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Detection of nonclassical states using a Kerr medium
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It is possible to determine whether the input state to a Kerr medium is nonclassical by measuring the
total noise of the output state. For a classical input state the total noise at the output has a minimum
value that depends on the photon number and the interaction time. If the total noise is found to be less
than this value, then it can be concluded that the input state was nonclassical. A certain class of general-
ized coherent states can be detected in this way.

PACS number(s): 42.50.Dv

I. INTRODUCTION

X, =(a +a)/2, X2=i(a —a)/2 . (1.2)

The total noise can be measured by averaging over the
phase of the local oscillator in a homodyne measurement
[7]. It assumes its minimum value of —,

' for coherent
states, and it increases as a state becomes more nonclassi-
cal [7]. It should be noted that this relation goes only one
way; i.e., a highly nonclassical state has a large total
noise, but a state with large total noise is not necessarily
nonclassical. A high-temperature thermal state, for ex-
ample, has a large total noise but is, in fact, a classical
state.

The basic idea of using a Kerr medium to detect a non-
classical state is the following. A coherent state incident
upon a Kerr medium becomes nonclassical at the output
with a consequent increase in its total noise. Because
classical states are incoherent superpositions of coherent
states this suggests that there might be a minimum

Classical states of the electromagnetic field are states
whose P representations are non-negative definite. Such
states can be described in terms of classical stochastic
fields. Nonclassical states have P representations that do
not satisfy this condition. They are intrinsically
quantum-mechanical fields.

Perhaps the best known nonclassical states are
squeezed states [1] and states with sub-Poissonian photon
statistics [2]. The first of these is detected by homodyne
measurements and the second by photon counting mea-
surements. Here we wish to discuss a method that can
detect a different class of nonclassical states. Among this
class are certain kinds of generalized coherent states
[3—5]. This method works by measuring the total noise
of a field emerging from a Kerr medium.

The total noise T of a state of a single-mode field is
given by

T=(AX, ) +(bX ) =(ata ) —(a )(a )+—,', (l. l)

where a and a are the mode annihilation and creation
operators [6]. The operators Xi and X2 are the quadra-
ture components of the field and are given by

II. TOTAL NOISE LEVEL

The action of a Kerr medium on a single mode of fre-
quency co is given by the Hamiltonian

H =coa a +A,(a a ) (2.1)

where k is proportional to the y' ' of the medium. Note

amount of total noise that an input classical state must
have as it leaves the medium. This would mean that any
state that emerges with less total noise than this
minimum value must have been nonclassical at the input.
Therefore, measuring the total noise of a state at the out-
put of a Kerr medium provides the possibility of deter-
mining whether a state is initially nonclassical.

Before proceeding with the development of this scheme
it should be noted that a considerable amount of work
has been done on the connection between Kerr media and
nonclassical states. Milburn examined the Q functions of
states that are produced by a Kerr medium from
coherent states. He compared these to the probability
distributions that one obtains by using a classical analog
of the quantized Hamiltonian. Substantial differences
were found between the classical and quantum behavior
[8]. In a later work he considered the role of dissipation
in this system [9]. Yurke and Stoler showed that for
sufficiently long interaction times an initial coherent state
in a Kerr medium will evolve into a state that is a linear
supersition of two different coherent states, a highly non-
classical object [10]. Gerry [11] and Tanas [12] studied
the conditions under which a Kerr medium will produce
squeezed states. Yamamoto et al. found a method to
produce amplitude-squeezed states by combining light
emerging from a Kerr medium with light from a local os-
cillator in a beam splitter [13]. Finally, Agarwal has
shown how nonclassical effects that arise in a Kerr medi-
um lead to decreased fringe visibility when the light is ex-
amined in a Michelson interferometer [14].

Let us now move to a more detailed examination of the
proposed detection scheme. In Sec. II the detection
method itself will be developed. In Sec. III a class of
states that can be shown to be nonclassical by this
method will be discussed.
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that the photon number iV=a a, commutes with this
Hamiltonian and is, therefore, conserved.

