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Quantum noise properties of the laser: Depleted pump regime
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We show that a laser may generate amplitude-squeezed or antibunched light in a regime well above
threshold, where depletion of the ground state by incoherent pumping is significant. Simple analytical
solutions are presented to illustrate which atomic-level schemes and pumping rates are optimal.
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I. INTRODUCTION

The search for novel sources of radiation, specifically
antibunched and squeezed light, has received a great deal
of theoretical and experimental attention in the past de-
cade or more [1]. A number of passive nonlinear systems
have been used to generate squeezed light, in continuous
wave and pulsed fashion. Squeezing light with a large
coherent amplitude is dificult, however, due to the sensi-
tivity of the source nonlinear interferometers to noise [2].
Ideally, one would like to have access to a squeezed-state
laser which would produce such high intensity squeezed
output, for applications ranging from quantum limited
optical communications and ultra-high-precision mea-
surements to atom-field interactions [3].

Intensity squeezed light has been successfully generat-
ed using semiconductor lasers with sub-Poissonian pump-
ing [4]. Control of the pumping statistics is crucial and is
achieved by a large series resistor which regulates the
pump current; its sub-Poissonian statistics are then
transferred to the laser output. The sub-Poissonian
pumping of other laser systems is not so simple, however,
and their potential as squeezed-state sources is apparently
diminished [5].

In this paper we discuss the operation of a laser well
above threshold, where depletion of the ground-state
population by the incoherent pumping process is taken
into account. The model is originally due to Lax and
Louisell (LL) [6], who derived quantum Langevin rate
equations for the atomic populations and intracavity pho-
ton number by adiabatically eliminating the polarization
of the lasing transition. This procedure is based on the
assumption that the polarization damping rate is large by
virtue of a large phase damping contribution, produced
by, for example, elastic collisions. The model was recent-
ly used in a discussion of the quantum noise properties of
lasers with sub-Poissonian pumping [7]. With the excep-
tion of Ref. [8], where squeezing in a three-level laser is
discussed, in all the previous treatments the pumping rate
is treated as a parameter, which relies on the ground state
of the three atomic levels being essentially undepleted.
This assumption is removed here, and depletion of the
pump is properly included in our analysis. Depletion is
important far enough above threshold where the steady-
state photon number becomes a nonlinear function of the
pump parameter w2O. We show that sub-Poissonian pho-
ton statistics of the intracavity field and squeezing of the

output intensity may be achieved, and discuss the optimal
parameter regimes. Our results are in agreement with a
numerical treatment of a laser model without phase
damping treated by Ralph and Savage [9], in which the
polarization dynamics of the lasing transition is included.
These authors emphasize that the regimes where interest-
ing quantum noise effects occur are not beyond experi-
mental bounds. Our analytic approach has the advantage
of making the physics more transparent, and allows
direct comparison with earlier work [7].

The remainder of this paper is organized as follows. In
Sec. II, we outline the theoretical model of the laser, and
discuss the steady-state operating conditions above
threshold. The linearized quantum dynamics is treated in
Sec. III, and simple analytic solutions for the intracavity
photon number Auctuations and output intensity squeez-
ing spectrum are derived. Section IV provides a discus-
sion of our results, and in Sec. V we give some con-
clusions.

II. THEORETICAL MODEL

N, = —w»N, +r,N, +wo28', +C, ,dt

N, = —(I,+IIn )N, +(w, 2+II&)N2+0, ,dt

N2 =w~oNO+ IInN, —( I 2+ IIR')8'2+ G2,dt

(2.1)

dt
)e+IIe(N —8' )—+0 .2 1 p

The atomic-level scheme for the laser is indicated in
Fig. 1. We follow the notation of LL, where
(i =0, 1,2) are the atomic population operators and it the
laser mode photon number operator; w; represents the
incoherent transition rate from level j to i, due to either
spontaneous emission or pumping (w2o is the pump pa-
rameter) and I,. =+jw.; is the total incoherent rate out
of level i to all other levels. The stimulated emission
coef5cient II=2p /I with p and I the electric dipole
coupling and polarization decay rate for the lasing transi-
tion, respectively. The atomic polarization has been adia-
batically eliminated, on the basis that
I =(I,+I 2)/2+I „ is the largest decay rate in the
problem, which requires I b the elastic collision damping
rate to dominate the spontaneous decay rates. The quan-
tum Langevin rate equations are given by
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W2o

