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Dynamical localization in the microwave interaction of Rydberg atoms: The inAuence of noise
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We present experimental and theoretical results on highly excited Rydberg atoms passing through a
waveguide. The waveguide is excited in a coherent mode with a superimposed component of technically
generated noise. In the theoretical part of the paper we derive and solve a master equation for a Ryd-
berg atom driven by a monochromatic coherent microwave field in the presence of noise. We show that
a Rydberg atom subjected to a mixture of coherent modes and noise fields exhibits four dynamical re-
gimes: (i) diffusive broadening, (ii) localization, (iii) destruction of coherence and localization, and (iv)
relaxation to equilibrium. The four regimes are passed one after the other as a function of irradiation
time. They occur on different time scales and are thus temporally well separated from each other. The
theory is checked by an experiment on the time dependence of the population distribution of highly ex-
cited rubidium Rydberg atoms initially prepared in a unique and well-defined Rydberg state and irradi-
ated by a strong microwave field. The localization regime, characterized by a "freezing" of the width of
the wave packet with respect to the Rydberg levels, has been observed. The addition of a small noise
component was shown to lead to delocalization after times inversely proportional to the noise power, as
predicted by our theory.

PACS number(s): 32.80.Rm, 05.45.+b, 05.30.—d

I. INTRODUCTION

Rydberg atoms in strong external microwave fields are
interesting candidates for the investigation of nonlinear
dynamics [1]: the classical counterpart of this system
shows chaos, and it is of special interest to focus atten-
tion on the quantum behavior, especially in parameter re-
gions where the classical treatment leads to chaos. One
typical phenomenon is the dynamical localization of the
population distribution which was discussed in several
papers, e.g., by Casati et al. [2] and Bliimel and Smilan-
sky [3,4], generalizing the concept of localization of the
quantum kicked rotor, first noticed by Chirikov, Izraelev,
and Shepelyansky [5].

In this paper we investigate the localization and its sta-
bility when noise is added to the microwave field. We are
concerned here with an important theme of contem-

porary research, namely the interplay between quantum
coherence and external noise. The destruction of quan-
turn. coherence by noise is central to many fields of phys-
ics and is reAected in the large number of papers recently
published on this subject (see, e.g., Refs. [6—20]). Of spe-
cial interest here is the work reported in Ref. [13] on the
inhuence of controlled noise on the Hanle eFect.

Contrary to other experiments, we do not focus on the
microwave ionization probability, but on atoms which
were not ionized in the microwave region. This is a con-
siderable advantage, especially for the observation of the
population redistribution in the external microwave fields
(see also Ref. [19]for comparison).

The excitation and ionization behavior of a given Ryd-
berg state under the inAuence of an external strong mi-
crowave field is essentially controlled by three parame-
ters: the microwave field strength, the microwave fre-
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quency, and the interaction time. While in existing ex-
periments on the microwave ionization of hydrogen Ryd-
berg atoms [19—23] at least one of the three parameters is
hard to change (e.g. , the interaction time), our experi-
mental setup is "universal" in the sense that all three con-
trol parameters can easily be varied. Out of the three pa-
rameters, the variable interaction time is of particular in-
terest. A variable interaction time, e.g. , is necessary to
clarify whether the phenomenon of quantum localization
is present which manifests itself by a stationary popula-
tion distribution of Rydberg levels around the originally
excited level. If the atomic wave function is localized, a
change of the interaction time with the microwave field
should not change the population distribution.

Recently it was pointed out by Breuer, Dietz, and Hol-
thaus [24] and Breuer and Holthaus [25], that there can
be a crucial contribution of the switching on and switch-
ing off of the microwave field to the atomic dynamics.
Adiabatic switching is indeed important for our experi-
ment and we will come back to this point later (see Sec.
IV).

Localization may occur for weak coupling as a pertur-
bative efFect [26], or, for strong coupling, it may be inter-
preted as a form of Anderson localization [27]. In both
cases it crucially depends on the coherence of the wave
function. The weak-coupling and the strong-coupling re-
gimes are usually identified with respect to the corre-
sponding classical system. In the weak-coupling case
population is neither transferred classically nor quantum
mechanically. The atomic system is therefore called
trivially or perturbatively localized [26]. In the strong-
coupling case, the classical system generically shows un-
limited diffusion in phase space while in the correspond-
ing quantum system the diffusion may stop after a certain
characteristic break time t* [2,S]. For times r ) t*, the
quantum system will show the "collapse" and "revival"
phenomenon well known in quantum systems with a
finite number of levels. This indicates that in the quan-
tum case and due to interference effects, the atomic popu-
lation is dynamically restricted to a finite set of levels, al-
though, and judging from the behavior of the correspond-
ing classical system, many more levels are in fact strongly
coupled and should be accessible for a redistribution of
population. Thus, the quantum-mechanical freezing of
the atomic population for t ) t * cannot be understood in
a classical picture. The quantum freezing effect is there-
fore called nontrivial localization [2,5,27]. Indeed, one of
the main results of this paper will be the experimental
demonstration of nontrivial localization in the case of
microwave-driven rubidium atoms. While in the theoret-
ical part of the paper classical calculations are readily
available to establish the presence of nontrivial localiza-
tion (see Sec. II), classical calculations for microwave-
driven rubidium atoms are understandably not yet avail-
able. Nevertheless, we will present convincing arguments
to establish the nontrivial nature of the observed localiza-
tion of rubidium Rydberg states (see Sec. III).

In the case of the kicked rotor, the presence of a small
stochastic contribution to the kicking force of the rotor
was shown to be sufhcient to destroy localization and to
lead back to difFusion on long time scales [8,11]. Recent-

ly the efFects of dissipation and Auctuations, related by
the fluctuation-dissipation relation on the localization of
the angular momentum of the kicked rotor, has been in-
vestigated [9,28]. The dissipation was modeled by a
reservoir coupling, resulting in a master equation for the
statistical operator of the rotor. Its solution showed that
the coherence of the initial state and the accompanying
localization are destroyed on a time scale inversely pro-
portional to the dissipation rate or noise intensity. For
longer times it was found that the system returns to
diffusion, caused by transitions between quasienergy
states due to the reservoir coupling.

In the present paper we study theoretically and experi-
mentally the relevance of these results to Rydberg atoms
in strong microwave fields, applying similar methods.

The paper is organized as follows: in Sec. II we present
the theory and in Sec. III we give the experimental re-
sults. In Sec. IV we discuss theoretical and experimental
results and Sec. V concludes the paper.

II. THE(DRY

The theory consists of three parts. In Sec. IIA we
present a derivation of the master equation of a strongly
driven Rydberg atom in the presence of a noise field.
Since the atoms are driven strongly by an external mi-
crowave field, our master equation is based on the atomic
Floquet states rather than on the unperturbed atomic
states. Limiting cases of the master equation are studied
in See. II B. The master equation is solved in Sec. II C in
the case of a one-dimensional model. The field parame-
ters are chosen such that the theoretical calculations are
of relevance for the experiments described in Sec. III.

