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Operator description of laser cooling below the Doppler limit
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We give a general theoretical description of radiative forces on atoms in a monochromatic radiation
field. The driven transition has a lower level consisting of several substa, tes, and we consider the limit of
low velocities and weak intensities. This situation comprises the schemes where cooling to temperatures
below the Doppler limit is possible. After expressing the atomic dipole in terms of the polarizability ten-
sor, we obtain an expression of the force as the sum of the radiation pressure, the dipole force, and a con-
tribution from the gradient of the polarization. This latter contribution contains a part re "»lting from
redistribution of photons between the plane waves that compose the field, and a part resulting from
Auorescence. We express the average force and the momentum-diftusion tensor in terms of a closed evo-
lution equation for the lower-state density matrix. We show by a scaling argument that in any case of
cooling, the final temperature goes down linearly with the intensity, until the recoil limit is approached.
The description is valid for a weak and monochromatic, but otherwise arbitrary field, and it allows for
the presence of an external magnetic field, and of hyperfine splitting. It is applicable to cooling in one,
two, or three dimensions. We give numerical results for the average force in a number of specific cases
of two counterrunning plane waves.

I. INTRODUCTION

The simplest model for cooling in an optical molasses
is a two-level atom in a standing wave [1,2]. The minimal
temperature TD that can be reached for this
configuration occurs at nonsaturating intensities and at a
light frequency that is below resonance by about I /2,
with I the spontaneous decay rate. This minimal value,
which is commonly called the Doppler limit, is given by
[3,4]

kZ, =Xrx2,
where k is Boltzmann's constant. Recent experiments
have demonstrated that cooling to lower temperatures
can occur for systems having a multistate structure in the
lower level of the driven transition [5—11]. An essential
ingredient for this strong damping force is a variation of
the relative orientation of the atomic dipole with respect
to the light polarization during the traversal of a wave-
length. Such a situation arises when the atom moves
through a field with polarization gradients [12,13]. An
alternative possibility is that a magnetic field causes Zee-
man precession of the atomic dipole [8—11,13]. Theoreti-
cal descriptions of laser cooling below the Doppler limit
have been given for a few specific polarizations and angu-
lar momentum values [12,13].

During the cooling process, the atom suffers momen-
tum jumps of the order of a photon momentum. We as-
sume that the velocity width of the atomic velocity distri-
bution is large compared with the corresponding jumps
in velocity AK/M, where K is the wave number of the ra-
diation, and M is the atomic mass. This means that the

effective temperature is larger than the recoil temperature

A K
kT~ =

2M
(1.2)

Then a Brownian motion picture holds, and the evolution
of the velocity distribution W(v) is governed by a
Fokker-Planck equation [14]:

a—W(v) = — .F(v) W(v)+:D(v) W(v) .~2 BvBv

(1.3)

Here

F(v) = ( f(v) ) (1.4)

In Eq. (1.5) we allow for the situation that the average
force varies with time. The time evolution of the force is
governed by the evolution of the internal state of the
atom. In a situation where the force as a function of ve-
1ocity leads to cooling, the limiting temperature of the
cooling process is determined by the steady-state solution
of (1.3). In the simple case of a friction force

is the velocity-dependent average force on the atoms, and
D is the momentum-diffusion tensor, which can be ex-
pressed as the integrated autocorrelation function of the
force as

2D(v)= I d~[& f(t)f(t+r)) —
& f(t)&(f(t+1)&

+ ( f(t +r) f(t) ) —( f(t +r) f(t) ) ]

(1.5)
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several one-dimensional cases, such as a standing wave
with a transverse magnetic field, and two counterpro-
pagating waves in orthogonal polarizations, for a number
of values of the angular momenta of the states involved.

II. ATOMIC DIPOLE

We consider the situation where an atom moves with a
given velocity v through a monochromatic radiation field
with frequency ~. The radiation field is described by the
electric field

E(R, t)=E+(R)e ' '+E (R)e' '. (2.1)

FIG. 1. Atom moving with a given velocity through an arbi-
trary monochromatic light field.

kT=D/y . (1.7)

This result illustrates that the limiting temperature re-
sults from the balance between the cooling effect of the
friction and the heating due to the force fluctuations.
These fluctuations inevitably arise from the random na-
ture of spontaneous decay. In general, the Fokker-
Planck equation (1.3) shows that the evolution of the ve-
locity distribution is fully determined by the force and
the diffusion tensor as a function of velocity. This equa-
tion is no longer reliable when the velocity width of the
atoms gets comparable to the recoil velocity AK/M.

In the present paper, we give a systematic operator
description of the force and the momentum diffusion of
an atom with degenerate or nearly degenerate lower 1ev-
els. We assume that the atom is moving with a given ve-
locity in a weak and monochromatic, but otherwise arbi-
trary, light field. This situation is depicted in Fig. 1. The
velocity-dependent force and diffusion tensor can then be
expressed in terms of the lower-state density matrix. We
distinguish four different types of contributions to the
force. We recover the usual radiation pressure and the
dipole force, arising from the gradients of the phase and
the intensity of the field, and which exist also for a two-
level system. But in addition we obtain two contributions
to the force that depend on the gradient of the polariza-
tion, and which rely upon the multistate structure of the
lower state. One of these latter contributions is deter-
mined by the Hermitian part, the other by the anti-
Hermitian part of the atomic polarizability. The correla-
tion function determining the momentum diffusion
coefficient separates into a rapidly decaying part and a
weak but slowly decaying part. These two parts give
separate contributions to the diffusion tensor with the
same order of magnitude, each having a distinct physical
significance.

