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Resonant periodic-gain surface-emitting semiconductor lasers and correlated emission
in a ring cavity
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A semiclassical theory of a resonant periodic-gain (half-wave spatially periodic-gain segments) laser in

the context of a semiconductor medium is presented using an oversimplified picture. Terms arise in the

polarization of this periodic-gain medium that lead to enhanced light-matter interaction, doubling the

gain coeKcient, and enhancing mode-pulling e6'ects. Discussion of the physical processes is extended to
include a comparison with the ring-cavity correlated-emission laser, which also utilizes a periodic-gain

medium and exhibits a vanishing phase fiuctuation between the degenerate counterpropagating modes.

A simple physical picture of radiations from a half-wave-periodic, radiating dipole array illustrates the

common mechanism and important relationship between these lasers.

PACS number(s): 42.50.—p, 42.60.Da, 42.55.Px, 42.60.8y

I. INTRODUCTION

Recent reports of resonant periodic-gain (RPG)
surface-emitting semiconductor lasers [1—4] have created
a great deal of interest because of their potential applica-
tion in optoelectronic integration [5], and two-
dimensional arrays [6—8] for optical processing. These
1aser structures make use of half-wave-periodic, thin sec-
tions of gain medium (e.g. , GaAs/Ali „Ga„As quantum
wells) similar to that proposed for a correlated emission
in a ring cavity [9]. The concept of a correlated-emission
laser (CEL) was first developed [10] some five years ago.
In addition to its intrinsic interest to quantum optics, the
CEL holds promise for applications in various areas of
fundamental and applied physics, e.g. , the laser gyro-
scope [11,12]. Several detailed investigations of various
aspects of a CEL including linear [13—16] and nonlinear
theories [17,18] have been reported. In these devices, two
laser modes are coherently coupled either by preparing a
three-level laser medium in a coherent superposition of
upper states [10] or by using a spatially periodic gain
medium in a ring cavity [9]. Figure 1(a) shows schemati-
cally a periodic gain medium CEL in a ring cavity. The
periodic gain medium provides the correlation between
the two degenerate counterpropagating waves in the ring
cavity by constructive interference. %'hen the light of a
mode is partially reAected from a layer of the gain medi-
um, constructive interference is achieved when the phase
of counterpropagating mode matches that of the rejected
wave. Much of this work, both theoretical [13—18] and
experimental [19—24], has been directed towards three-
level and two-photon systems [15].

In Fig. 1(b) the structure of a RPG surface-emitting
laser with integrated epitaxial mirrors is shown [25—28]
where only a few layers have been illustrated to simplify
the picture. A standing-wave optical field is shown in re-
gistration with the quantum-well gain layers. This results
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FIG. 1. Schematic representation of (a) a CEL in a ring cavi-

ty and (b) a RPG surface-emitting semiconductor laser. Both
laser structures incorporate a /I /2 periodic-gain medium. For
the CEL system this gain medium is placed in a ring cavity. For
the RPG laser, high reflectors (A, /4 stacks of AlAs and
Al, „Ga As) are epitaxially grown a1ong with the gain medium
forming a high-Q Fabry-Perot cavity.
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in an enhanced light-rnatter interaction. These layers in-
herently operate in a single longitudinal mode because of
the short cavity lengths and, hence, large free-spectral
range compared to the gain bandwidth. Although a
quantum theory of a CEL based on a spatially periodic
gain medium in a ring cavity has been developed [29], the
analysis was directed towards noise quenching and the
enhanced light-matter interaction aspect (which is a key
concept in RPG lasers) was not emphasized.

In this paper, we present an approximate semiclassical
theory of RPG lasers (and compare with CEL), treating
the valence and conduction bands of semiconductors as a
homogeneously broadened two-level system [30] where
the Fermi-Dirac distribution for the equilibrium carrier
population is used instead of Maxwell-Boltzmann distri-
bution. The RPG semiconductor medium is placed in a
Fabry-Perot cavity such that standing-wave optical-field
interaction is enhanced by locating the thin sections of
the gain medium (quantum wells) at the antinodes [1—4].
Enhancement in the gain coefficient and contributions to
mode-pulling effects due to the RPG structure are evalu-
ated. In RPG medium, amplified spontaneous emission
in the directions transverse to the lasing axis is reduced
because of the small overlap between optical field and
gain sections [3]. It is straightforward to adapt the for-
malism for any two-level system, instead of two-band
semiconductors which in reality are quite complex and
require several approximations.