A. Derivation of the master equation

In this section we set up the master equation describing
the dynamics of Rydberg atoms interacting with strong
microwave fields and with thermal fields or externally im-
posed noise fields. The latter case can be considered as a
special case of the former and will be treated at the end of
this section. We shall use the Markovian approximation.
While the general method of derivation of Markovian
master equations is described, e.g. , in Refs. [29] and [30],
our approach, based on the atomic Floquet states and
emphasizing localization properties is suSciently novel to
justify the following detailed presentation of its deriva-
tion.

1. Hamiltonian

Consider Rydberg atoms transversely passing a rec-
tangular waveguide held at temperature T and coherently
excited in its TE0, mode. Figure 1 shows the geometry of
the waveguide together with the electric-field distribution
of the TED& mode and the direction and position of the
coordinate axes. The extension of the waveguide in x and
y direction is g and g, respectively. The atoms enter the
waveguide through the hole at (x =0, y =rI/2, z =0) and
leave the waveguide through the hole at (x =g, y =g/2,
z =0). This way the atoms encounter a constant electric
field during most of their passage through the waveguide.
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ATOMIC J&y
NOISE AND MICROWAVE

POWER
2. Coupling to the quantized modes of the u)aueguide

In order to determine the functions g, and p' „'(co) we
have to consider the field quantization (see, e.g., Ref. [31])
in the waveguide. The vector potential in the Heisenberg
picture

A(x, y, z, t)= A' '(x,y, z, t)+ A'+'(x, y, z, t)

FIG. 1. Sketch of the waveguide used to study Rydberg
atoms in a superposition of a strong microwave driving field and
a thermal or technically generated noise field.

This setup has to be contrasted with the setup used, for
instance, in the Bayfield waveguide experiments, [19,20]
where the atoms enter in the y direction and thus en-
counter an electric field that changes spatially with a sine
envelope.

Before the atoms enter the waveguide in the x direc-
tion, i.e., parallel to the electric vector of the microwave
field, they are prepared in a Rydberg state, i.e., in a high-
ly excited eigenstate of the atomic Hamiltonian H„. The
total Hamiltonian takes the form

H(t) =H()(t)+H;„, +H~

with

H()(t) =H„+exF sin(orat ),
H;„,=figx(g, b, +g,*b, ), (2)

H~ = i)1 g ro, ( b, b; + —,
'

) .

Hp is the Hamiltonian of the Rydberg atom with a dipole
coupling to the electric field of the microwave with am-
plitude F and frequency co. We assume, for simplicity,
that the atom was prepared in an extremal parabolic sub-
state such that only the x component of the dipole mo-
ment effectively couples to the electric field. The dipole
coupling of the atom to the quantized modes of the
waveguide is described by H;„, ~ The coupling constants
g, are determined below. In the limit of infinite length of
the waveguide the sum over i is replaced by

in the radiation gauge may be expanded as
' 1/2

b(i. )
' Imn U(x) ( )1mn e 1mn

A' '(r, t)= g
1, m, n

A( —
) —

( A(+))t

~1mn

where the index A. distinguishes TM (A, = 1) and TE (A, =2)
modes and m1 „=co is the dispersion relation of the
waveguide. The mode functions U& '„are assumed to be
normalized

dr[U', '„(r)]* U', ' „(r)=5„.5 .5„„,5ii, ,
V

H;„,= — [A„'(r, t) +A,' )(r, t)], , (,),
C 0

where ro(t) is the time-dependent position of the atom in
the waveguide. According to our assumptions (see Fig. 1)
only the x coordinate of the atom changes with time. Its
y and z coordinates are time independent and given by
y =i)/2 and z =0. Inserting (5) in (7) and comparing
with (2) we find the coupling constant

1/2 T

2~e ~1mn
2

e„U(& '„x(t), ,0'2'g(&) —
)

We now average over the time dependence introduced by
x (t). As the final expressions will only depend on ~g&(

)
I

we take the average in this latter expression, i.e., we make
the replacement

2

e, U(( '„x(t),~,0' 2'

where the integration is extended over the volume V of
the waveguide. The mode indices l, m, n appear due to
the boundary conditions of the waveguide. In the z direc-
tion (index l), we assume cyclic boundary conditions over
a length I., with I.—+~ eventually being taken. The
boundary conditions in the x and y direction yield the la-
bels I and n, respectively. The Hamiltonian H;„, now
takes the form

f dm p~„(co),
i m, n, A,

(3)
dx e U'' x~o1

x Imn

2

(9)

where p' „' ( co ) is the density of TM „modes 9,= 1) or
TE „modes (A, =2) of the waveguide, which is also deter-
mined below. Finally, the Hamiltonian of the free field in
the waveguide is described by the Hamiltonian H~. The
operators b;~, b; are the usual Bose creation and annihila-
tion operators. In the case of externally imposed classical
noise fields the free-field Hamiltonian H~ is to be omitted
and the b;, b; are treated as classical complex mode am-
plitudes whose averaged absolute square determines the
average noise energy at frequency m; in units of Ace;.

(i)U1 „
(1)JV, „

max . naycos sin
'9

n g. m ex 'n~y
sin cos

m'g 'g

ldll

to'mn g . mnx . naysin sinc'k, mr).

The normalized mode functions are for A. = 1

e ' (10)



4524 R. BLUMEL et al.

with

k =2ml/L,
' 2 2 1/2

at one end of the waveguide (see Fig. 1) and absorbed by
a stopper at the other end (not shown in Fig. 1). The cou-
pling of the atom to the quantized field in the waveguide
is now completely specified.

and

~mn ~0mn

m&c k)(1)
Imn 3 1/2(g 'gL ) ti)ImnCOmn

3. Equations of motion in the interaction picture

ikp=[H(t), p] . (18)

The von Neumann equation for the statistical operator
p of the total system reads

where m ~ 1, n ~ 1.
For A, =2

(2}UI „
(2}IVI „

with

(2} 2

(g 3L )1/2 (g

nmc

m~x . n~ycos sin
7l

m2) . mnx nay i'k)z
sin cos e

n 7)

0

(12)

(13)

U(t)= U, (t)e U„(t),

Uo(t) = exp ——f dr Ho(r) (19)

l
U„(t)=exp — Ht(t—

Our aim now is to treat the interaction with the strong
coherent microwave field exactly, and to apply perturba-
tion theory with respect to the coupling to the other
modes of the waveguide, which are excited thermally or
by externally imposed noise. Therefore, we introduce an
interaction picture via the unitary transformation

where m ~ 0, n ~ 0, but m = n =0 is forbidden. Upon
averaging on x, the coupling constant (8) becomes

1/22ale cOI
(A. }

gimn

where Ho(t), H+ are defined by (1) and [ ]+ denotes
time ordering. The statistical operator in the interaction
representation is

JV(1"„ for I,= 1, n odd, m ~ 1

X 'IVI '„ for A, =2, n odd, m ~0
0 otherwise .

