive
barium titanate crystals. Five ring paths are formed with
five optical fibers each approximately 0.75 m in length.
Each fiber, in fact, carries many modes, but it is con-
venient to ignore the fiber's mode structure and simply
refer to the collection of fiber modes as a single mode. In
addition to the set of equations (1) for the mode intensity,
there is a corresponding set of coupled equations govern-
ing the mode frequencies. We argue on two accounts
that the latter should be ignored in light of the conse-
quent simplicity. First, the finesse of our resonators is
very low (on the order of or less than unity); therefore,
gain is not a strong function of round-trip length.
Second, each fiber carries so many modes () 10 ) that
there is always some linear combination of them on or
close to resonance. It is such a combination which will
oscillate at any given time.

The third photorefractive crystal in Fig. 2 is pumped
by an external source laser and supplies gain to all five
modes of the system. For two-beam coupling gain alone
it has been shown that 8~P—that is, neither winner-
takes-all nor the voting-paradox dynamics are possible
[12]. The other two crystals allow us to program the sat-
uration matrix. At the output of the fibers a polarizing
beam splitter provides two copies of the modes. A
second beam splitter divides one of these beams equally
again. One of these, which we label the "resonator"
beam is eventually imaged back into its respective fibers.
We shall refer to the other as the "interaction" beam. A
lens is used on each of these beams to produce the
Fourier transform of the output of the fibers. The first
photorefractive crystal is placed at the intersection of the

two Fourier planes and its axis is arranged so that the in-
teraction beams derive energy from the resonator beams.
If we think of the modes as optical rays, then in the
Fourier-plane junction the two sets of rays cross. We see
that any of the interaction rays can deplete every resona-
tor ray of its energy. This has the effect of increasing all
saturation coe%cients, including the self-saturation
coefficient P. We still have, at most, 8=@. A pair of
lenses reimages both sets of beams: they intersect again,
but this time in an image plane. The second. photorefrac-
tive crystal is arranged to cause energy transfer from the
interaction modes to the resonator modes. Here each
mode intersects only its corresponding twin; hence, an in-
teraction beam gives back whatever energy it obtained in
the first crystal to its own resonator mode in the second
crystal. This reduces the self-saturation P relative to the
cross-saturation 8, such that, overall, 8)P. The beam in-
teractions are detailed in Fig. 3.

The performance of our system in the winner-takes-all
configuration is shown in Fig. 4. Only one of the five
modes is stably oscillating at any one time. The contrast
ratio between the oscillating mode and the other
suppressed modes is greater than 100:1. The system is
optically switched between the di6'erent modes by inject-
ing a signal into the respective mode.

The second dynamical system we want to discuss is re-
ferred to as the "voting paradox. " Because of a contra-
diction in the underlying dynamics, systems in that class
do not settle down into a steady state. Instead they per-
form oscillations which can be maintained indefinitely.
Such a controlled, oscillatory behavior of a competitive
system can, for example, be used to store and recall time-
sequenced information.

We can again use the Volterra-Lotka equation (1) to
give a qualitative description of such a system. Besides

Fiber Coupler

X/2 Ga'
Pump

Fiber Coupler

For Voting
Paradox

Observation
Screen

FICx. 2. Schematic of the competitive optical circuit. Five ring paths are defined by five multimode optical fibers. The polarizing
beam splitter provides a beam used in the voting-paradox circuit; a half-wave plate corrects the beam polarization of the output of
this beam splitter for the two-beam coupling. The gain medium pump intensity of 150 mW at a wavelength of 515 nm. The small sig-
nal gain of the gain medium (crystal No. 3) is greater than 10 . The strong signal gains of BaTi03 crystals No. 1 and No. 2, measured
with incident intensities equal to those that occur during oscillations, are 5 and 6, respectively. Round-trip passive attenuation for
the system is on the order of 900 (very large).
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the competitive coupling between the modes, as given by
t e matrix in Eq. (2), we require each mode to give a posi-
tive stimulus to the next mode to be recalled. Such
cooperation between two modes will give rise to dynam-
ics in which the oscillation energy will gradually move
from one mode to the next. We therefore modify the sat-
uration coeKcients in Eq. (2) to the circulant matrix
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FIG. 4. Oscillation intensities of the five modes fo
ta es-all system. Mode identities are signified by various densi-
ties o dashed lines. In each case, light is injected in the direc-
tion of a given mode to turn it on. Once the oscillation of the
mode is established the injected signal is terminated. After a
time, t e injected signal is again presented, and then moved to
anot er mode. This accounts for the peaks seen at the begin-
ning and end of the oscillation of each mode. Other variations
are due to fluctuations in the resonator environment.

0

0

0
0
6

~ ~ o 0
0

(6)

The matrix (8 ~ aJk gain specifies the coup ling between the
modes and is given by Eq.(6). The functions f (t) are
time-dependent noise forces with

0
0

0 6 0
fj=(fj(t))=e,

1.2
Here we have assumed that the sequence will be re-

ca led in an ascending order of the mode labels. The a-
rameters ItI and 8 are the same self- and cross-correlation
coefficients as in E .q. (2), and 5 is a positive coupling
coefficient between adjacent modes.

It can be shown that the system indeed cycles through
the modes if 0—5&13—6 & ~9 & 0. A numerical simulation of this
case is presented in Fig. 5. An oscillating mode stimu-
ates the oscillation of its next neighb h'1

a remaining ones. However, the time each mode oscil-
ates increases with time. In an analytical solution of E

ay and Leonard [13] have shown that the
sou iono qs

period of cycling increases linearly in time. Th' '
d.

t e act that the initial value of each mode intensit de-
creases exponentially with time before it gets t' 1 ds s irnu ate

y e preceding mode. In many cases, especially in real
p ysica systems, such behavior is unrealistic. Any kind
of noise will induce fluctuations in the modes and kee
their initial v 1alues around a finite average value. For a

an eep

correct description of a physical t hsys em with voting-
paradox dynamics, we must generalize Eqs. (1) to

I,. =ctI —g 6 kIkI +f (t), j =1,. . . . , X . (7)
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FIG. 5. Numerical simulation of the Lotka-Volterra equa-
tions in a voting-paradox configuration [Eqs. (1) and (6)]. The
intensity of mode 1 (solid curve) at time t =0 is chosen to be 1,
while the remaining intensities are randomly chosen from the
interval [0, 10 ']. The parameters a=/3=5=4 and 0=6 and
were chosen such that the oscillations ooccur on a simi ar time
scale as in the experiment. Note that the oscillation time for
each mode increases with time.
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achieved through photorefractive beam coupling. This
mechanism is well suited to our purposes because it al-
lows us to control the strength of the interactions and
hence to program the dynamical behavior of the overall
system. We believe it is possible, with minor
modifications to our present system, to obtain any dy-
namics qualitatively described by I.otka-Volterra equa-
tions.
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