Relationships between a ring cavity CEL and a Fabry-
Perot cavity RPG surface-emitting laser are discussed.
Although both lasers make use of spatially half-wave
periodic-gain media, they differ in cavity feedback mech-
anism. In a CEL, the ring cavity does not inAuence the
operating wavelength, rather counterpropagating run-
ning waves of the same frequency interact with periodic-
gain medium and become correlated [29]. On the other
hand, in RPG surface-emitting lasers [1—4], the Fabry-
Perot cavity mode strongly affects the operating frequen-
cy and infiuences [31] the interaction of the optical field
with periodic-gain medium. A simple physical model,
based on the radiation pattern of a periodic dipole array,
demonstrates that, not surprisingly, common physical
processes, e.g. , quantum interference effects, govern the
behavior of both CEL and RPG lasers.

The organization of this paper is as follows: In Sec. II
we develop a semiclassical theory of RPG surface-
emitting laser, where gain coefficient, mode pulling and
pushing, and saturation terms are derived following the
method of Ref. [32]. In Sec. III, the basic physical pro-
cesses resulting from light-matter interactions in RPG
surface-emitting lasers and CEL in a ring cavity are dis-
cussed. Common features and differences between RPG
and CEL structure are identified. The relationships be-
tween these laser systems are further illuminated by con-
sidering the radiation pattern of a k/2-spaced dipole ar-
ray in Sec. IV. Finally, in Sec. V, concluding remarks
summarize the present status of RPG lasers in the con-
text of semiconductor-based CEL in a ring cavity.

II. SEMICLASSICAL THEORY OF RPG LASER

RPG surface-emitting semiconductor lasers were pro-
posed [1] and demonstrated [1—4] recently. Progress has

been rapid, and efficient cw operation under optical
pumping has been achieved [26,27]. A schematic of the
RPG structure is shown in Fig. 1(b); for details of various
configurations Refs. [1—4, 25,26] should be consulted. In
the following, an oversimplified semiclassical theory is
developed using the density-matrix formalism.

The density-matrix formalism [32], developed original-
ly for a two-level system, has been applied by several au-
thors [30,33—37] to the analysis of the linear and non-
linear contributions to the optical gain in semiconductor
lasers. The optical properties of a semiconductor are
mainly determined by the conduction and the uppermost
valence bands. In the case of quantum-well structures,
the subband transitions with the b,n =0 selection rule
dominate. Physically, the dominant optical transitions
are those which involve an electron-hole pair whose wave
functions have maximum spatial overlap, i.e., an electron
in the conduction subband and holes in the valence sub-
bands having the same quantum numbers. This
simplified picture suggests an analogy with a two-level
atomic system. A theoretical derivation, as well as a
geometrical picture of an equivalent electronic dipole mo-
ment in a direct band-gap bulk semiconductor, has been
given [35]. The Bloch functions for electrons in the con-
duction band and holes in the valence bands were used
for calculation of dipole matrix elements. At band edges,
the periodic parts of the electron and hole Bloch func-
tions have S-like and P-like symmetries, respectively, and
light- and heavy-hole wave functions are orthogonal to
each other. For quantum wells, the band gap increases
and the electron-hole interaction is modified as a result of
spatial localization. The dipole strength increases and
the degeneracy between light- and heavy-hole subbands
at K =0 is lifted. For GaAs/Al& Ga As quantum
wells, the electron —heavy-hole band gap is smaller than
that of the electron-light hole.

Here, density-matrix equations for a semiconductor,
similar to those developed by Agrawal [30] and Kazari-
nov, Henry, and Logan [34], are used to determine the
effects of the RPG spatial structure on the linear gain.
The analysis begins with the relations between the medi-
um polarization (driven by the electric fields) and the off-
diagonal density-matrix elements and proceeds to calcu-
late the polarization of the semiconductor medium inside
a Fabry-Perot cavity of total length L (along the z axis)
following the procedure described in Ref. [32]. Then, the
linear gain and frequency determining relations from the
self-consistent laser theory are used to show the contribu-
tion of additional terms arising from the spatial periodici-
ty of the medium.