(14)

p(t)=U(t)p(t)U(t) .

Using the equation

i A'U(t) = [H, (t)+H~ ]U(t),

(20)

(21)

(15)

and the relation, valid for L ~~,
~f dl . ~ dorp( )(co)pmn

I

As the atomic dipole moment has only a component in
the x direction, only modes with E %0 are "seen" by the
atom and need to be considered in the following. These
are all the TM and TE modes, except all modes with even
n whose E vector points in the y direction and therefore
do not couple to the dipole moment in the x direction.

In the following the density of modes p' „)(co) will also
be needed. From the dispersion relation

1/2
~mn

2
~tmn

we obtain the equation of motion in the interaction pic-
ture

ihip(t)= [H;„,(t),p(t)]

with the Harniltonian in the interaction picture

H, „,(t) = U (t)H,„,U(t) .

(22)

(23)

In order to explicitly construct the operator U(t) it is
necessary to solve the Schrodinger equation generated by
the Hamiltonian Ho(t). This task has been performed
numerically in previous work [3,4,32] on which we shall
rely in the following. Let us assume therefore, that the
atonuc Floquet states

l N~(t) & and the associated quasien-
ergies Ap satisfying

we find

(2)
( )

I.D co

&C (
2 2 )1/2~mn

Here, D = 1 in case technical noise is fed into the
waveguide at one end and propagates unreAected along
the waveguide, and D =2 in case of thermal noise, or a
waveguide filled with technical noise propagating in both
z directions. D =1 is the proper choice for the experi-
ments to be described below, since here the noise is fed in

are known. We then have for Uo(t)

For the operators

(24)

(25)
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b, = U (t)b; U(t),
x=U (t)xU(t),

we obtain

b. =b e ' ' b =bte
1 I i i

x(t) =y K p(t)le (0) & & ep(0)l,

with

K p(t)=e p &e (t)lxlep(t) & .

Introducing the Fourier expansion

(27)

with

& p(k)=p p—p+kco .

Later we shall use the abbreviation

0 p(k) = lb, p(k)

We note the useful symmetries

K p(t) =Kp (t),

X p(k) =Xp ( —k),

6 p(k)= —bp ( —k) .

(31)

(33)

&e (t)lxlep(t)&= y e'" 'X p(k),

we can rewrite (27) as

X(t)=g e X p(k)IC'. (O)&&ep(0)l
aPk

(29)

(30)

We are now in a position to write down the Hamiltonian
in the interaction representation. Doing so we shall
make the "rotating-wave" approximation, i.e., we shall
keep only terms -exp[+i[f1 p(k) co;]t} —and neglect
terms -expI+i [0 p(k)+co, ]t }.Then we obtain

H;„,=A'gg; g
i aPk

1+sgn 5 p(k) X.p(k)e'".P'"' "le.(0) & & ep(O) lb, +H c.
2

(34)

where H.c. denotes the Hermitian conjugate, and sgn[b, p(k)] =b, p(k)/fI p(k).

4. Elimination of the heat bath

Our aim is to derive an equation of motion for the reduced density operator o (t) in the interaction picture defined by
the trace over the reservoir states

cr(t)=Trzp(t) .

We assume that the interaction with the reservoir is switched on adiabatically at t —+ —~ and that for t ~ —~

p( —~ ) =(7( —~ )(8)p~

with

pit =exp( H~/k~T)/Z—R .

(35}

(37)

Here, k~ is the Boltzmann constant and Zit is the partition function of the reservoir. cr(t) satisfies the integro-

differential equation

o(t)=Tr, .„[H;„,(t),p( —~)]+,J dr[Jr, „,(t), [H,„,(~),p(r}]]
1

(inert)
(3g)

The first term under the trace vanishes because

Tr~ bEPz O Trz bl. P~

In the second term we may replace p(r) up to second order in the coupling constants g; by its zeroth-order approximant

p(r)=o(r)pg .

Then the trace over the reservoir brings into play the two correlation functions

K(+)( )
—y &b b't&l l2

—' '
P

K(+)( )
—

& btb & l

l2
—' P

l

(40}

(41)
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with

( b; b )=. Tr i,b; b~p~ =n,h(co, )6,), (42)

where n,„(co; ) is the number of photons in mode number i. In the case of thermal noise, n, h is given by Planck s formu-
la n,„(co;) = [exp(irido, /k' T ) —1 ]

We shall now assume that the reservoir is Markovian, i.e., the correlation functions (41) decay to zero on a time scale
~o much smaller than the typical time scales

r p(k)=y p(k)

of the master equation [see (49) below]. Then we may replace for r ~ r'

(«')=2ir&(«') g p' „'(& p(k))lg'„'(II p(k))l'[1+n, „(Q p(k))]
m, n, A,

(44)

1+sgn[b, p(k)] 1+sgn[b, p(k')]
o(t)=rr g p"„'(~.p(k )) g"„'(~l.p(k ))l'

a, /3, k o.', /3', k ' m, n, A,

X [X p(k)X*.p (k')e

d~ p".'(~) lg"„'(~)l'[1+n,„(~)]+iI'
co —0 p(k)

where P indicates a principal-value integral. A corresponding expression for E2 '(r r'—), wh—ere (1+n,„) is replaced by
n„h, is easily derived. We used the mode density introduced in (16) and employed the notation g' „'(co)=g&' „' for
I/l = (~1.y2~c )(1—~' „y~')'".

In the following we shall neglect the principal part in expression (44) which describes a shift of the quasienergies in-
duced by the reservoir. The integro-differential equation now reduces to a differential equation which takes the form

X I [1+ n(Q p(k'))][I .po (t), 1 p]+n,„(Q p(k'))[I p, o (t)I "p ]]+H.c.],
where we used the notation

I.p= I~.(0) ) (C p(0) I
.

We now assume that

lQ p(k) —Q,p(k')lt »1

(45)

(46)

for all triplets (a,P, k)W(a', P', k'), in which case only terms with (a, /3, k) =(a', P', k') must be kept in (45). The master
equation in the interaction picture then finally reads

o(t)= —,
' g y p(k)[[l+n, h(Q p(k))][[I p, o(t)I p]+[I pcr(t), I p]I

aPk

+n,h(Q p(k))[[l p, o(t)I p]+[I pcr(t), I p]I] (48)

with

y p(k) =277 y p' „~ (n p(k) )lg~ „~(n p(k) )

with

m, n, A,

I+sgn[h p(k)]x lX.,(k) l' (49)

M p= y [y p(k)+n, „(n p(k))

X [y~p(k)+yp (/c)]] (52)

o.p(t) = (@.(0) la(t) l@p(0) ) .