Since the formalism allows for an arbitrary
configuration of light beams, it is well suited to describe
cooling configurations in one, two, or three dimensions.
We calculate explicitly the velocity-dependent force in

F(v) = —yv

and a velocity-independent isotropic diffusion coeScient
D, the obvious solution of (1.3) is a Maxwell distribution
with temperature given by

The field drives the transition between a lower level indi-
cated by the index g (for ground state) and an excited lev-
el indicated by e. Both levels may consist of a manifold
of degenerate or nearly degenerate substates, correspond-
ing to Zeernan degeneracy or hyperfine splitting. We
wish to derive general expressions for the radiative force
on the atom and for the momentum diffusion. The inter-
nal state of the atom is described by the density matrix
cr(t) in the rotating frame. This density matrix has as di-
mension the sum of the number of substates of the lower
level and the excited level. If we separate this matrix into
four blocks corresponding to the two levels, we obtain the
submatrices 0.„and o.

gg
for the excited-state and lower-

state manifolds, and the submatrices 0., and 0. , contain-
ing the optical coherences. Likewise, we separate the
electric-dipole operator of the atom as

P =Peg +Age (2.2)

into its raising and its lowering part.
In the rotating-wave approximation, the atom-field

coupling is governed by the Rabi operator

A =p, E+/A', (2.3)

which generalizes the Rabi frequency. Obviously, this
operator A has nonvanishing matrix elements only be-
tween a lower and an upper substate. The evolution
equations for the submatrices of 0 may be put in the
form I15]

= —1 cr„—iLcr„+i%erg, icr,g%-
dt

d 0'gg =1 QQ&o„g& iLcr~~+i% cr,z io~,A——,dt
(2.4)

doeg ib+iL cr, +if—Pcr ia„A, —

d0 gq —+id, +iL cr, +i% cr„iogs%—
The spontaneous decay rate is indicated by I, and
A=co —coo is the detuning of the light frequency from the
average resonance frequency coo. The Liouville operator
L, accounts for the level splitting within the two mani-
folds e and g, and it is basically the commutator with the
hyperfine or the Zeeman Hamiltonian. Hence, in the ab-
sence of Zeeman or hyperfine splitting, the operator I.
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vanishes. Finally, we have introduced the dimensionless
dipole operators Q& to account for the anisotropic repo-
pulation of the lower level by spontaneous decay. These
operators are defined by their matrix elements as
Clebsch-Gordan coefficients [16] (p(t))=p+e ' '+p e' ', (2.10)

Furthermore, Eqs. (2.8) allow us to express the atomic di-
pole moment in terms of an effective polarizability tensor.
We find

(J,M, igpiJ M ) =(J,M, iJ M;1P) (2.5) where the positive-frequency part of the dipole may be
expressed by

for P= —1, 0, 1, where J, and J are the electronic angu-
lar rnomenta of the two levels. In the case of hyperfine
structure, the spontaneous emission does not affect the
state of the nuclear spin. The electric fields E+ inherent
in the operators % and% in (2.5) should be taken at the
time-dependent position R(t) of the atom. Since we as-
sume that the atom moves with the given velocity v, this
position may be taken as

R(t)=RO+vt . (2.6)

This semiclassical picture of a force arising for an atom
moving with a given velocity is justified when v is much
larger than the recoil velocity fiK/M. For a wide veloci-
ty distribution, this is the case for a large majority of ve-
locity groups.

We are interested in the limit of low velocities, so that
the atomic displacement during a spontaneous lifetime is
small compared with the wavelength, or

Kv ((I (2.7)

This implies that the decay of the optical coherences is
rapid compared with the rate of change of the field that
the atom feels. This allows us to eliminate the coherences
adiabatically, and we obtain from the last two equations
of (2.4)

p+ =Tro., p, =o, E+

in terms of the polarizability tensor

(2.11)

Ia =—Try ——EA+iL
2

(p, os o.„p—, ) . (2.12)

Notice that the polarizability e depends on the subma-
trices o. and o.„for the lower state and for the excited
state, which are the solutions of the evolution equations
(2.9). These solutions, and hence also the polarizability,
still depend on the field that the atom has felt during a
time in the recent past of the order of the optical-
pumping time. Hence the nonadiabatic time lag that is
responsible for the force on the atom [12] is impiicit in
the polarizability. Notice, moreover, that Eq. (2.11) does
not imply a linearization in the electric-field amplitude.

III. POLARIZABILITY AND FORCE

For an atom in a radiation field, the Heisenberg opera-
tor for the force f is determined by the commutator of
the momentum operator with the Hamiltonian. This
gives

ro. =i ——i 6+iLeg (%o —o„A), f—=V(p E)=A'(V%+V% ), (3.1)

r0 =E —+EX+ELge (A o'„cr % ).—
(2.8)

I' =2Rep+ V E (3.2)

with A given in (2.3). For the component j of the force F
this gives

These equations relate the optical coherences at any in-
stant of time to the submatrices a„and 0. at the same
instant. If we substitute these equations (2.8) in the first
two equations of (2.4), we arrive at a pair of equations for
O.„and cr in the form

dO e~ = —T'o „—iL cr„
dt

O.'=aO+iai . (3.3)

Substituting (2.11) and (3.3) in (3.2) leads to the expres-
sion for the force components

F =2Re(E ao V. E+ iE a, V, E—+) . (3.4)

Furthermore, we separate the polarizability tensor a into
its Hermitian and anti-Hermitian parts, according to

r—+id, +iL
2

E'——i 6+iL
2

do gg = I Qgtio „gtidt

(%to „—o.ss%t)

(%bergs
—o „%

Q.9)

First we separate the positive-frequency part of the
field according to

E+(R)=e(R) A (R), (3.5)

where 2 is the position-dependent amplitude, and e is a
normalized polarization vector, obeying

(3.6)

If we substitute (3.5) into (3.4), we obtain an expression
for the force as a sum of four separate terms

riL o —% ——i b, +iL (Acr cr —%)—gg gg ee

—+iA+iLI
2

(%"o„—o„Wt W .
F=F1+F2+F3+F4

with components

(3.7)
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F J=@' a, .ei [A V A' —(V A )A*],
+,, =a*.ap. a[ A V, A *+(V,A ) A '],
F =AA'i(V e*.a e e*—.a V e)j 1 i j
F4, = A A *(V e* ap. e+e' ap V e) .