As pointed out above, in the density-matrix approach
for semiconductor lasers, the conduction-band state ~c )
and the corresponding valence-band state

~
v ) participat-

ing in the band-to-band transitions are modeled as a
"two-level system" analogous to that of Ref. [32]. The
dipole moment between conduction and valence bands is
denoted by d„and an explicit calculation is carried out
following [35] except for the quantum confinement effects
due to quantum wells. In a semiconductor medium, the
carrier population follows Fermi-Dirac statistics (for
both the electron and hole populations in their respective
bands), as contrasted to the two-level atomic systems
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obeying Maxwell-Boltzmann statistics. Coulomb effects,
carrier-carrier scattering, and phonon interaction all play
an important role in establishing the Fermi-Dirac distri-
bution on a subpicosecond time scale and medium
behaves as a homogeneously broadened system [38].

The polarization P(z, t) caused by the field E(z, t) in a
medium along the z axis can be obtained by taking the
trace of the induced dipole moment d„with the density
matrix and summing over all possible band-to-band tran-
sitions co„

P(z, t) = g [d„,p„(z, t)+d„p„,(z, t)] (1)

or
P (z, t) = f d'D (m, )[p„(z,t) +p„(z, t) ]den, (2)

where d„=d„,=d' is taken as real and D (co, ) is the den-
sity of states per unit volume; p,„and pu, are the off-
diagonal elements of the density matrix. The polariza-
tion in the medium in a Fabry-Perot cavity can also be
expanded in terms of complex amplitudes and the cavity
eigenmodes [32],

P„(t)
P(z, t) = g exp[ i (v„—t +P„)]U„(z)+c.c. ,2

(3)

X f fD (co, )d'p, „(z,t)de, U„'(z)dz ,
0

(4)

where P„(t) is the complex amplitude, v„ the frequency,
P„ the phase, and U„(z) the cavity mode profile for the
nth-order mode of the empty resonator. The complex
amplitude P„(t) is obtained from Eqs. (2) and (3) in the
rotating-wave approximation [32,37],

P„(t)= exp[i( vt+P„)]=2

and

p,„=—(y+im, )p,„+—v,„(p« —p,„),cu g cu cc uu

pue =p cu

(7)

(8)

where the dot means the time derivative and where the
light-matter interaction is contained in the term
V„=V,'„y, and y„are intraband energy relaxation rates
for the conduction and valence band, respectively, and
are connected to T& [32]. Here, y is the polarization re-
laxation rate (y = T2 where T2 is the dipole dephasing
time) and co, is the transition frequency. p«and p,„are
the occupation probabilities of electrons and holes in
quasithermal equilibrium and are determined by quasi-
Fermi levels of the conduction and valence bands, respec-
tively. The quasi-Fermi levels result from the pump
source, e.g., optical or electrical pumping. Spontaneous
emission is not included in this simple model. The light-
matter interaction term can be written explicitly as

Vcu

dl

ll
g E„(t)exp[ i(v„t—+P„)]U„(z)+c.c., (9)

where the summation runs over all of the optical modes.
In order to calculate the 6rst- and third-order terms of

the induced polarization, Eqs. (S)—(8) are solved (see Ap-
pendix) using slowly varying amplitude approximation,
leading to rate equation approximation. Contributions to
the linear gain coe%cient a, saturation parameter P, and
frequency pulling and pushing terms are derived using
the explicit expression for polarization in the self-
consistency equations [32]. For a single longitudinal
mode (RPG lasers inherently operate at a single longitu-
dinal mode because of large mode spacing in the short
cavity) including only up to third-order polarization
terms, we find

where

X= f;~ U„(z)i'dz E= E+a 1 ——E E,
2Q a (10a)

lp„= r, (p„p—„) „(—~,.p.,——1'.,p,.»—
lr.(p, P..)+—„(v,.p—., &.,p—,.»—

(S)

is a normalization factor.
To obtain P„(t), the off-diagonal element of the density

matrix p„(z, t) is evaluated by solving the formal density
equations for a two-level or a two-band, i.e., for a serni-
conductor laser [30,33—37] under steady-state conditions.
We take a special case of a semiconductor medium from
which RPG structure can be fabricaled relatively easily.
The density-matrix equations for a semiconductor laser
are used from Refs. [30,34], with a siinplified notation for
the components of p(z, t),

a(co, —v)v+/=0+ 1 ——E13

y a
where 0 and Q denote the passive mode and "Q" of the
resonator. Here,

(lob)

sin(k„L, ) ~k„a=ao 1 — cos 2y„+(m —1)
k„L,, k„

sin(m mk„ /k„)
X

m sin(n. k„ /k„)
(1 la)

and, where a0 depends on quasi-Fermi levels p„and p„
and polarization relaxation rate y [see Appendix, Eq.
(A17b)],