Then the master equation becomes [33,34]

(50)

It is convenient to use the representation provided by the
basis lC& (0)) and to write Its solution for the oA'-diagonal elements is

o p(t) =o p(0) exp ——g (M „+Mp„)

cr (t)=g (M„cr„„—M „o ),
P

cr p= —
—,
' g (M „+Mp ) o p(t) (aW/3),

(51) In the Schrodinger picture we then obtain
—i(,p, —pp)to p(t)=e p op(t) . .

(53)
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The solution for the diagonal elements is

o (t)=g [exp( At—)] t3crtiti(0),
p

where the matrix A has the elements

A ti= —Mti +5 t3+M „.
p

(55)

ficon' „'(co)p' „'(cv)dcoR' „'(co)dco= v „(gi))gi),re
(58)

v „=c(l—tv „/to )' (59)

where on the right-hand side the first factor specifies the
spatial energy density in the mode (m, n) in the frequency
interval des, the second factor gives the group velocity

B. Limiting cases of the master equation

Let us consider as limiting cases the case of no exter-
nally applied microwave field (Sec. IIB 1) and the case
where the reservoir is replaced by externally imposed
classical noise (Sec. II B 2) .

with which it propagates down the waveguide, and the
third factor gives the cross section of the wave guide. In-
serting the spectral density of modes from (17) and solv-
ing for n ' „'(to), we obtain

(60)

Xo externally applied rnierowavegeld

In this case the Floquet states l4 ) are time indepen-
dent and given by the eigenstates of the atomic Hamil-
tonian. The p become the energies of the unperturbed
atomic levels. The matrix elements reduce to
X p(k) =X @ok 0 and therefore also y &(k) =y P& 0. The
master equation (51) retains its form, but the sum over k
in (52) reduces to the single term with k =0.

The physical effect of the external microwave field on
the interaction of the atom with the reservoir can now be
appreciated: Without the external microwave field only
the reservoir modes in resonance with the atomic transi-
tions effectively interact with the atom [10]. With the
external microwave field switched on, reservoir modes at
the atomic transition frequencies plus or minus integer
multiples of the microwave frequency can also interact
with the atom, but the total transition strength

(57)

remains about the same. Whether the presence of the mi-
crowave field will tend to stabilize [35] the states l@ (t) )
compared with the energy eigenstates l4 ) therefore de-
pends on the frequency dependence of the reservoir
response function

2. Externally imposed classical noise

In this case the spontaneous decay of a Floquet state of
the driven atom by interaction with the reservoir is negli-
gible compared to induced decay and we may put
1+n,h =n, h »1. Also the distribution of the noise ener-

gy over the spectrum need no longer be given by Planck's
formula.

Let the number of "noise-quanta" in the mode m, n, k
at frequency co be n' „'(co). It can be determined if the
noise power R' „'(cv)den in all the TM „modes (A, =l)
and TE „modes (A, =2) at frequency co in dc@ is specified.
We have by standard electrodynamics

Therefore, in the case of externally imposed classical
noise, (48) remains valid if in (48) and (49) we replace

[1+n,h(A ti(k))]p' „'(II ti(k))

=n, i, (fl g(k))p' „'(& t3(k))

R'"„'(0 t3(k))p' „'(0 p(k)) .A'0 p(k)D
(61)

C. Solution of the master equation

In this section we solve numerically the master equa-
tion (48) in its matrix representations (53) and (55). In or-
der to compare our theory with the experimental results
to be described in Sec. III, the theoretical results for the
coherences and populations of quasienergy states, (53)
and (55), respectively, have to be transformed back into
the atomic basis which yields o.«. and o-« ——~„, respec-
tively. On this level, the question arises how to compress
the information contained in the set of occupation proba-
bilities I P„] in a physically meaningful way. In the con-
text of information theory, the message conveyed by a
particular excited atom in an atomic beam is its state of
excitation ln ). An atomic beam, therefore, is nothing
but a source of information, a transmitter, which gen-
erates a sequence of elementary messages (=atoms in
several possible excited states) which occur with a proba-
bility I'„. In other words, it is a stationary stochastic
process. In 1948, C. E. Shannon [36] realized that the
most fundamental concept which characterizes a
transmitter is its entropy S = —Q„P„log2P„, where log2
is the logarithm with respect to base 2. The entropy S is
the minimum average word length required for coding
the possible elementary messages ln ) in a binary code.
This is obvious if the number M of elementary messages
is a power of 2, M=2, and all the elementary messages
occur with equal probability I'„=2 . We get
S=—Q„P„log2P„=m which is exactly the number of
bits required to code 2 equiprobable symbols. The
Shannon width, W =2 =exp( —g„P„lnP„) defines the
effective number of distinct elementary messages the
transmitter is able to generate. It equals 8'=2 =M in
our example of 2 equiprobable elementary messages.

The Shannon width 8 is a fundamental concept in
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analyzing sequences of occupation probabilities I P„ I

which can, e.g., result from solid-state experiments as oc-
cupation probabilities of lattice sites n, or in atomic beam
experiments as occupation probabilities of excited states
~n ). In both cases, the question whether W is finite or
infinite is of elementary significance. For 8'& ~, the set
of occupation probabilities I P„] is called localized,
whereas 8'= ~ defines the delocalized situation.

To our knowledge, the concepts of Shannon entropy
and width were first used implicitly in an atomic physics
context in Refs. [37] and [38] and explicitly in the context
of localization in Rydberg atoms in Ref. [3]. The Shan-
non width is not the only function which measures the
spread of population distributions. A wide class of such
measures is y =g„P„,a ~ 1; W' =y '. While for a= 1

we obtain the trivial result g=1 which reAects nothing
but the normalization of the set IP„ I; for a=2 we obtain
Wz=yz '=(g„P„) ' which is the participation ratio
widely used in solid-state physics. We emphasize that
different measures of the width of a set IP„] yield gen-
erally very difFerent numerical answers. Depending on
the specific set I P„ I at hand, the Shannon width, the par-
ticipation ratio, or the more traditional concept of the
full width at half maximum (see Sec. III) can difFer from
each other by substantial numerical factors.

Because of its immediate connection to information
theory, we prefer to work with the Shannon width
8'=e . Moreover, the Shannon width allows a link to
quantum chaos. Since for 8'( (x), a finite code suftices to
identify the outcome of an atomic beam experiment, a
stationary probability distribution [P„J with W( Qc (the
localized case) cannot show any quantum chaos. A
necessary condition for chaos to occur in the sequence of
stationary state probabilities I'„ is an infinite code,
8'= ~, which corresponds to the delocalized situation.

With this background in mind„ the Shannon width will
be the primary subject of investigation in the theoretical
as well as in the experimental sections to follow.