(3.9)

(3.10)

(3.11)

dp8'= E =2coAA*e*.a .e . (3.12)

The forces F& and F3 arise from absorption of photons
that are scattered into the empty modes of the vacuum
field. The forces F2 and F4 have the dispersive character
of ao, and arise from redistribution of photons between
modes.

This picture is confirmed by an alternative separation
of the electric field as an expansion in plane waves:

E+(R)=+A„e„e (3.13)

Substituting (3.13), into (3.4) leads to the expression for
the force

F=g g A„'A„.
n n'

i(K„,—K„)R.X[e„' ap e„e " " i(K„—K )

The force F& is the common radiation pressure, propor-
tional to the gradient of the phase of the field, and F2 is
the dipole force, determined by the gradient of the local
intensity. The forces F3 and F4 both arise from the gra-
dient of the polarization direction, and they are deter-
mined by the anti-Hermitian and Hermitian parts of the
tensor eV e . The anti-Hermitian part a& of the polari-
zability, which determines F, and F3, also determines the
work done by the field on the atomic dipole, as expressed
by

A. Plane traveling wave

E (R) = A e e'+'R (4.1)

so that the amplitude and the polarization vector are

A(R)= Ape', e(R)=op . (4.2)

One notices that the only nonvanishing force is F&, and
we obtain

F=F,=2ApAp K(ep ai ep),

which is the common radiation pressure.

(4.3)

B. Plane standing wave

A plane standing wave is characterized by the field

E+(R)=2Apepsin(K R),
so that the amplitude and the polarization are

A(R)=2Apsin(K R), e(R)=ep .

(4.4)

(4.5)

Now the only nonvanishing force is the dipole force F2,
and we find

F=F2 =4Ap A p K(ep 'ap ep)sin(2K R) (4.6)

This result applies in the case of cooling in a standing
wave with a transverse magnetic field [10,11]. When we
are interested in the force averaged over a wavelength, we
obviously need the average of apsin(2K R). This corre-
sponds to two terms of the Fourier series of the spatially
varying polarizability.

C. Counterrunning plane waves with orthogonal polarizations

A single plane wave with wave vector K is described
by the electric field

+e„*.a, e„.e " " (K„+K„)]. (3.14)

This equation is equivalent to the result (3.8)—(3.11) for
the total force. Obviously, the first term on the right-
hand side of (3.14) is equal to the first term in (3.4). It
disappears for n =n', and it describes the redistribution
forces F2+F4. This force is proportional to the momen-

tum difference of a pair of modes, which illustrates its
redistributive nature. The second term in (3.14) gives the
scattering forces F,+F3, and it corresponds to the last
term in (3.4). The work done by the field on the atomic
dipole, which equals the absorbed power, can likewise be
written as

(R) A (e eiK R+e e
—iK R) (4.7)

with

E') 'E2=0,
so that

(4.8)

A(R)= ApV2, e(R)= —(e,e' +eze '
) . (4.9)1

Our third example is the case of two counterrunning
plane waves with equal intensity, and orthogonal polar-
izations. This is the standard situation for cooling by po-
larization gradients [12,13]. The field is then described
by

i(K„,—K„) R
W=2cog QA„*A„e„' a, e„e, .

n n'
(3.15)

In this field the intensity and the phase are uniform, and
only the polarization varies with the position. Hence the
forces F, and Fz vanish, and we obtain

IV. SIMPLE EXAMPLES
F3=2ApAp K(e' ai, e, —ez a, e2) (4.10)

In order to illustrate the separation (3.7) of the radia-
tive force, we now consider a few simple examples corre-
sponding to one or two plane waves.

F =2A A*Ki(@*a ee ' —@*a ee ' '
)

(4.1 1)
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Equation (4.10) expresses F3 as the difference in absorp-
tion rates of photons from the two counterrunning plane
waves. In the special case of two counterrunning waves
with opposite circular polarization treated in Ref. [12],
this force has been obtained as an unbalanced radiation
pressure, resulting from motion-induced atomic orienta-
tion. Equation (4.11) is proportional to the probability of
coherent photon transfer between the two plane running
waves. This illustrates the redistributive nature of F4.
The calculation of the spatial average of F3 requires the
average of n& over a wavelength. The average of F4 is
determined by two coefficients of the Fourier expansion
of a&&. The Sisyphus-type force found in Ref. I12] in the
case of two orthogonal linear polarizations is of the type
F

In order to evaluate these forces, we have to calculate
the polarizability tensor a, which, according to (2.12), re-
quires knowledge of the submatrices 0 aIld o.

gg
These

submatrices are determined by their evolution equations
(2.9).

V. LOW-INTENSITY LIMIT

The effect of optica1 pumping between the 1ower states
on the cooling process is particularly important at low
pumping rates. The low-intensity limit is valid when the
Rabi frequencies, determined by the strength of the exci-
tation operator A, are small compared with I . Then it is
sufficient to calculate the excited-state submatrix o.„to
second order. Furthermore, this submatrix follows adia-
batically the evolution of the lower-state submatrix o.

We find from (2.9) for the excited-state submatrix

eralized master equation. The free-evolution term —iL
describes the Zeeman precession, and it disappears in the
absence of a magnetic field. The remaining terms de-
scribe the effect of optical pumping on the ground-state
density matrix. The second term on the right-hand side
of (5.2) describes the repopulation of the ground state fol-
lowing spontaneous emission. The operator fiX is an
effective Hamiltonian, which has the light shifts as eigen-
values. The operator P describes the loss due to optical
pumping. It is easy to check that 2 Tro

&&
P is the pump-

ing rate or, equivalently, the fluorescence rate. Some-
times the non-Hermitian operator A'(X —iP) is called the
effective Hamiltonian [17].