T

3 d p Xc+Xu ao 4 sin(k„L, ) mk„
1 —— "

cos 2y„+ (m —1)
(~, —v )2+y~ 3 k„Lz " k„

sin( m m.k„ /k„)
m sin(mk„/k„)

1 sin(2k„L, ) k„sin(2m n.k„ /k„)+ — cos 4y„+2m(m ~ 1)
3 2k„L,, k„m sin(mk„/k„)

(1 lb)



RAJA, BRUECK, SCULLY, AND LEE

sin(k„L, )
a ——ao &+

k„L,
(12a)

3 d' y 'Vc+'VU

8 g' y, y,
&o

(co, —v) +y

4 sin(k„L, ) 1 sin(2k„L, )
X 1+— +—

3 k„l, 3 2k„L,
(12b)

For k„L, ((1, which is the case for quantum-well struc-
tures, the gain is doubled on resonance and the saturation
parameter is increased by a factor of 3.

For an insight into the modal frequency behavior, we
neglect P, i.e., ignore dispersion effects [32,36], and write
the equation

(co, —v)v=0+ (a /3E ) . — (13)
y

When the term f3E is small, we find that mode pulling is
increased for RPG lasers (compared to the conventional
uniform gain medium lasers) because of gain enhance-
ment.

Equation (13) can be recast as

where

A+Su),
1+S (14)

S is the stability factor. From Eq. (14) it is seen that the
laser frequency v is a weighted average of passive cavity

P, the saturation parameter, depends both on polarization
relaxation y and intraband relaxation rates y, and y,
and through o.'o it also depends on quasi-Fermi levels
which take into account interband relaxations. Typical-
ly, large values of y, 10' /sec [34,36], allow the use of the
rate-equation approximation. In the above expressions,
k„=n m /L with n (integer) that the number of half wave-

lengths in the unpumped cavity mode and L the total
cavity length, L, ( ((X) is the thickness of an individual
quantum-well gain section, k„=2m/A, „where k„ is the
resonant wavelength set by the physical spacing of the
quantum wells, m is the total number of quantum wells,
and P„=k„ao where ao is the spacing of the first quan-
tum well from the z =0 end of the resonator. Here, ao is
the usual gain coefficient (scaled appropriately for the
thin-gain sections) as given in the Appendix [cf. Eq.
(A17b)]. These equations show a resonance behavior, the
term tsin(mwk„/k„)/[m sin(rrk„/k„)]] is just (

—1)
for k„=k„and is of order 1/m for k„Ak„, the width of
the resonance scales inversely as the number of quantum
wells. This behavior has been discussed previously for
RPG lasers [3]. Additional insight can be gained into
these equations by considering the resonance case n =I,
k„=k„, and P„=vr/2. Under these conditions,
cos[2y„+(m —1)nk„/k„]~( —1) and Eqs. (11) simpli-
fy to

mode frequency Q and medium frequency co, with
weighting factors unity and S, respectively. For S «1
the laser frequency approaches 0, and with S)&1 the
operating frequency is "pulled" towards the medium fre-
quency, especially in the case of a poor cavity Q, v=co, .

In the steady-state case, Eq. (10a) gives

a PE—=
2Q

which leads to a stability factor

(16a)

and

S =v/2Qy (16b)

y 0+ ( v/2Q)co,

y+ /2Q
which is the same as for the uniform gain medium lasers
[32]. From this result, it is apparent that for low-Q cavi-
ties, i.e., v/2Q ))y, the operating frequency v ap-
proaches cu„ the medium frequency, and in case of high-

Q cavities v/2Q ((y, the laser frequency v approaches
Q, the cavity mode.

III. PHYSICAL PROCESSES IN RPG
AND CKL LASERS

In this section, the fundamental processes resulting
from enhanced light-matter interaction in RPG-based
surface-emitting lasers [1—4,25 —28] and a ring-cavity
CEL [9,29] are discussed. The theory of correlated emis-
sion in the periodic-gain medium in a ring cavity was
developed by Krause and Scully [29] using a fully
quantum-mechanical treatment, where various coe5-
cients for linear gain (a;J) and nonlinear terms (P;J.k )

were derived. A complete quantum-mechanical formula-
tion of the CEL problem was most appropriate to analyze
the correlation of spontaneous emission which arises
from the cross coupling of counterpropagating modes in
the periodic-gain medium of a ring cavity. On the other
hand, while considering a RPG medium in a Fabry-Perot
cavity, the electromagnetic fields can be described classi-
cally and a semiclassical laser theory described in Sec. II
is sufticient to explain the results and predict the behav-
ior.