FIG. 1. Atomic-level scheme for the laser. Lasing occurs
between levels 1 and 2.

macroscopically large [11]. Two regimes of operation are
delineated by the laser threshold. As the pump parame-
ter mzo is increased a threshold value is reached, below
this the mean laser intensity is zero, and above it is
nonzero; lasing is said to occur. In this regime the inver-
sion D =%2 —X, is fixed at a constant value independent
of pumping. The steady-state solutions for the laser vari-
ables above threshold are

N( wp 2+ r ] ) +D( wp 2 r
$ )

iYo =
I i+ mo2+2m2o

Nw2p —D ( wp2+ w2p )Ã)= I,+mo2+ 2w2o

Nw2p +D ( r, +w2p )
N =

2 I 1+l802+2~20
(2.5)

The general form of the equations may be written down
by inspection. The equation for 8'p can be eliminated by
the conservation of population condition

(2.2)
Rn=n, —1

where N is the (constant) total number of lasing atoms
and 1~, the identity operator in the space of N atoms. As
a result the noise operators 0, (i =0, 1,2) are linearly
dependent:

Op+0, +02=0 . (2.3)

The diffusion matrix elements are given by the formula
( 0; (t)C~(t') ) =2D,J5(t t'), whe—re the factor 2 is intro-
duced for consistency with the notation of LL. The
diffusion matrix for our laser may be calculated by using,
for example, generalized Einstein relations [10], but in
contrast to the model of LL, we include depletion of the
ground state and its concomitant quantum Auctuations in
the analysis. However, in every other respect the model
is entirely conventional, in that the pumping statistics are
Poissonian. The diffusion matrix elements are

where R =Nw2o is the net pumping rate, in the undeplet-
ed pump regime. The threshold pump "rate" and
characteristic photon number are given by

2 (r]+
R,h

= 1+
1 W12 1 2

Dr, r,[1+w„(r,+w„)yr, r, ]
n, =

1 (r, +r,—w„)[1+2w„x(r,+r,—w„)] '

(2.6)

respectively. For the pump parameter mzo((I &, n is a
linear function of R in agreement with the undepleted
pump limit. However, for larger pump rates the de-
pletion becomes important and n becomes nonlinear; this
is illustrated in Fig. 2. Note that the laser threshold
occurs at around wgo =0.006I, ~ Depletion of the

2D )p
= —r,A', ,

2D„=(r,+lie)P, +(w„+11@)A, ,

2D„= II&, (w„+—II@)N,—,

2D, = 2D = IIR'N, + IIRP-

2D22 = w 2pNp + II &N
&
+ ( I 2+ II6' )N2

2D = II&X) +H 8%2+y &

(2.4)
0.8

c 0 6
C)
V

Cl
0.4

with D; =D;.
We proceed by perturbation theory, and analyze the

quantum fluctuations of the populations and the photon
number by linearizing about the steady-state mean value
solutions of the laser in which the field is treated classi-
cally. The equations describing this semiclassical limit
are just those of Eq. (2.1) in which the noise operators are
dropped and the remaining operators are replaced by
their mean values. These are just the usual Einstein rate
equations. Mathematically this limit is justified by a scal-
ing argument provided the number of laser atoms N is

0.2

0
0 0 ' 5 1.5

Pump Rate w /I20 1

2.5 3

FIG. 2. Photon number
threshold. Parameters
y=0.01I &, and w» =0,
w» =0.1I

&
(dashed line).