The expression (2.12) for the polarizability in the
present limit of low intensity and low precession frequen-
cy takes the simplified form

l 1

~ Trpgepeg~gg . (5.4)

(5.5)

where

The density matrix Pzg refers to the steady-state situa-
tion. One should notice that even in the steady state, the
density matrix, and therefore the polarizability tensor
(5.4), depends on time, corresponding with the motion of
the atom through the field. Alternatively, we can look
upon the steady-state density matrix for a given velocity
as a function of the position of the atom. The total force
(3.2) or (3.4) on the atoms in this limit may be written as
an average over the lower-state density matrix in the
form

I +iL 1 /2+i h+iL. A VA+ — . (V&t)AI /2+id I /2 —ib (5.6)

I /2 i b,+iL— (5.1)

o. = iLcr +
2

— g QpAo &&A Qp&g gg I 2/4+ g2

If we substitute Eq. (5.1) into the evolution equation (2.9)
for o. , we obtain a closed evolution equation for the
lower-state density matrix o.

For simplicity we make one further restriction for the
explicit calculations in this paper. VVe only consider
ground-state level splittings that are small compared with
I . Then we can omit the Liouville operator L in the
denominators in (5.1). In the case of hyperfine splitting,
this assumption is usually not justified, but a Zeeman field
can always be chosen weak enough to make the assump-
tion valid. In this case the evolution equation for o.
takes the form

serves as an effective force operator. The time depen-
dence of this operator in (5.5) is determined by the local
field at the position of the moving atom. It is easily
shown that the redistribution part of the force can be ex-
pressed in the form of an average light-shift gradient in
the form

F2+F~= i' Tro VX . — (5.7)

The scattering force F&+F3 cannot generally be de-
scribed as the average over the ground state of a gradient.

The force F is generally a function of the velocity and
the position of the atom. In practice; it is usually
sufficient to substitute into the Fokker-Planck equation
(1.3) the average of the force over a wavelength.

The absorbed power (3.12) can likewise be expressed as
an expectation value over the ground-state density ma-
trix. If we substitute (5.4) we obtain

(8+iX )o gg crgg (P—iX ), — —

with the Hermitian operators P and X defined by

8+iX= 1

I /2 —iA

(5.2)

(5.3)

O' =A'co Tro.
/4+ 5

VI. DIFFUSION TENSOR

(5.8)

Fquation (5.2) is a closed evolution equation for the
ground-state submatrix alone. It has the form of a gen-

In this section we wish to derive a complete expression
for the diffusion tensor in the limit of weak velocity and
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weak-field intensity. The diffusion tensor is defined by
(1.5) as the integrated force autocorrelation function.
The force operator arising from the external driving field
is given in (3.1). Furthermore, there is a contribution
from the coupling of the atomic dipole to the vacuum
field. The corresponding term in the difFusion tensor
rejects the random angular distribution of spontaneous
emission [18,19]. Hence we separate the total difFusion
tensor

D=D, +D„ (6.1)

into a spontaneous and a stimulated term. The first term
takes the form [16]

D,„=—,
' dng n AK nn, (6.2)

where

1 3Ign — — g ru Q cr AQu
uih

(6.3)

In order to evaluate the stimulated contribution to
(6.1), we need to determine the autocorrelation functions
of the force operator (3.1), substitute the result into (1.5),
and calculate the integral to second order in the field am-
plitude. The correlation functions can be expressed in
terms of an evolution operator U, which expresses the
solution of the evolution equations (2.4) as

is the rate of spontaneous emission per unit solid angle in
the direction of the unit vector n. The summation in (6.3)
runs over two independent polarization directions or-
thogonal to the emission direction n. The vector opera-
tor Q has the operators Q& as its spherical components,
so that its Cartesian components are [16]

—1 —1
Q. = ~-(Qi —Q-i) Qy= —-(Ql+Q-i) Q =Qo

l 2

(6.4)

(6.8)

The first term on the right-hand side of (6.8) is of second
order in the field amplitude, and decays to zero on the
rapid time scale 1" '. The last term in (6.8) is of fourth
order, and its decay rate is the pumping rate. The sepa-
ration of the correlation function into a rapidly decaying
part of second order and a slowly decaying part of fourth
order is shown in Fig. 2. After substitution into (1.5), this
separation of the correlation function gives rise to a cor-
responding separation of the difFusion tensor in the form

D (s)+D (I)
st st st (6 9)

where both terms are of second order.
The first-order term in A+ arises from the zeroth-

order evolution operator U. Hence the only nonvanish-
ing submatrix is A+ „which decays by spontaneous
emission only. On this rapid time scale, the atomic
motion is negligible because of the low-velocity limit. It
is this term which gives the rapidly decaying part of the
correlation function in the form

themselves to second order. This is obvious once we dis-
tinguish the rapid decay of the correlation function,
which is governed by the spontaneous-decay rate I, from
the slow decay determined by optical pumping. This
slow decay time is of the order of the inverse of the
pumping rate, which itself is of second order. Hence we
must calculate the long-time tail of the correlation func-
tion to fourth order. Therefore we have to evaluate
A+(r) to first order for times r of the order of I ', and
to third order for larger values of w. The separation of
time scales of the operators A+ leads to a separation of
the correlation functions (6.6) into a short-time and a
long-time term, according to

C (~)=C"(r)+C'"(r) .

0(r+r)=U(t+r, t)o(t) . (6.5)

For convenience, we introduce an abbreviated notation
for the correlation functions in the form

C+(r) —= ( f(t) f(t +r) ) =Tr A+(w) f(t +r),
C (r) = ( f(t +r)f(t) ) =Trf(t +r) A (r),

(6.6)

where the vector operators A+ are defined by the rela-
tions

A+(~)= U(t+~, r)[o(t)f(t)],
A (r) = U(t +r, t)[ f(r)o.(t)] .