Since both the ring-cavity CEL [9] and RPG surface-
emitting [1—4] lasers (in a Fabry-Perot resonator) utilize
half-wave spatially periodic-gain medium, it is
worthwhile to compare the fundamental principles in-
volved in noise quenching via correlated spontaneous
emission, and enhanced gain and saturation coe%cients.
The fundamental linewidth of laser radiation is due to
spontaneous emission events in the lasing medium. In an
atomic medium laser, this leads to the well-known
Schawlow-Townes linewidth. In semiconductor devices,
the strong coupling between the gain and the electronic
contribution to the refractive index gives rise to substan-
tial increases in this linewidth [39—41]. The linewidth in
a RPG surface-emitting laser is as yet an open question.
In the present discussion, we treat the problem as if it
were a striated gain medium of independent oscillators
and quote the results from the CEL calculations [29] for
the diffusion coefficient of the relative phase angle D (0)
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between the two degenerate counterpropagating modes in
the ring cavity:

D(8) =(4p ) '(a»+a22 —2a»cosg)

g(pll;11+p22;22+6p12;12 8pll;22cos2$)

where a; and p;i. k~ are gain and saturation coefficients,

p denotes the average number of photons in each mode,
and /=8+(vl v2)t —where the subscripts refer to the
two counterpropagating modes in the ring cavity.

In order to achieve noise quenching between the two
modes, the diffusion coefficient D (8) should vanish. This
can be achieved when all gain and saturation coefficients
become equal, i.e., a„=a22=a,2—:a and P„.„=P22.„
=p, 2. ,2=p». 22

=—p. Then the diffusion coefficient will
vanish provided /=0 or nonlinear saturation effects lead
to D ( 8)=0. The equality of various coefficients a; and
p;~. k can be achieved by interference of two counterpro-
pagating modes in a ring cavity at the thin sections of a
periodic-gain medium.

To show the role of periodic-gain medium, we repro-
duce the expressions for a; and P; .k from Ref. [29] in
original notation:

1/2
a,j—:ao n (z)u, (z)uj*(z)dz (19)—I /2

um can provide twice the gain but it also saturates at
lower intensities. It is interesting to note that the linear
gain and saturation coefficients, i.e., Eqs. (12a) and (12b)
can also be derived from Eqs. (19) and (20) simply using
u (z) as Fabry-Perot mode functions for i =j, etc.

For the frequency behavior of RPG lasers, Eq. (13) of
Sec. II predicts strong mode-pulling effects which should
lead to a stable frequency operation. The nonlinear satu-
ration term, however, counteracts at high intensities and
reduces the stability factor given in Eq. (15). It is in-
teresting to note that the steady-state modal frequency
behavior of the RPG laser under saturation conditions
approaches that of a uniform medium laser. However,
under pulsed and modulated conditions, RPG would ex-
hibit highly stable frequency operation.

IV. RADIATION PATTERN
OF A PERIODIC DIPOLE ARRAY

Insight into the common physics underlying the behav-
ior of both RPG and CEL lasers can be gained by consid-
ering the radiation patterns associated with a three-
dimensional periodic radiating dipole array. Assume, as
in Fig. 2, an array of dipole oscillators with equal dipole
moments, p =pe3, aligned in the z direction and located
by the position vectors

and
I /2

PJ k=PO . n (z)u;(z)u (z)uk (z)u *(z)dz,—1/2
(20)

r= IJaJeJ
J

(22)

where the a are the unit-cell distances in the e- direc-

where u&(z) are normal mode functions and n (z) is linear
density of gain medium. For traveling waves in a ring
cavity the normal mode functions can be expressed as

u 1(z)=exp(ikz), u2(z) =exp( ikz) —. (21)

It is easy to show that with spatially periodic n (z) with
z =jlrjk, i.e., (jA, /2) periodicity with j an integer, the
diffusion coefficient vanishes, whereas for a uniform gain
medium with n(z)=no (constant) it does not. It is im-
portant to note that the ring cavity does not inhuence the
lasing frequency; rather the periodic-gain medium pro-
vides a constructive interference between the propagating
modes.