In order to determine how a classical state evolves un-
der the action of this Hamiltonian we first examine the
time evolution of a coherent state. From the number
state expansion for the coherent state

~
a ) we see that

U( t) ~a ) e
—lal I2 g e

—in&ate —in kt( an/Q nt)
~
n )

(2.2)

The total noise of U( t)
~
a ) is then

T= la 12(1 e
—21~1'~)+ t (2.4)

where A= 1 —cos(2A, t). Note that for At((1, the total
noise is an increasing function of the interaction time.

Let us now consider a general classical input state

p;„=fd'aP(a)~a)(a (2.5)

where P(a) ~0. After an interaction time t the total
noise of this state is

T= fd'aP(a)lal'

where U(t) =exp( —itH) (we use units where th'= I ). This
expression can be used to find the expection value of the
field amplitude in the state U (t)

~
a ):

(a~ U(t) 'aU(t) ~a ) =ae

X exp[ —~a ~'( I —e " ') ] .

(2.3)

lower bound for the total noise at the output (after an in-
teraction time t)

T~ f d ap(a)(a[ (1—e l )+—'

Let us now define the function

h(A')= f d ap(a)~a~ e

which appears in Eq. (2.10). First note that

dh /d A' = —2 f d a P ( a )
~

a~
e—

(2.10)

(2.1 1)

(2.12)

because the second factor on the first line is less than 1.
Putting Eqs. (2.12) and (2.13) together gives

dhldA'( —2h (A')

which can also be expressed as

(2.14)

1

h
(2.15)

If we now integrate both sides from 0 to A and note that
h (0)= (N ) we have that

We also have, using Eq. (2.8) with f (a)=e l l and
g(a)=/a/ e l l, that

1/2
h(A') f d aP(a)~a e

1/2
X f d aP(a)e

f d a p(a)~la~ e (2.13)

2f d a P(a)a exp[ —
~a~ (1—e ' ')] + —,

'

(2.6) or

1

h(A)
1 )

h (0)

Let us now examine in more detail the expression inside
the vertical bars, which we shall call I„ in the above
equation. %'e have that

h (A) ( (N ) /(2A(N ) + 1), (2.16)

Substituting this back into our expression for the total
noise, Eq. (2.10), gives

~I& ~

( f d a P( a)) a exp[
—~a (1 —e ' ')]]

( fd'a P (a)(a(e (2.7)

T~ (N) 1—,, + —,
':—T;„((N),A) .

2A(N) +1

In order to proceed we note the following. Because
P (a) ~ 0, the Schwarz inequality gives us that

2

fd aP(a)g*(a)f(a) ( fd ap(a)~g(a)~

X f d ap(a)(f(a)~

(2.8)

/I, /

( f d ap(a)~a~ e (2.9)

This result can be substituted into Eq. (2.6) to give us a

for any functions f (a) and g(a) such that

fd ap( )~fa(a)~ ( ~ and J d ap( )a(g(a)~ ( ao. If
we choose g(a)=1 and f(a)=~a~exp( —A~a~ ) in the
above expression we find that

(2.17)

Therefore, any classical input state with mean photon
number (N ) will have a total noise greater than the ex-
pression on the right-hand side of Eq. (2.17) at the output
of the Kerr medium. This means that if the total noise of
an output state is less than T;„(( N ),A), then the input
state was nonclassical.

Consider now the expression for T;„((N),A). We
shall assume that A, t &(1, which will generally be true.
We then have that A=—2(k, t) . It is then clear that T;„
will vary most as a function of t when (Xt ) (N ) is of or-
der 1. It ranges from a value of —,

' for t =0 to (N)+ —,
'

for (A,t)'(N )» l.
Let us now examine whether T;„can be made to

di6'er significantly from —,
' in a real system. The system to

be considered will be the traveling-wave fiber arrange-
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ment discussed by Levenson et al. [15]. Ideally one
would like to make A(X) of order 1, but for a 100-m
fiber with a g' ' of 10 ' esu and a laser power of 1 8'
this is not possible. On the other hand, the first term on
the right-hand side of Eq. (2.17) will be of order 1 under
these conditions. In particular, if A(X) ((1, then this
term is approximately given by (At(X)) . If A, is ex-
pressed in terms of y' ', ( X ) in terms of the field ampli-
tude E, the frequency co, and the quantization volume,
and if the interaction time is taken to be the length of the
fiber I.over c, then

At(N) =(coL/c)A' '~E~ (2.18)

We now want to examine briefly one kind of nonclassi-
cal state that can be detected by this scheme. A more ex-
haustive analysis of the nonclassical states that can be
detected in this way will appear in a future publication.