The force operators f in (6.6) and (6.7) are defined in
(3.1), and they have an explicit time dependence that is
imposed by the motion of the atom as given by (2.6). We
have suppressed the dependence of the correlation func-
tions C+ and the operators A+ on the time t.

We wish to emphasize that in order to calculate the
difFusion tensor to second order in the field amplitude, it
is not sufFicient to evaluate the correlation functions

FIG. 2. Sketch of the separation of the force correlation
function. The rapidly decaying part is of second order in the
Rabi frequency, and the slowly decaying part is of fourth order.
The integral of both parts is of second order. The length of the
time tail of the rapidly decaying part is of zeroth order, and is
indicated by the short arrow. The slowly decaying part has a
time tail of order 0,which is represented by the long arrow.
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Likewise, we obtain

(6.10)

C "(r)=exp — — ib—, r TrVR (t+r)VW(t)os'(t) .
I

C'+'(r)=exp — —+ib, r Trcrgs(t)VJi (t)VA(t+r),I A+ (0)=cr, (t) f, (t)

o „(t)% (t)VA(t),I /2+th
A+„(0)=o, (t)f, (t)

A(t)cr„, (t)VR (t) .
I 2 ib,—

(6.14)

(6.11)
The corresponding contribution to the stimulated
diffusion tensor is found to be

iri I" 2
D I,'= —, ;Tro„(t)V.A (t)VA(t) . (6.12)

I /4+6,

(6.13)

where the last term is the contribution that the ground
state has gained since v=0 from spontaneous decay. The
left-hand side of (6.13) is evaluated explicitly if we substi-
tute

This contribution to the momentum diffusion arises from
the fluctuations in the number of spontaneous emissions.
It is fully determined by the steady-state ground-state
density matrix at the position of the atom.

The evaluation of the long-time contribution to D„ is
more delicate. From Eq. (6.6) for the correlation func-
tion C+ and Eq. (3.1) for the force operator, it is obvious
that we only need the eg and ge submatrix of A+. We
consider a time ~o that is long compared with the spon-
taneous lifetime, but still short compared with the pump-
ing time. Then these submatrices already follow the sub-
matrix A+ adiabatically, in the same way as the sub-
matrices o, and 0. , follow o. , as discussed in Sec. V.
It is therefore sufficient to evaluate A+~ . But since ~o is
still short compared with the pumping time, the only evo-
lution of A+ that has taken place since ~=0 is spontane-
ous decay. Therefore, at this intermediate time ~0, the
submatrix A+gg is given by

A+g~(ro) = A+sg(0)+ gQp A+„(0)Qti,
p

On the slow time scale, the evolution of A+ is deter-
mined by the same evolution equation (5.2) as o ss.
Hence we introduce the evolution operator 6, which de-
scribes the solution of (5.2) as

cr„(t +~)=6(t +r, t)o „(t) . (6.15)

Then for values of ~ that are large compared to I ', we
obtain to a good approximation

A+„(~)=G(t+~,t) A+„(0)++Q~t A+„(0)Q~
p

(6.16)

since the value (6.13) for A+ss(ro) may serve as the ini-

tial condition for the evolution on the slow time scale.
The eg and ge submatrices of A+(r) follow A+s~(r) adi-
abatically, so that

A+„(~)= . — %(t+r)A+„(~),I /2 —iA

A+, (~)= A+ (~)R (t+r) .I"/2+ & b,

(6.17)

These submatrices are of third order in the field ampli-
tude. If we substitute successively (6.17), (6.16), and
(6.14) into (6.6), we obtain the lengthy but explicit expres-
sion for the long-time behavior of the correlation func-
tion C+ (~) for ~))I

C'+"(~) =iri r G (t + ~, t) . o (t)A (t)VR(t)+ QQ&~A(t)cr„(t)VAt(t)g .
I /2+i'

p
f,tt(t +~), (6.18)

where the effective force operator is defined in (5.6). This is a correlation function that is fully governed by the ground-
state evolution operator G.

A similar treatment leads to an explicit result for the long-time behavior of the correlation function C (r) in the
form

C'i'(r)=~iiTrf, gt+r)G(t+r, t) V% (t)%(t) (t)+ QQ&VA(t)cr (t)A (t)Q&I /2 —iA gg I /2+i' p
(6.19)

The long-time correlation functions (6.18) and (6.19) are
not quite identical to autocorrelation functions of the
effective force operator f,z, defined in Eq. (5.6), in terms
of the pure ground-state evolution operator G. This is
basically due to the fact that the actual force operator f

is not restricted to the ground state. Physically speaking,
this implies that the long-time correlation function of the
force due to the external field is interrupted by spontane-
ous emission. However, it is possible to express (6.18)
and (6.19) in a form that looks like a standard correlation
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function if we introduce the vector operators N+, which
operate on ground-state density matrices, and which are
defined by the equalities

ry2+ia «

+ . QQpWo«VR Qp
p

(6.20)

I 2 —ib,

+ . QQpVRo«% QpI /2+iX p

These operators reproduce the average force by the iden-
tities

state density matrix together with the local field. The
term (6.23) contains an integration over the slow decay to
the steady state, and a typical decay time is of the order
of the pumping time.

These terms have a clear physical significance. The
part (6.2) describes the momentum fluctuations corre-
sponding to the random direction of spontaneous emis-
sion. The term (6.12) corresponds to the fluctuations in
the number of absorptions (or the number of spontaneous
emissions). The term (6.23) describes the force fiuctua-
tions arising from the state Auctuations within the
ground-state manifold.

Each term in the diffusion tensor is a function of the
velocity and the position of the atom. The position
dependence may be eliminated by averaging each term
over a wavelength, and the result can be substituted in
the Fokker-Planck equation (1.3).