On the other hand, in RPG surface-emitting lasers the
Fabry-Perot cavity plays an important role [31]. The
Fabry-Perot cavity formed by the integrated multilayer
high reflectors around a 4—5-pm-thick RPG semiconduc-
tor provides a standing-wave optical field. The antinodes
of the standing-wave optical field must be in registration
with the thin sections of gain medium (i.e., quantum
wells) for an optimal interaction between the light and ac-
tive material. Also, the short cavity length and conse-
quent large longitudinal mode spacing leads to single lon-
gitudinal mode operation of such microlasers. As seen
from Eqs. (12a) and (12b) in Sec. II, additional terms arise
in both the linear gain and nonlinear saturation
coefficients as a result of the A, /2 periodic medium. The
filling factor (L, /A, „) in Eq. (A17b) in the Appendix sim-

ply indicates that the gain is proportional to the cumula-
tive thickness of the active medium. Compared to uni-
form gain medium of the same total length, RPG medi-

t+
&r

I
I

(a)

X

Z JI,

X

FIG. 2. A periodic dipole array. All of the dipoles are orient-
ed in the z direction and spaced by a&, az, and a3 along the
coordinate axes, respectively.
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tions and m. are integers. The radiated power from this
array is simply given by [42]

sin(n y /2)
S=So(n&nzn3) cos 8

nj sin 1 J 2

where

(23)

sin (n, y, /2) sin (nzyz/2)
S =(n, nzn3) So z zn, sin (y, /2) nzsin (yz/2)

with

y, =ka, [cos(y) —cos(g)]

and

yz=kaz[sin(p) —sin(g)] .

(24)

Figure 3 shows the angular distribution of the radia-
tion from an ensemble of 32(x) X 100(y) X 100(z) oscilla-
tors with phases determined by an incident wave travel-
ing along the x axis from the left ( g = 0) with
az=a3=1/(40k); the values for ka, are shown. These
angular distributions have been normalized by
[(n, nzn3) So] ', i.e., the radiation in the forward direc-
tion as a result of the coherent addition of the fields from
all the dipoles, is (n, nzn3) more intense than the radia-
tion from a single dipole. The important point to note is
that the radiation intensity in the backward direction is
equal to that in the forward direction for a half-wave
periodic structure (top). Deviations from this periodicity
lead to a suppression of the backward radiation. Of
course, the sensitivity of the backward radiation to the
periodicity, or equivalently the wavelength, scales in-
versely as n, . For increased n 2 the angular spread of the
lobes is reduced, but the intensities in the forward and
backward directions are unchanged. The radiation pat-
tern in the equatorial plane is independent of n3.

This backward radiation is a manifestation of the
factor-of-2 enhancement of the gain in the RPCi struc-
ture. The radiated fields add coherently to both forward
and backward waves, i.e., they couple optimally to a

y, =ka, sin(0)cos(p)+P, ,

yz =kazsin(e)sin(q )+pz,

y3=ka3cos(8)+P3,

and k =co/c, n is the number of oscillators in the jth
direction, p is the phase shift between adjacent oscilla-
tors in the jth direction, and So=(p/2vreo) is the radia-
tion intensity of a single oscillator. Note the similarity
between the structure of this equation and the equation
for the gain in the RPG structure derived earlier [cf. Eq.
(1 la)].

For stimulated emission, the phase relationships be-
tween these oscillators are simply set by the distances a
and the propagation direction of the initial plane wave.
For an incident wave propagating in the xy plane at an
angle of g to the x axis and polarized in the z direction,
the phase shifts are P, =ka, cos(g), Pz=kazsin(g), and
P3=0. Thus, in the equatorial xy plane the expression for
the radiated power simplifies to

standing-wave pattern, even in the absence of a Fabry-
Perot cavity. This also results in the elimination of spon-
taneous emission Auctuations in the phase between the
two counterpropagating modes in a CCEL ring cavity. A
photon spontaneously emitted into, say, the forward
direction gives rise to amplified spontaneous emission and
fluctuations in both the amplitude and phase of the radia-
tion in the forward and backward propagating modes be-
come correlated. On the A, /2 resonance, precisely the
same fluctuation occurs for the counter propagating

1.0 ~ —f ~ I

(a)

0.5 - /

0.0-

-0.5 - X

—1.0 ~ ~ I

1.0 I ~ ~

(b)

0.5- l
/

0.0-

kaq = O.QQn

—X.O

1.0 ~ ~ ~ ~

(c)

0.5 -]