as a function of pump rate above
are %=2X10, II=1X10
w02 =0. 1 I I (solid line) w02 =0
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ground-state population is illustrated in Fig. 3.
The calculation of the output squeezing spectrum

proceeds by using the linearized equations of motion to
calculate the variance o. in photon number, about the
steady-state mean value n. The Mandel Q parameter can
then be constructed from the mean and variance

V(a))=1+2Q— 1

1+(cp/y )
(2.8)

where co is the spectral offset from the laser frequency.
Sub-Poissonian photon statistics and concomitant intensi-
ty squeezing ( V(1) in the output are signatures of the
quantum-mechanical nature of the electromagnetic field.
Equation (2.8) illustrates the close relationship between
sub-Poissonian photon statistics inside the laser cavity

where Q )0, = 0, and (0 correspond to super-
Poissonian, Poissonian, and sub-Poissonian photon statis-
tics, respectively. The intensity squeezing spectrum of
the output, normalized to unit shot noise is then given by,
approximately [5,7],

and amplitude/intensity squeezing in the output. The
factor of 2 which appears in the numerator is most im-
portant, and indicates that perfect amplitude noise reduc-
tion in the output is approached when the internal vari-
ance approaches one-half that for a Poissonian distribu-
tion, rather than zero, as might be expected. This is a
consequence of the boundary condition at the output mir-
ror [4,5,7].

III. LINEARIZED FLUCTUATION ANALYSIS

We now linearize the rate equations around the semi-
classical steady-state values, by setting D =D +AD,
X, =X +AX, , 1V =X +AN, d 6= +6, i Eq.
(2.1). The linearized equations are given by

AD =wzpkk'p+(I", —I,—w „)++,
dt

—(2IIn + I z+ w, z )bD 2ybn —+Cz —6, ,

&N
~

= —
( I', —w, z )b N, + ( w, z + IIn )b D +y b n +6, ,dt

(3.1)
d

ANp wzp~Np + (I 1+wpz )6N] + wpzAD +pdt

bn =IInbD+G
dt

V =0=~iYO+2~iV1+ ~D

We have numerically calculated the photon number vari-
ance, and hence the Mandel Q parameter and intensity
squeezing spectrum from the linearized Eq. (3.1) without
further approximation. However, to gain some physical
insight into the results we proceed analytically by adia-
batically eliminating the atomic fluctuations. This is val-
id above threshold since the field changes over a relative-
ly long time scale given by the inverse cavity bandwidth
y '. For simplicity we consider two alternative limits of
the atomic-level scheme separately. As a notational con-
venience we drop the caret symbol on operator quantities
from here on.

A. Spontaneous decay out of the lasing levels:
W12 0& I 2 W02

The adiabatic atomic population fluctuation operators
may be written

—(1 —wpz/I, )b,D+26p/I',
1+ „/r, +2 „/I,

b.N, = (IInb, D+IIDb, n+6, ),1

1

(3.2)

1

AD=

2wzp/I i wo2
Go — Gi+621+wo2/I, +2w2O/I, I,

( wpz+ wzp ) —+Hn1+wo2/I &+2w2O /I
&
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d bn = yb—n+G(t )
dt

where

G(t)= 1
G21+wpz/r, +2wzp/r,

(3.3)

Assuming operation well above threshold where n ))n,
we find, using (3.2) and (2.5),

1 '1

0 ))
-

jl

0.9 q(,

0.8

0.7
wp2 /ri +2w20 /ri

Gi+Gp .
1 +wp2 /I i +2 pp/I

(3.4) 0.6

Note that Eq. (3.4) reduces to Eq. (2.21) of Ref. [7], in the
limit of an undepleted pump m20/I &

« 1. More general-
ly pump depletion renormalizes the coeKcients of the
atomic noise operators in (3.4), and the effect of this will
be discussed in Sec. IV. The steady-state variance in pho-
ton number is given by the equation