Tr@+0 Tr@ 0 gg
Tro

gg
f ff . (6.21)

VII. INTENSITY SCALING
Then the correlation functions (6.18) and (6.19) may be
expressed in terms of their matrix elements as

C'+",,(r)=TrC+, (t +r)G(t +r, t)[C +, (t)0«(t) j,
(6.22)

C'",, (r) =TrC, (t +r)G (t + r, t)[4,(t)tr«(t) j .

The combined mechanism of adiabatic following on the
slow time scale and rapid spontaneous decay mixes the
order of multiplication in the evaluation of the long-time
correlation function. The complete separation of the
diffusion coeScient into a contribution exclusively deter-
mined by spontaneous decay and a term resulting from
the correlation function of the effective force in the
ground state [12] seems not to be justified in general.

The long-time correlation functions (6.18) and (6.19)
give rise to a contribution to the momentum diffusion
tensor to second order in the field amplitudes, even
though these correlation functions themselves are of
fourth order. The result for the long-time part of the
diffusion tensor is

d7- C '+ 7- —F t F t +7-

The evolution equation (5.2) for the ground-state densi-
ty matrix in the low-intensity limit has the formal struc-
ture

do
gg = W(B,I,R(t))a«(t),

dt
(7.1)

where the evolution operator 8' is defined by the right-
hand side of (5.2). In (7.1) we explicitly indicate the
dependence of the evolution on the magnetic field 8 and
the intensity I. The Zeeman evolution operator L, in
(5.2) is simply proportional to 8, and the remaining terms
on the right-hand side are proportional to the field inten-

sity. Multiplying the intensity I and the magnetic field 8
by a factor of g has the effect that the total evolution
operator is multiplied by g. Furthermore, we emphasize
that the operator 8' depends on time only due to the
motion of the atom with velocity v. This has the result
that scaling down the magnetic field, the intensity, and
the velocity by a factor g implies that the entire time evo-
lution of 0. is scaled down by the same factor, so that

+C'"(r)—F(t +r)F(t)], (6.23) o ($8, $I, (v, t)=cr (B,I,v, gt) . (7.2)

where the one-time averages F=( f ) are defined as in
(5.5). It is easy to check that the integrand in (6.23) de-
cays to zero for large values of ~. This results from the
fact that the effective evolution operator 6 drives an arbi-
trary operator to the steady-state density matrix, so that

lim G(t+~, t)B =cr (t+~)TrB .
7~00

(6.24)

The contribution (6.23) has the significance of the
momentum fluctuations arising from the state Auctua-
tions over the ground-state sublevels.

The total stimulated diffusion tensor is now obtained
by substituting (6.12) and (6.23) into (6.9). Together with
the spontaneous contribution (6.2), this specifies the total
diffusion tensor (6.1). Each one of these terms is of
second order in the field amplitude. The terms (6.2) and
(6.12) are fully determined by the instantaneous ground-

This is directly checked by taking the time derivative of
the left-'hand side of (7.2), while using

W'((B, JI,R) =(W(B,I,R) . (7.3)

and

F(gB,JI, (v) =gF(B,I,v) (7.4)

D($8, (I,(v) =gD(B,I,v) . (7.5)

Equation (7.2) implies that the atomic evolution for a
scaled-down intensity, magnetic field, and velocity is the
original evolution in slow motion.

From (7.2) it is easy to show that the average force and
diffusion tensor obey the scaling laws



470 Cx. NIENHUIS, P. van der STRATEN, AND S-Q. SHANG

These equations indicate that the steady-state distribu-
tion function gets narrower by a factor of the order of &g
if we lower the intensity. This is easily illustrated in the
case where the velocity width is suKciently low, so that
over this width the force obeys the simple damping law
(1.6), and the diffusion tensor varies negligibly with veloc-
ity. Then it follows from (7.4) that the damping constant
y is independent of the scaling parameter g, whereas the
difFusion coefficient D is proportional to g. Then Eq. (1.7)
proves that the steady-state temperature T is proportion-
al to g, so that lowering the intensity and the external
field leads to a correspondingly lower temperature. Obvi-
ously, the region of validity of the damping law scales
down with g as well. Furthermore, this argument loses
its validity for temperatures of the order of the recoil lim-
it (1.2), where the Fokker-Planck equation (1.3) is no
longer valid.

The fact that the steady-state temperature goes down
linearly with the intensity has been shown before in spe-
cial cases [12,10). The present argument shows the gen-
eral validity of this conclusion. Obviously, this mecha-
nism for reaching temperatures below the Doppler limit
requires that there are values of the velocity where the
force vanishes, and where the derivative of the force with
respect to the velocity is negative. These conditions re-
quire either polarization gradients or ground-state level
splitting. In the absence of level splitting we can omit the
operator L in (5.2). For a uniform polarization, the
remaining terms on the right-hand side of (5.2) depend on
time only through their proportionality with the local in-
tensity at the position of the moving atom. Then the
steady-state density matrix which solves (5.2) is indepen-
dent of the position. Then the average force as evaluated
according to (5.5) varies with the local intensity, but it
does not depend on velocity, so that cooling cannot
occur.

We conclude that cooling below the Doppler limit re-
quires a steady-state solution of (5.2) that depends on po-
sition. This in turn requires either ground-state level
splitting or polarization gradients. A level splitting
causes a precession of the coherences between ground-
state sublevels, whereas the optical-pumping terms in
(5.2) try to restore a steady state. The balance between
these two effects depends in a sensitive way on the ratio
of the precession time and the time needed to travel a
wavelength, and this corresponds to a sensitive depen-
dence of the position-dependent density matrix on the ve-
locity. The resulting velocity dependence of the average
force then leads to cooling around velocity values where
the force is zero.