O.Q-

-0.5 - X kaa = 0.975n

—i.O—i.O —0.5 0.0 0.5 1.0

FIG. 3. Angular radiation pattern in the equitorial xy plane
for a periodic array of 32(x) X 100(y) X 100(z) dipoles. The di-
poles are closely spaced (k/40) in the y and z directions. The
spacing in the x direction is given in each segment. The relative
phases have been adjusted to correspond to excitation by a
plane wave incident from the x direction. Note that for a A, /2
spacing, (a) the radiation pattern is twofold symmetric with
equal intensities in both the forward and backward directions.
Away from the A, /2 condition, (b) and (c), the backward radia-
tion decreases dramatically. This symmetry is responsible both
for the suppression of noise Auctuations in a CEL and the gain
enhancement in RPG lasers.
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waves as a result of the bidirectional radiation (and gain)
pattern. Off-resonance, and in particular for a homo-
geneous gain medium, this relationship is not preserved
and the amplified spontaneous emission phase Quctua-
tions for counterpropagating waves are uncorrelated.

V. CONCLUDING REMARKS

Before concluding, we summarize the present experi-
mental status of RPG lasers and initial trial experiments
using RPG medium in a ring cavity. Since the first
demonstration of optically pumped RPG lasers [1—4], a
great deal of progress has been made and cw operation of
these laser structures has been achieved. Recently, high-
efficiency (&45%%uo), narrow-linewidth (-0.025 nm) cw
lasing at room temperature has been demonstrated
both in the GaAs/Al, „Ga„As- [26,27] and
In, Ga As/Al, „Ga„As-based RPG structures. The
In, Ga As/Al, „Ga As material system is very
promising for the ring-cavity CEL, because the GaAs
substrate is transparent at the lasing wavelengths. RPG
structures with 20-period 8-nm-thick Ino zGao 8As quan-
tum wells and Alo 2Gao 8As half-wave spacers
sandwiched between Alo $5Gao 75As/A1As integrated
multilayer high-reAectors, all fabricated in a single
metal-organic chemical-vapor deposition growth cycle,
have delivered -40-mW cw power at -930—940 nm at
room temperature. Single-ended power eKciencies)43% for optical pumping at 740 nm have been demon-
strated. Based on these results, we have grown RPG
structures with 40 and 60 periods of 8-nm-thick
Ino 2Gao 8As quantum wells and Alo 2Gao 8As half-wave
spacers on GaAs substrates with both sides polished. Ini-
tial photoluminescence studies show intense radiation
centered around -930 nm with an anisotropic distribu-
tion in a narrow angle rather than a uniform photo-
luminescence (PL) from a Lambertian source. This direc-
tionality of amplified spontaneous emission is consistent
with the calculations in Sec. IV. However, to use these
In] Ga As structures in CEL ring cavity, an
antireflection coating (reffectivity -0.1% ) is required be-
cause of high Fresnel reAectivity of Al& Ga„As and
GaAs surfaces ( —30%) and it is very difficult to use
these high-index materials (n =3.40—3.64) at very large
Brewster's angles.

In conclusion, we have developed a semiclassical
theory for resonant periodic gain lasers using the particu-
lar case of the surface-emitting semiconductor lasers.
The theory based on a simple two-band model analogous
to the two-level atomic system predicts the gain enhance-
ment and frequency selectivity in the resonant periodic-
gain laser. The common physics of the resonant
periodic-gain medium and correlated emission ring cavity
laser is also discussed.
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APPENDIX

exp[ i (v„t—+P„)]x U„(z) .y+i (co, —v„)
(Al)

Substitution of Eq. (Al) for p„, and using p„,=p,*, and
V,„=V„', in Eqs. (5) and (6) yields

p„=—y, (p„—p„)—R (p„—p„„),

p„,———y, (p„„—p„, ) +R (p„—p„„),
where

d
,E.'I U. (z) I'

2R ' " " y'+ (co, —v„)'

(A2)

(A3)

(A4)

In a steady-state case the rate equations for carriers, i.e.,
p„and p„„ for electrons and holes, respectively, Eqs. (A2)
and (A3) give

Pcc I Uv

Pcc PUU
S

where

(A5)

R, =y, y, /(y, +y„) .