(G(t)G(t')) (3.5)
2y

which using Eqs. (2.4) and (3.4) leads to

2n
1

G = ~f1+
(1+wo2/I, +2w2o/I, )

X 1+ + +2M 2W LU

rl r1 rl
~02D

y(1+w„/r, +2w„/r, )'

'2

(3.6)

The first term on the right is due to vacuum fluctuations
transmitted by the output coupler. The second term is
associated with pumping and spontaneous decay process-
es. The last term is directly proportional to n, and is
small when compared to n for operating conditions well
above threshold. We then find

2~20/r
o. =n- n+O(n, )

(1+woo/ri+2w20/r )
(3.7)

so that the photon statistics are sub-Poissonian. Thus
from Eqs. (2.7) and (2.8) we predict intensity squeezing
(V(1) in the output. Figure 4 shows the intensity
squeezing at the laser frequency (co=0, in the rotating
frame of reference), as a function of pump rate, for three
different values of the stimulated emission coef5cient II.

0 ' 5
0 0.5 1.5

Pump Rate w /I'
20 1

FIG. 4. Amplitude squeezing at the laser frequency as a func-
tion of the pump rate for parameters %=2X10, y=0.011 &,

w» =0, wo2 =0.11, and II=10 (solid line), 10 ' (long-
dashed line), and 5 X 10 " (short-dashed line). Shot-noise level
corresponds to V=1.

The magnitude of II depends not only on the atomic
species, through the transition oscillator strength, but
also on the polarization damping rate of the lasing transi-
tion. With increase in H, the degree of squeezing satu-
rates at around 45%%uo below shot-noise level. The physics
of this result will be discussed in Sec. IV.

d
dt

An = yAn +G( t )—

where

(3.8)

G(t)=
1 —w, 2/I,
1+2~20/I 1

2w2o/I i+wi2/I i Gi+6 (3.9)

and the steady-state variance in photon number is given
by

B. Spontaneous decay between lasing levels:

Wop =0 I 2
—W)2

Following the same procedure as in III A we find the
equation for b, n well above threshold (n ))n, ),

M) 71 +Wi2/H
0 ——n+— wi2 (1—wi2/I i) +(2wzp/r, +w, z/r, )+Ii (1+2w„/r, )2

(3.10)

The first term is due to vacuum Auctuations transmitted by the output coupling mirror. The second term is proportion-
al to the constant atomic inversion. Rewriting the equation for o. we find

n +m &2/II~2—
1 —~„/r,

(1—w, 2/I, ) +(2w2o/I, +w, 2/I i)1+
(1+2w2o/I, )

(3.1 1)
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FIG. 5. Amplitude squeezing at the laser frequency as a func-
tion of the pump rate for parameters N=2X10, y=0.01I „
wo2=0, w»=0. 1I &, and H=10 (solid line), 10 ' (long-
dashed line), and 5X10 " (short-dashed line). Shot-noise level
corresponds to V= l.

FICx. 6. Signal-to-noise ratio for the laser with the parame-
ters of Fig. 2: wop=0. 1 w»=0 (solid line); w»=0. 1 wop=0
(dashed line).

which displays sub-Poissonian photon statistics of the in-
tracavity field, and thus amplitude squeezing of the out-
put, provided the pumping rate is an appreciable fraction
of the spontaneous decay rate of the lower lasing level,
and the upper level spontaneous decay rate is small. For
the parameters of Fig. 5, increase in the stimulated emis-
sion coefficient H, the squeezing saturates at around 33%
below shot noise. Qualitatively Fig. 5 is similar to Fig. 4,
except that the degree of squeezing is reduced.