1. Method

calculations in this case were performed by coupling the
continuum as described in Ref. [41]. Twelve atomic
bound states

~

n ) ranging from n =69 to 80 were used as
a basis for the expansion of the Floquet states, which
were determined numerically. In this way, the final re-
sults could be expressed in the basis of bound states of the
hydrogen model. The Shannon width of the resulting
probability distribution is given by

W'(N, T)=exp —g P„(N, T)lnP„(N, T)
n

where T is the temperature of the reservoir and

(63)

(64)

is the probability to find the state ~n ) in the statistical
mixture described by the statistical operator o. after the
atom has experienced N microwave periods. The Shan-
non width is a convenient measure for the number of
states

~
n ) contained in the mixture o..

2. Results

In Fig. 2 the Shannon width 8'obtained from the mas-
ter equation as described in Sec. II C 1 is plotted versus
the logarithm of the number of microwave periods N at
100 discrete times N, j =1, . . . , 100, for T=4 and 300
K. The mesh points N were selected according to

N = [10"'i~]where [x] denotes the integer part of x. In-
itially only a single state

~ no = 71 ) is occupied and there-
fore W(N =0, T) = 1. Figure 2 displays four difFerent re-

gimes in time. In the first regime, 8 increases within the
first microwave cycle from its initial value W(0, T) =1 to
a value of the width which fl.uctuates around F"=5 and
is independent of the temperature T. In order to con-
veniently represent all four regimes on one scale, we indi-
cated this rapid initial rise in Fig. 2 by the straight-line
segment at lnN =0. The fast temporal rise of 8 is due to
the fact that for the chosen demonstration example
con (1. In this first regime the exposure time is so small

The master equation (48) was solved numerically for an
ideal rectangular waveguide with g'= 0.953 cm and
q=1.905 cm. These are exactly the dimensions of the
wave guide used in the experiment to be discussed later.
We used two temperatures, T=4 and 300 K, respective-
ly. Apart from the thermal noise, the waveguide was ex-
cited coherently in the TED& mode with amplitude
E=1.56X10 a.u. and frequency co=1.61X10 a.u.
The atomic Hamiltonian was chosen to describe a one-
dimensional model of a hydrogen Rydberg atom [39,40]

10—

H = —— (x&0) .p 1
at (62)

The initial state was chosen as the eigenstate of this Ham-
iltonian with principal quantum number no =71. A clas-
sical calculation with a sudden switch on of the coherent
microwave field (no noise present) shows that this case is
characterized by strong classical ionization, yet there is
no quantum ionization above the 1% level. The quantum

N (3QQK)
I

10
l, n N

N {4K'
I I

2Q 25

FICx. 2. Width of the IP„] distribution as a function of time
for two diFerent temperatures.
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k~T
n,„(A &(k))= »I

fifl t3 k)
(65)

in which case M &
—-T. The limit (65), in fact, applies to

our numerical calculations. In the case of technical
noise, (61) shows that the number of noise quanta per
mode is proportional to the applied noise power R and
the relation N*(R)R =const should hold where R is the
total noise power. In the third dynamical regime,
reached for N )N*( T), the strong fluctuations have
essentially ceased and the number of

~
n )-states contained

in the mixture increases. The first effect shows that the
coherences o.

t3, a&P have decayed after the time N*( T),
the second effect shows that the populations o. are
changed on the same time scale. This is described analyt-

that quantum effects due to the discreteness of the
quasienergies are not yet relevant. Also the coupling to
the reservoir is completely irrelevant in this regime.

In the second regime, 8 saturates and shows pro-
nounced quasiperiodic oscillations in time (independent
of temperature) around an average value significantly
larger than 1 but also significantly smaller than the total
size of the basis. This is the signature of dynamical local-
ization [27,42]. The large amplitudes of the oscillations
show the importance of the coherences o &, a&P in this
regime. The oscillations occur on a time scale of a few
microwave cycles. Since only 100 meshpoints were used
in Fig. 2 for %=10' microwave cycles, they are not
resolved in Fig. 2.

Like in the first regime, the coupling to the reservoir
has not yet any noticeable effect in the second (plateau)
regime. The second regime is terminated by a transition,
which, on the logarithmic time scale of Fig. 2, is sharp,
defining the temperature-dependent transition time
N*(T). We have determined this transition time for
different temperatures at two different field amplitudes.
The result is shown in a doubly logarithmic plot in Fig. 3
for F=4 V/cm (circles) and F =8 V/cm (squares). The
straight line interpolating the data gives the relation
N*(T)T=const. This relation follows from the solution
(53) of the master equation in the limit

ically by (53), (55), and (S6). As the rate constants M
&

are all proportional to T in the simulations, the diagonal
elements o, according to (55), are functions of NT only.
If all off-diagonal elements would vanish (o &=0), the
Shannon width would be determined by the diagonal ele-
ments o. only, and then

W(N, T)= W(NT) = W(lnN+lnT) .

If this scaling relation is satisfied, then in the logarithmic
plot of Fig. 2 an increase in T must amount to a parallel
shift of the curve to the left. Indeed, it can be seen that
in Fig. 2 the parts of the curves for N )N ( T) approxi-
mately satisfy this requirement, which, together with the
disappearance of the Auctuations, gives evidence that the
coherences have decayed to zero. The fourth and final re-
gime reached for sufficiently long time is a steady state
which, in the present case, where n,h(A p(k)) ))1, corre-
sponds to equidistribution over the whole basis.

These findings for the one-dimensional model of the
hydrogen atom correspond closely to results obtained for
the mean energy of the kicked rotor model weakly cou-
pled to classical noise [8] or a heat reservoir [28,43,44].
Also there the initial classical diffusive regime is followed
by a regime of dynamical localization, where both re-
gimes are independent of the heat reservoir. After a tran-
sition time inversely proportional to the noise intensity
(or, equivalently, the square of the reservoir coupling
constant), the regime of localization goes over into a new
diffusive regime, where the diffusion constant is again
proportional to the noise intensity.

In summary, we derived and solved a master equation
for Rydberg atoms interacting with a strong microwave
field in a noisy waveguide. We reached definite theoreti-
cal predictions: noise-induced destruction of coherence
and localization at a critical interaction time X*, and
redistribution of populations of quasienergy states in a
time which scales inversely proportional to temperature
or noise intensity.

III. EXPERIMENT

In this section we present the experiment which is used
to check the theoretical predictions. In Sec. III A we de-
scribe in detail the setup of our experimental apparatus
and the experimental procedures used to access the
bound-state probability distribution of rubidium Rydberg
atoms which are subjected to a combination of coherent
and noisy fields. In Sec. III 8 we present the experimen-
tal results which are evaluated in Sec. III C by means of a
deconvolution procedure.

iQ 15

FICi. 3. The relation between temperature and break time
X* for two diferent field strengths (squares: I' =4 V/cm; cir-
cles: I =8 V/cm). The straight line interpolating the data was
drawn to guide the eye, and rejects the relation X*T=const.