Passage through a Kerr medium affects correlations
between the amplitude fluctuations and the phase Auctua-
tions of a field. This suggests that input states whose out-
put total noise is less than T;„should possess
amplitude-phase correlations. In particular, suppose we
start with a coherent state and then, in some fashion
create correlations between its amplitude and its phase.
We now pass this state through our Kerr medium detec-
tor, which "undoes" these correlations, leaving us with a
coherent state again at the output. A coherent state has
a total noise of —,', which is clearly less than T;„. Such a
nonclassical state can be detected by this scheme.

This leads us to consider what kinds of amplitude-
phase correlations can be undone by a Kerr medium.
One answer is those created by another Kerr medium.
The constant A, appearing in Eq. (2.1) can be of either
sign. Suppose we have two Kerr media, the first with
A, = —A,

&
&0 and the second with A, =A,2&0. The first

serves ta prepare the state, the second to detect it. We
first inject a coherent state ~a) into the first medium

The condition that At(X) be of order 1 or greater is,
then, just that (coL/c) y' '~IE~ & 1. This is the condition
which Levenson et al. found to be necessary for the gen-
eration of squeezing in a fiber, and it is achievable [15].
Therefore, it should be possible to make T;„differ ap-
preciably from —,'.

Note that using Eq. (2.17) to determine whether a state
is nonclassical involves two measurements. One first
needs to determine the mean photon number (K). This
can be done either before or after the light has passed
through the Kerr medium because the interaction of Eq.
(2.1) does not affect the photon statistics. One then mea-
sures the total noise at the output of the Kerr medium
and compares the result to T;„(( X),A ). If the result is
less than T;„,then the input state is nonclassical.

III. EXAMPLE OF STATES THAT CAN BE
DETECTED BY THIS METHOD

where it interacts for a time t, . The resulting state is

~V) =e I ~ g e 'e ' '(a"/V n!~n ) .
n=0

(3.1)

This is an example of a generalized coherent state [3—5].
This nonclassical state now serves as the input to the
second Kerr medium, which is the detector. The interac-
tion time there is t2 and upon emerging the field has a to-
tal noise given by

T—~a~2(1 e
—&l~l'I )+ i (3.2)

where p=l —cos[2(Azt2 —A, ,t, )]. For the input state
~%') we find that T;„is given by

T; = lal'[I —I/(2Alal'+1)]+ —,', (3.3)

where in this case A=1 —cos(2Aztz). By measuring the
total noise at the output of the second medium we shall

be able to assert that ~%) is nonclassical if T(T;„.
This will be true if

e I I'P& I/(2A~a~ +1) . (3.4)

It has been shown that a detector consisting of a Kerr
medium and a homodyne detector can be used to detect
nonclassical states. The homodyne detector is used to
measure the total noise of the field state at the output of
the medium. If the total noise is below a certain level,
then one can conclude that the input state is nonclassical.
A certain class of generalized coherent state, which can
be produced by a second Kerr medium, can be detected
in this way. A more thorough study of the properties of
the states that can be detected by this scheme will appear
in a subsequent publication.

Finally, it has been shown that it is possible for T;„to
differ appreciably from its minimum value of —, in a
traveling-wave fiber system. It is possible that even
higher values can be obtained in a pulse or cavity ar-
rangement. To determine whether this is actually the
case will require further investigation.
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If A, it& and A,zt2 are much smaller than 1 this becomes

exp[ —4~a~ (A2tz —
A, , t, ) ] &1/[(2A2t2~a~) +1] .

(3.5)
This condition is clearly satisfied when A,zt2 =A, , t& and for
some range of A,ztz about A, ,t, . Therefore, generalized
coherent states of the form given by ~%') can be detected
by using this method.
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