IV. DISCUSSION

It is clear from the results presented that when the
pumping rate wzo is comparable with the lower lasing
level spontaneous decay rate I &, sub-Poissonian photon
statistics and output squeezing result. Neither are ex-
pected from conventional laser theories in which the
pumping rate is treated as a parameter, independent of
the laser operating conditions. In this limit the ground
state 0 acts as a reservoir of population, and the pump
can transfer population to the excited state 2, indepen-
dent of the laser dynamics. However, the ability of the
pump to populate the upper lasing level is conditional on
whether the ground state is being replenished sufficiently
fast to support the pumping, and this depends on the net
stimulated and spontaneous emission rates from the las-
ing levels.

An analysis of the derivation of Eq. (3.7) indicates that
the predicted sub-Poissonian photon statistics and
squeezing are due to a reduction in the role of pump
noise and spontaneous emission from the upper atomic
level, when m2O is increased from the undepleted pump
regime (where the photon statistics are Poissonian and
the output is shot noise limited), towards l, . For larger
pump rates these noise terms continue to decrease, and
one might expect the degree of squeezing to increase.

n

XV(co=0) (4.1)

where for convenience we have scaled the result to the
number of lasing atoms X. To compare with a laser in
the undepleted pump regime, which produces an almost
coherent output, observe the linear portion of the curves,
for wzo « I,. The AsN initially increases as the pump is
depleted, and then efFectively saturates or more correctly
peaks and falls slowly, as spontaneous emission noise
from the lower lasing level reduces the degree of squeez-
ing.

V. CONCLUSION

In the undepleted pump regime above threshold, and
with Poissonian pumping statistics, it is well known that
the laser photon statistics are Poissonian, and the output
is coherent or shot-noise limited. We have considered

The lower-level decay has little efFect on squeezing in the
undepleted pump regime provided only that I, &&I 2.
However, as the pump rate approaches I, this becomes
increasingly important, since the random spontaneous
emission events are then resolved, causing a reduction in
the degree of squeezing. The two opposing tendencies
may be seen by inspection of the pump rate dependence
of the coefficients of the noise terms in Eq. (3.4). Physi-
cally this is due to mutual dependence of the pumping
and lower-level decay which is manifest as w20 is in-
creased. The quantum noise features are illustrated in
Figs. 4 and 5.

An important measure of the significance of the
squeezing reported here is the signal-to-noise ratio (RsN)
of the output, illustrated in Fig. 6. The RsN is defined as
the ratio
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modifications to these quantum noise properties of a laser
with a fixed number of atoms as the pump parameter is
increased from above threshold, where the ground state is
not significantly depleted, to well above threshold where
the ground-state population is largely depleted. We have
shown by analysis of two examples, that sub-Poissonian
photon statistics and amplitude/intensity squeezing of
the output may be found in an intermediate regime where
wzc ~I

&, provided that I, ))1"2 (the usual design cri-
terion for a laser). In the model considered, the most
favorable regime is when the spontaneous emission be-
tween the lasing levels is minimized w, 2=0. At higher
pump rates, of less relevance to experimental investiga-
tion, the squeezing is reduced by spontaneous emission
noise from the lower lasing level which although not a
significant noise source for low pumping, acts as a
bottleneck, and becomes increasingly important as mzo in
increased.

Finally we note our analytical theory based on quan-
tum Langevin rate equations complements the numerical
analysis of Ralph and Savage who found output squeezed

amplitude fluctuations, in a model in which the laser po-
larization dynamics is included [8,9]. Our analysis shows
that the polarization dynamics is not important for this
observation. The latter authors also emphasize that the
interesting quantum noise properties are amenable to ex-
perimental investigation, and we hope our analysis will
assist in such investigations. Important questions to ad-
dress concern the feasibility of pumping far ( = 100 times)
above threshold, and the role of atomic number Auctua-
tions in the laser medium.

Note added in proof. We have recently received copies
of interesting work by H. Ritsch, P. Zoller, C. W. Gar-
diner, and D. F. Walls [12], and by T. C. Ralph and C.
M. Savage. These concern the production of sub-
Poissonian light from four (or more) level lasers, and the
role of coherent pumping in such systems.
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