A. Setup and description of the experimental procedure

In contrast to the experiments of Bayfield and Sokol
[19,20], Hayfiel et al. [23], Galvez et al. [21], and
Moorman et al. [22] who work with fast beams of highly
excited H atoms, our setup uses a thermal beam of rubi-
dium atoms which can be laser excited to nP Rydberg
states ranging from n =40 to n =135. The laser radia-
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tion was produced by frequency doubling the light of a
rhodamine 6G laser. Figure 4 shows our setup; laser ex-
citation, microwave interaction, and analyzing regions
are spatially well separated from each other. The rubidi-
um atoms leave the oven as a thermal beam with a
modified Maxwellian velocity distribution. For the ex-
perirnents a well-controlled microwave interaction time is
required, in principle achievable by velocity selection of
the atoms. We used a much simpler and cleaner way
which additionally avoids problems with stray fields:
after leaving the oven, a group of atoms is laser excited
by a short laser pulse (pulse duration 6 ps). The resulting
group of Rydberg atoms then travels into the waveguide.
Due to the velocity distribution, the bunch of atoms
spreads spatially. If the duration of the laser pulse was
chosen short enough, this spread of the atoms is smaller
than the dimension of the waveguide. As soon as the
packet reaches the center of the waveguide, the atoms are
irradiated with an electronically shaped, nearly rectangu-
lar microwave pulse (TEoi mode) whose duration t can be
varied from ca. 10 ns to roughly 20 ps. (The maximal in-
teraction time is determined by the time of fIIight of the
atoms through the waveguide. ) The microwave pulse is
switched on and oQ' by a pin-diode switch which gen-
erates a rise- and switch-ofI' time of about 6 ns corre-
sponding to about 70 periods of the microwave field. The
carrier frequency can be varied from 8 to 18 GHz. The
microwave pulse induces transitions to diIterent Rydberg
states, or ionization, depending on the duration, the car-
rier frequency, and the field strength of the microwave
pulse. The packet of Rb atoms, of which every single
atom saw exactly the same microwave pulse, is now trav-
eling towards the field-ionization region. Here the atoms
are ionized by an electric-field ramp [45] [1.8 V/(cmtu, s)]
and the ejected electrons are detected by a channeltron
multiplier. The exact timing of laser excitation, mi-
crowave interaction, and field ionization is controlled by
a pulse generator and delay lines such that, independently
of their particular velocity, the atoms all interact for the
same time not only with the microwave field, as men-

tioned already, but also with the ionizing field ramp in
the analyzing region. The latter is important in order to
reach a high state selectivity in the detection process.

In all experiments on microwave excitation the most
dificult part is the calibration of the microwave field
strength in the interaction region. This might be done, in
principle, by carefully monitoring the power Aux through
the waveguide, assisted by a numerical calculation of the
resonator modes. We choose a more direct and reliable
procedure which determines the electric-field strength in-
side the waveguide from direct observation of two-photon
Rabi nutation between highly excited P states, e.g.,
66P3iz~67P3/z (frequency: 12.634 85 GHz) [46]. For
this purpose, we make use of the unique feature of our
setup: the interaction time with the microwave can be
varied. The Rabi oscillation occurs due to the modula-
tion of the population in the upper state (e.g., 67P3&z) as a
function of the microwave pulse duration (see Fig. 5, and
Ref. [47] for more details). The field strength can now be
evaluated from the known matrix elements [48] for the
induced microwave transition, and from the Rabi fre-
quency found in the experiment.

B. Experimental results for coherent
and noisy microwave drive

For the experimental investigation of the localization
properties of highly excited Rydberg atoms [3,4,32,49] we
prepared the atoms in the 84P3&2 state. Electronic shot
noise (generated by an idling traveling-wave tube
amplifier [19,20] and ranging from 8 to 18 GHz) can be
admixed to the coherent microwave pulses (carrier fre-
quency 12.05944 GHz) in arbitrary ratios. In the field-
ionization region, the di6'erent Rydberg states are ionized
at diff'erent times within the field ramp. If G(E;r) is
defined as the ionization probability at ramp field E of
atoms having interacted a time t with the microwave field
to which a noise contribution was added, then this proba-
bility will be a unique function of the final bound-state
distribution of the Rydberg atoms. In the following we
denote by 6"(E;t) the response function of atoms which
have interacted with the coherent microwave alone, and
by G"(E;t) the response to a superposition of coherent

(np) (np)
signal with noise. 6 (E) [6 (E)] shall represent the

60

E

u) 20 -I

67 500

FICx. 4. Side view of the experimental block. Laser excita-
tion, microwave interaction, and analyzing region are spatially
well separated from each other. Lengths are indicated in mm.

FIG. 5. Two-photon Rabi nutations for the transition
66P3/2 67P3/2 Microwave frequency: 12.63485 CxHz; power:
2.48 pW.
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normalized (non-normalized) ionization probability of
atoms which neither interacted with the coherent signal
nor with noise; this function is therefore the characteris-
tic field-ionization signature of the pure state npP3/2 ini-
tially prepared by laser interaction.

—(no)
In Figure 6, some typical results for G (E) are

shown, with np ranging from 68 to 110. The curves
represent the directly recorded signals without normali-
zation. Since the slew rate of the ionization-field ramp
has been kept constant for all the measurements we are
reporting here, these pictures show the dependence of the
field-ionization signals on the principal quantum number
[50—52]. The rather complicated structure of these
curves is a consequence of diabatic and adiabatic field
ionization (see, e.g. , Ref. [53]) owing to the lack of
angular-momentum degeneracy in nonhydrogenic Ryd-
berg atoms. Whereas for low-lying np values an intense
and narrow adiabatic peak is dominating the response
function, the diabatic contribution to the ionization sig-
nal (occurring at higher field strengths) becomes more
and more important with rising principal quantum num-
ber. In a transient regime of np, most prominently at
no=84 [Fig. 7(b)], the diabatic peak exhibits a clearly
developed structure with a larger part at lower [15 V/cm
in Fig. 7(b)] field strengths and a broad shoulder at higher
fields. This can be seen in Fig. 7, where the normalized

(no)
response functions G ' (E) are plotted for no=80, 84,
and 88, as well as in Figs. 6(c)—6(g).

The np dependence of the relative importance of adia-
batic and diabatic signal contributions, as well as the sub-
structure in the diabatic peak in a certain regime has also
been observed in Refs. [51]and [52]. There, the broad di-
abatic part, extending to relatively high values of the ion-
izing field, has been assigned to states which hardly mix
with other states and ionize predominantly at higher field
strength by quantum-mechanical tunneling.