Substituting this in Eq. (Al) and then the resulting ex-
pression for p„ into Eq. (4) leads to

D(co, )d' 2E„(t)
p„(t ) = ( —i

/kiri�

)Io y+i (co, —v„)

1+R R,
(A6)

An exact evaluation of the integral over co, is diScult be-
cause R also involves terms containing (co, —v„). How-
ever a simplification is possible from the consideration
that only those transition frequencies are effective in the
polarization which are nearly resonant with the optical
mode v„ in the cavity. This amounts to including a
modified density of states in the interval hen of interest;
so D(co, )b,co is replaced with D(co) (number of states in
the spectral interval b,co) resulting in

The solution of the density-matrix equations is carried
out using a perturbative procedure [32], starting from a
formal integration of Eq. (7) over the time interval from
—oo to r (which includes all the contributions to the po-
larization up to the time t) T.he analytic evaluation is
carried out in the rate equation approximation [32] which
makes the assumptions that the population difference
(p„—p,„) and other quantities P„, d', and E„(t) do not
vary appreciably in a time period y

' (dipole dephasing
time T2). For simplification, only a single-mode interac-
tion is considered such that only the nth mode terms are
used from Eq. (9) of Sec. II. The following expression is
obtained for p,„:

id' E„(—t)
2r
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S

(A7)

This relation is the same as that found for gas lasers [32].
To evaluate the integral in (A7) the usual procedure is to
expand ( 1+R /R, )

' under the assumption that E„(t ),
the field amplitude, is small, and hence R is much smaller
than the saturation parameter R, . Therefore, we give
here only up to third-order polarization terms explicitly,

P„(t)=— I d 2E„(t)(p„—p„) U. (z)l2dz J—d 2E.(t) lU. (z)l'dz +

where the ellipsis represents higher-order terms, or ignoring higher-order terms,

P„(t)=— (I, +I2) .1 D (co)

co, —v„iy— (A8)

Consider the first integral Ii in Eq. (A8). In the RPG medium, thin-gain sections (quantum wells) are spaced at half-
wave intervals. The Fabry-Perot cavity modes are represented by U„(z)=sink„z where k„=nn/L. Since only the
quantum-well region provides the gain, i.e., (p„—p„)%0 only in these regions, the integral over the cavity length can
be divided into n integrals each extending over the quantum-well thickness in each half-wave section with appropriate
phase correlation between integrals. Thus,

T

2 m(m —1) LzI, =O' E„(t)f sin k„z g u, ao+
m.(m —1) Lz

s 0 'dz (A9)

mL, 1— (A 10)

Here u, are unit step functions, k„=2~/A, „where A, „ is the half-wave resonance set by the structure, ao is the distance
from the edge of the cavity (z =0) to the center of the first quantum well, and m is the number of quantum wells of
thickness L, .

The transition dipole d is approximately constant over the quantum-well dimension and has been pulled out of the
integral. After some algebra, an analytic expression is derived for I&, viz. ,

sin( m hark„ /k„)I, =d' E„(t)(p„—P„)
m sin m.k„/k„

where y„=k„ao.
The second integral I2 is similarly evaluated using the value of R from Eq. (A4),

md' E„(t) & 3L, 4 sin(k„L, ) m.k„sin( m n.k„ /k„)
k„m sin(~k„ /k„)

1 sin(2k„L, ) k„sin(2m mk„/k„)+— cos 4y„+2m(m —1)
3 2k„L, k„m sin(2m. k„ /k„)

(Al 1)

P„(t)=P„'"(t)+P„' '(t), (A12)

Substituting Eqs. (A10) and (All) for integral terms in
Eq. (A8), the complex polarization P„(t) can be written
up to third order as

v„+P„=0„— Re[P„(t) ],2E
(A14)

where Q„ is the cavity Q and 0„ is the nth mode of the
cold cavity. Using the explicit expression for P„(t) in
Eqs. (A13) and (A14) we find for the single-mode case,

where the superscripts refer to the dependence of E„(t).
Gain and lasing frequency are determined using the self-
consistency equations from the semiclassical laser theory
[32], namely,

E= E+(a 13E )E, —
2

(A15)

(A16)

E„+ E„= Im[P„(t)],2Q„" 2@0
(A13)

where
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sin(k„L, )
cx =Ap 1

Pl Z

sin( m n k„ /k„)
X

m sin(mk„/k„)

mk„
cos 2qr„+ ( m —1)

R

(A17a)

with

vd L,tzo= — D (~)(
fg ( )2+ 2 PCC PUU

r

(A17b)

T

3
8 2A

tzo 4 sin(k„L, ) mk„sin(mmk„/k„)
1 —— cos 2'„+( m —1 )

(co —v)2+ y2 3 k„L k„m sin(m. k„/k, )

1 sin(2k„L, ) m.k„sin( 2m mk„ /k, )+— cos 4y„+2(m —1)
3 2k„L,, k„m sin(2rrk„ /k„)

(A17c)
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