On the other hand, when the polarization varies over a
wavelength, the local field tends to drive the density ma-
trix to a steady state that is different for different posi-
tions. The effective time variation of the evolution opera-
tor due to the atomic motion now induces a nonadiabatic
coupling. The ground-state density matrix and the aver-
age force will therefore depend in a sensitive way on the
atomic velocity, which again will lead to cooling around
velocity values where the force vanishes. In both cases it
is essential that the ground state consists of more than
one substate.

VIII. TWO COUNTERPROPAGATING WAVES

We wish to present the results of numerical calcula-
tions of the force in the one-dimensional case of two
counterpropagating plane waves with the same ampli-
tude. In the case of a standing wave, where the two
waves have the same polarization, sub-Doppler cooling
can only occur in the presence of a level splitting. In this
case we include a transverse magnetic field along the X
direction, so that the Liouville operator L is defined by

l
LL cT

gg
= NL [J~, cr gs ] (8.1)

where coL is the Larmor precession frequency. In the
case of a standing wave with a transverse magnetic field,
parity invariance shows that the average force is an odd
function of the velocity. This implies that the force
passes zero for zero velocity.

In the complementary case of two counterrunning
waves with equal amplitudes and orthogonal polariza-
tions, and in the absence of external dc fields, the radia-
tion field is invariant for rotation over ~ around an axis
normal to the propagation direction. This demonstrates
again that the average force is an odd function of the ve-
locity.

We take the Z axis along the propagating direction, so
that the atom-field coupling operator (2.3) takes the form

~(Z) ~ iKZ+~ e
—iKZ (8.2)

where the Rabi operators Ai and %2 do not depend on
position. The force (5.5) is then

+W'X. -' +A'X " ). (8.4)

Since the intensities of the two plane waves are equal, we
can write

%i = ,'Ae, Q, %—2=—,
'.Qe2 Q, (8.5)

where e& and ez are the polarization vectors, and Q is the
effective Rabi frequency, which measures the strength of
the atom-field coupling. In (8.3) one notices the distinc-
tion between the scattering and the redistribution contri-
bution to the force. The scattering part is the photon
momentum times the difference in absorption rate for the
two beams. The redistribution part of (8.3) in units of the
photon momentum is twice the net redistribution rate of
photons from beam 1 to beam 2. For a standing wave,
where the two polarization vectors are equal, and
Xi=%2, the scattering term vanishes, and (8.3) is a spe-
cial case of (3.9). For two orthogonal polarizations, (8.3)
corresponds to the sum of (3.10) and (3.11).

F=, , Trr [I (%ti%, —W2&2)
I /4+6

2iKZ —~t+ e2iKZ)
~

(8.3)

and the absorbed field power is
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The symmetry of the force for reversal of the detuning
6 can be studied by applying the time-reversal invariance
to the evolution equations (5.2). The antiunitary time-
reversal operators 8 is defined as usual by I 20]

(8.6)

The strength of the magnetic field is described by

b=
Q

(8.1 1)

(8.12)

Then for a steady-state solution os'(t) of (5.2) with A
defined by (8.2) and (8.5), the time-reversed density ma-
trix 8 os'(t)0 is the solution for the situation with the ve-

locity and a magnetic field reversed, with the polarization
vectors replaced by their complex conjugates, and with
opposite detuning. This gives for the average force the
general relation

O40

0.05—

0—

I
I

t I I I
I

I I I I
I

I I I I
I

I I I

/l

X

F(B, ue„e~, b. )=E(—B, —u, ef, e2, b) . —(8.7)

In the two cases of a standing wave with a transverse
magnetic field, and of two counterrunning waves with
equal amplitude and orthogonal polarizations, we con-
clude that the force is an odd function both of the veloci-
ty and the detuning. Hence a positive derivative of the
force with respect to the velocity can always be made
negative by inverting the detuning.

In the steady state in the periodic radiation field, the
density matrix can be expanded in a Fourier series:

e 2inEZ (8.8)
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where the matrices cr„obey a set of coupled equations
that can be derived by substituting (8.8) into (5.2), with
Z =ut. The force (8.3) averaged over a wavelength is
then found to be

AK [I Trao(W, A. ,
—%2%2)I /4+6

0
"d

0

0—

—0.05—

I I I I I I I I I I I I I I I I I I

+2ib, (Tr0. ,%,%z —Tro,Az%, )] . (8.9) —0.1 0 0.1
reduced velocity w

0.2

Explicit expressions for the diffusion tensor (6.1) follow

by substituting (8.2) into the equations (6.3), (6.12), (6.18),
and (6.19). The stimulated contribution has D,~ zz as the
only nonvanishing component, which corresponds to
broadening of the distribution of the velocity component
in the propagation direction. The spontaneous contribu-
tion to the diffusion tensor leads to broadening of all ve-

locity components. Hence transverse heating is ex-
clusively due to the random directions of spontaneous
emission.

We have numerically solved the coupled equations for
the Fourier components o.„of the steady-state density
matrix, in various specific cases of polarization directions
and values of the atomic angular momenta, with or
without an external static transverse magnetic field, and
as a function of the velocity v in the Z direction. The
Fourier components allow us to evaluate the average
force. For convenience we introduce the dimensionless
force

(8.10)

and the dimensionless velocity

I
I

I I I t
I

I I I I
I

I I I I
I

I I I I
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0—

—0.05—
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FIG. 3. Reduced force as a function of the reduced velocity
for three different configurations and four values of the lower-
state angular momentum J~, and with the excited-state angular
momentum J, =J~+1. The detuning is 6= —1.5I in these
(and all subsequent) curves. (a) Circularly polarized standing
wave (o+) with transverse magnetic field with reduced strength
b =0.05; (b) counterpropagating waves with opposite circular
polarization (o.+ —cr ); (c) counterpropagating waves with or-
thogonal linear polarization (~z —m z).
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The use of these quantities is that the reduced force P as a
function of the reduced velocity w (and the reduced rnag-
netic field b, if present) is independent of the intensity and
o the oscillator strength of the atomic transition

confi
In Fig. 3 we display the reduced force for va

'or various
n gurations and for a few values of J and J,=J +1.