In Figs. 8(a)—8(c), the field-ionization signals G "(E;t)
of atoms initially prepared in the state 84P3/2 and after-
wards subjected to a coherent microwave field are
displayed. The microwave field strength was 1.37 V/cm.
The three plots show the response functions G "(E;20
ns), G"(E;100 ns), G "(E;1ps). All of them have a
quite similar shape and are significantly different from
G' '(E), shown in Fig. 7(b). The shoulder structure of
the diabatic signal contribution disappears and the ratio
between the diabatic and adiabatic peak diminishes, both
of these effects rejecting the population change induced
by the microwave interaction. It can be seen from Figs.
8(a)—8(c) that the diabatic peak shifts slightly towards
higher fields which indicates that the change of the level
population goes rather towards smaller than towards
higher n values. This is not contradicted by the fact that
the ionization signal in Figs. 8(a)—8(c) is not significantly
increased on the left wing of the diabatic part. States ly-
ing below 84P3/2 show a less prominent diabatic contri-
bution (see Fig. 6) which does not significantly add to the
high field side of the diabatic signal part of 84P3/2 and is
therefore covered by the diabatic contribution [Figs.
8(a)—8(c)]. This conclusion is supported by theoretical
calculations (see Sec. IV, Fig. 15).

Contrasting the drastic change of the structure of G"
[Figs. 8(a)—8(c)] with respect to G' ' [Fig. 7(b)] within
less than 20 ns, a comparison of Figs. 8(a)—8(c) gives us a
first visual impression of the localization phenomenon
which is the topic of this work: The atomic ensemble (ini-
tially prepared only in the state 84P3/2) reaclles a plactl-
cally stationary population distribution after a quite short
microwave interaction time.

The delocalization due to noise is demonstrated in
Figs. 8(d)—8(f): whereas G "(E;20 ns) and G "(E;100ns)
do not yet dier much from G "(E;20 ns) nor from
G"(E;100 ns), there is a dramatic change in G "(E;1
ps). The small component of broadband noise with a
(externally measured) power R of 12.6 pW—which is —,

'

of the power of the coherent signal being 6.3 mW —shows
its inAuence only after a relatively long interaction time.
It is apparent that the coherent part of the microwave
field establishes very fast (within less than 20 ns) a local-
ized population distribution [see Fig. 8(a)] which is then
slowly changed by the background noise.

C. Evaluation of the experimental results

In order to quantify the experimental results and for a
comparison with the theory as well as with the numerical
predictions, we had to extract the time dependence of the
Shannon width from the experimentally observed ioniza-
tion probabilities. This was done by defining

W(R, r) =exp —g w (R, t; no )lnw (R, t; no ), (67)
noEJ

0~ w'(R, t;no) ~ 1, g w'(R, t;no)=1,
no

(68)

and where J is a finite set of states n p.P3/2,J= [64P3&2, 65P3&z, . . . , 129P3&2]. The limitation to a
set of P3/2 states is an approximation which is justified by
the fact that the theoretical calculations discussed below
(see Fig. 16) show that the average occupation probability
of the levels is restricted mainly to states with small angu-
lar momentum which show qualitatively the same field-
ionization behavior. The P3/2 states have the advantage
that their ionization behavior can accurately be mea-
sured, also for different n p, after direct population with
the laser light.

Before presenting the Shannon width resulting from
the deconvolution (68) we should like to make some re-
marks concerning the comparison of Figs. 6—8 to an actu-
al value of the width as defined in (67). Due to the natu-
ral logarithm in (67), small occupation probabilities sys-
tematically obtain a larger weight in the calculation of
the Shannon width than, e.g. , in the calculation of the
half width of the population distribution. For distribu-
tions with long tails and small probabilities the Shannon
width can assume values which are by a factor of 2 to 3

where the vector I w(R, t;n )o~n o& J] denotes the solu-
tion of the optimization problem

min I ~G "(E;t)—g w'(R, t;no)G ' (E)~ dE,
noEJ
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larger than the corresponding signal half width. In this
paper, we use the term "width" to design the value of the
Shannon width rather than the half width of the popula-
tion distribution. Therefore, a drastic spreading of this
width of the level distribution may be accompanied by a
less significant broadening of, e.g. , the half width of the
adiabatic peak of the experimentally determined field-
ionization signal. This is the case in our experiments, as
can be seen from the comparison of Figs. 6—8 to Fig. 9
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FIG. 7. Normalized field-ionization probabilities G (E)
(n )

without microwave interaction. G (E) is obtained from
(no) (no)

G (E) (Fig. 6) by normalization to f G (E)dE. The value

of this integral was close to 50000 counts for all the scans

displayed in Figs. 6—8. no= (a) 80, (b) 84, (c) 88.

and as will be further discussed and supported by numeri-
cal evidence in Sec. IV. Moreover, due to the S, P, and D
states, possessing non-negligible and distinct quantum de-
fects 5I, an adiabatic peak can conceal more energetically
distinct levels than in the hydrogenic case since the posi-
tion of the adiabatic peak in the field-ionization picture
obeys the scaling rule (no —51) . It is this number of
energetically distinct levels which is supposed to exhibit
the phenomenon of dynamical localization and is approx-
imated by the empirically evaluated width (67) depicted
in Fig. 9.

As we can see from Fig. 9, in the presence of only the
coherent microwave signal —without noise —the initial
spreading of the Shannon width, which leads to an in-
crease from one to a value of somewhere between 12 and
15 within less than 20 ns, is followed by a localized re-
gime where the Shannon width keeps this latter value
constant for interaction times very much in excess of 20
ns reaching up to 5 ps. We emphasize that the growth of
the width stops despite the fact that there is no obvious
barrier in the Rydberg series at a finite value of populated
bound states. The "barrier" is dynamical in nature and
constitutes the essence of what we are reporting in this
paper. The stop of the growth of the width, the "locali-
zation, " is explained by destructive wave interference
which was first discovered by Anderson in the late fifties
in the context of localized electron wave functions in
disordered solids [54,55]. In the atomic physics context,
localization with respect to the energy levels of the Ryd-
berg atoms is revealed by the constancy of the Shannon
width in time although the external driving field is con-
tinuously acting on the atoms. Localization may be in-
terpreted as the "freezing" of the wave packet [19,49]
with respect to the atomic bound states despite continued
external perturbation. In terms used by Chirikov, Is-
raelev, and Shepelyansky [5] and Casati, Guarneri, and
Shepelyansky [49] this freezing puts an end to the initial
spreading behavior which should mimic the classical dy-
namics, since for interaction times short enough, the
atomic system cannot yet resolve the discreteness of the
quasienergy spectrum. For a quantitative comparison to
Casati's predictions, however, we have to take into ac-
count the fact that the level structure of rubidium is
much more complicated than the hydrogenic one. It can
be assumed that the microwave excitation process of the
Rydberg atoms is dominated by one-photon transitions
between levels with l ~3, where we conjecture that the
scaled frequency for rubidium atoms should be at least
twice as large as in the hydrogenic case. Indeed, recent
experimental results [56] support this conjecture.
Defining therefore cop 2conp gives us a value of cop=2. 18
for the frequency used in our experiment. For the scaling
of the field strength, however, there is no such simple ar-
gument. Nevertheless, the coupling of about 14 unper-
turbed states to the atomic dynamics at a scaled frequen-
cy larger than one can be considered as a sufticient condi-
tion for the presence of nontrivial dynamical localization.
Furthermore, new data [56] confirm that the dynamical
localization, which we observe here for the first time, can
be interpreted as the quantum-mechanical suppression of
classical chaos [37].
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Adding noise leads to delocalization at break times t*
which are inversely proportional to the noise power 8, as
can be seen from Fig. 10. The delocalization occurs at a
rate qualitatively independent of R and establishes itself
much slower than the initially observed stationary popu-
lation distribution, which is already established after the
first 100 microwave cycles. Both observations are in
good agreement with the theoretical predictions [33,34]
presented in detail in Sec. II.