One notices that the force tends to be larger for larger an-
gular momenta. A standing wave with twi a ransverse mag-

netic field ivesgives a much richer structure than does the

izations. Coo in
case of counterpropagating waves with orthogonal polar-

Cooling to zero velocity occurs in all displayed
cases. Figure 4 shows th fe orce or various
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tribution force F . arce 4. 'a' ~ounterpropagating waves with opposite
circular polarization (o —o.+ —o. ', (b) counterpropagating waves
with orthogonal linear polarization ( — );

'
n ~& —~z, c) counterpro-

pagating waves with orthogonal linear polarization (m& —m&),
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or ree i erent configurations, for detuning 6= —1.5I, and

for a fixed value of hthe lower-state angular momentum Jg 2.
The configurations in (a)—(c) are the same as in Fig. 3
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configurations for a fixed value of J =2 and different
values of J, . The sign of the derivative of the force at
zero velocity tends to reverse with J Jg For the cases
(b) and (c) of counterrunning waves with orthogonal po-
larizations without a magnetic field, this derivative is ap-
preciably smaller for J Jg or J —1 than in the case
where J,=J +1. Figure 5 presents the total force along
with the scattering part F3 and the redistribution part F4
in a few cases of counterrunning waves with orthogonal
polarizations for angular momenta J = 3 and J, =4. Fig-
ure 5(a) shows that for opposite circular polarizations,
the force is mainly due to scattering, whereas it is obvious
from Fig. 5(b) that orthogonal linear polarizations create
dominantly a redistribution force. Figure 5(c) shows the
case of orthogonal linear polarizations and a magnetic
field along one of the polarization directions. This is the
only displayed case where the force is not an odd func-
tion of the detuning and the velocity. Still it follows from
Eq. (8.7) that the force is invariant for inversion of both b
and M.

Calculations of the average force as a function of veloc-
ity were presented for a few specific configurations and
intensities in Refs. [12] and [13]. Our results demonstrate
the general applicability of the formalism presented in
this paper, and the scaling properties of the force. More-
over, the composition of the total force as resulting from
a combination of scattering and redistribution of photons
is clearly displayed by our results.

IX. CONCLUSIONS

When an atom moves with a low velocity through an
arbitrary monochromatic radiation field, the instantane-
ous atomic dipole is related to the local field by an
effective polarizability tensor. This result, which is ex-
pressed in Eqs. (2.11) and (2.12), is valid when the time
needed to traverse a wavelength is long compared with
the atomic lifetime, so that the optical coherences can be
adiabatically eliminated. The atomic levels coupled by
the monochromatic field may consist of an arbitrary
number of degenerate or nearly degenerate substates.
The total radiative force on the atom may be generally
separated into a sum of four terms, as shown in
(3.7)—(3.11). Apart from the radiation pressure and the
dipole force, we obtain two terms that depend on the gra-
dient of the polarization. One of these latter terms con-
tains the anti-Hermitian part of the polarizability and
corresponds to Auorescent scattering of absorbed pho-
tons. The other term arises from the redistribution of
photons between the plane waves that compose the radia-
tion field, and it depends on the Hermitian part of the po-
larizability.

Several recent methods for cooling below the Doppler
limit require a radiation field at low intensity [8—13]. In
this case the atomic polarizability depends exclusively on
the density matrix for the lower state of the atom. We
derive a general closed evolution equation (5.2) for this
density matrix. The force can be written as an average of
an eff'ective force operator (5.6) over the lower-state den-
sity matrix. The diffusive heating of the velocity distribu-

iiihQ

I /4+ 5 (9.1)

If this inequality is not valid, the variation of the velocity
over a wavelength could be appreciable, and spatial local-
ization could occur.

The results for the calculated average forces are shown
in Figs. 3 —5. The force depends strongly on the polar-
ization and on the values of the atomic angular momenta.
However, since in a large class of cases the force is an
odd function both of the velocity and of the detuning,
cooling is possible in many cases for an appropriate
choice of the detuning. One should be careful, however,
in predicting the cooling behavior for two- or three-
dimensional schemes for the results for waves propaga-
ting in a single direction, since the effects of various beam
directions in the evolution equation (5.2) are highly
nonadditive.
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tion is determined by a diffusion tensor, which we
represent as a sum of three terms. The first term (6.2)
expresses the force fluctuations due to the random direc-
tions of spontaneous emission, and the second term (6.12)
results from the fluctuations in the number of absorbed
photons. Both terms are determined by the instantane-
ous lower-state density matrix. The third term (6.23)
contains the slow evolution of the force correlation func-
tion, and it arises from the fluctuations within the sub-
states of the lower state. The evolution of the atomic ve-
locity distribution in the present semiclassical approxima-
tion is fully determined by the average force and the
diffusion tensor, which specify the Fokker-Planck equa-
tion (1.3).

By inspection of the scaling properties of the evolution
equation (5.2) we show that for a transition between two
states with given angular momenta, and for any
configuration of polarized beams that gives cooling, the
limiting temperature can be scaled down by lowering the
intensity. All results mentioned so far are valid for an ar-
bitrary monochromatic field. It may be composed of any
number of plane waves with arbitrary polarizations, and
we allow for an arbitrary magnetic field, which adds Zee-
man precession to the atomic evolution. Hence cooling
schemes in one, two, or three dimensions are described by
our formalism.

In the special case of two counterrunning plane waves,
we calculate numerically the velocity-dependent force,
averaged over a wavelength, both for a standing wave
with a transverse magnetic field, and for two orthogonal
polarizations. Here we have assumed that the velocity of
the atom is constant during the passage of a wavelength.
This assumption is justified provided that a typical light
shift is small compared with the atomic kinetic energy, so
that
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