IV. DISCUSSION

In this section we discuss the various approximations
made in the derivation of the theoretical results presented

in Sec. II. We will also have a closer look at the experi-
mental procedure and try to further interpret the experi-
mental results with the help of a time-dependent calcula-
tion of the wave function of the rubidium Rydberg elec-
tron. In this connection we come back to the remarks
about adiabatic switching in the Introduction.

In the theoretical section we made essentially three ap-
proximations in the derivation of the master equation: (i)
coupling to the heat bath in second-order perturbation
theory, (ii) the rotating-wave approximation, and (iii) the
Markov approximation. Let us now examine the con-
sistency of these approximations, which are, in fact,
closely connected. The Markov approximation requires
that the frequency dependence of the response function
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y"(co) =2m g p' „'(co)~g' „'(co) [ I+n, h(co)]
m, n, A.

be negligible on the frequency scale y &(k), i.e.,

(69)

d lny"(co)
y k

dc'
«1.

co=A p(k)
(70)

This condition is satisfied if Q &(k) is sufficiently difFerent

from the cutoff frequencies co „where the waveguide
(i.e., the reservoir) exhibits resonances, and if
y ti(k)((Q ti(k). It can be seen both in our numerical
results in Fig. 2 and in the experimental results in Figs. 8
and 9 that the rates y &(k) are indeed the smallest rate
constants in the system, much smaller than the typical
values of the quasienergy spacings, which determine the
inverse time scale of the coherent irregular beatings seen
in Fig. 2, and also much smaller than the inverse of the
characteristic time needed to establish the frozen local-
ized wave packet in Figs. 8 and 9. The Markov approxi-

E,„,(t)=Ef(t),

f (t)=f,„(t)si n(cot)f, s(t),
(71)

where the envelope functions f,„and f,tt are chosen to
be

mation, therefore, is well satisfied in the present case. As
can be seen from (70) the Markov approximation requires
the rate constants to be small on the characteristic fre-
quency scale of the system. The same condition also vali-
dates a perturbative calculation of the coefficients of the
master equation. Indeed, within the Markov approxima-
tion it is even necessary, for the sake of consistency, to
limit the accuracy to a second-order treatment, i.e., in a
higher-order calculation non-Markovian effects should
also appear.

Finally, also the rotating-wave approximation is vali-
dated by the fact that the inverse time scale y & is much
smaller than 0 & and therefore the contribution of the
rapidly oscillating counterrotating terms are averaged
out in a time y &. Another way of stating this fact is
that in the master equation we are only interested in the
rates of real transitions, which require energy conserva-
tion and therefore come from the terms kept in the
rotating-wave approximation, while we are not interested
in frequency shifts of the quasienergies, which would also
receive (small) contributions from virtual transitions, a
part of which is neglected in the rotating-wave approxi-
mation.

This Anishes the discussion of the three approximations
(i)—(iii} mentioned above and we turn our attention to
some additional numerical calculations which we per-
formed for the sake of a direct microscopic theoretical
understanding and interpretation of the experiments dis-
cussed in Sec. III.

We performed a quantum-mechanical calculation of
the time evolution of the wave function of a rubidium
Rydberg electron launched in the 84P state, simulating
the three-dimensional experimental situation. The rubi-
dium atom is subjected to a microwave pulse which was
modeled as closely as possible to the experimental condi-
tions. The pulse consists of a burst of microwave power
with the electric field given by

10.0—

1

(cot —
y,. )/d

'f (t)=1-
1+e

1

(Q)t —
cp ) /df (t)=

1+e

(72)

cL 5.0—

5.0 10.0 15.0
»-1 (10-4 -lj

20.0

FIG. 10. Relation between noise power and break time t*,
extracted from Fig. 9.

with y, =600, cp&=2550, and d =100. This microwave
pulse is shown in Fig. 11(a). Figure 11(b) shows the ini-
tial stage of the pulse from X =40 to 150. According to
the experimental situation the pulse climbs in about 70
cycles from 10% to 90% of its strength. Counting the
number of cycles in Fig. 11(b) shows that the theoretical
pulse fulfills the experimental requirements. The total
length of the pulse was chosen to be 500 cycles. The
maximal field strength of the pulse (the plateau field} was
chosen to be g= 1.37 V/cm. The frequency is 12.059 44
CxHz. At the chosen frequency, 500 microwave cycles
correspond to a total interaction time of t;„,=40 ns, and
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a plateau interaction time of t &„=17ns. Therefore, the
total length of the pulse is on the order of the shortest
pulses used in the experiment (compare Fig. 9). It has to
be emphasized in this connection that pulses of arbitrary
plateau length can always be calculated, once the
Schrodinger equation with the pulse (71) is integrated.
This stems from the fact that the total time evolution
operator over a pulse which is switched on and off can al-
ways be written as the product of three propagators,

U„,(pulse) = U,~U „,(M) U,„, (73)

where it is assumed that the plateau consists of M mi-
crowave cycles of constant frequency and amplitude.
Therefore, U(M), i.e., the propagator over M cycles, is
nothing but the product

U „,(M) = U i„(1) (74)

of M one-cycle propagators. Clearly, the information

I I I
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FIG. 11. (a) Microwave pulse profile used in the theoretical
calculations of microwave driven rubidium atoms. (b) The ris-
ing wing of the pulse on a magnified scale.

contained in the one-cycle propagator U i„(1)in the pla-
teau region is enough to know U(M) for any arbitrary
plateau length M. This is even more evident if (in a finite
truncated basis) we spectrally decompose U(l) into its
eigenstates [Floquet states, compare (25) for r =2'/co]

a
which is as easily calculated for one cycle as it is for any
plateau length M. From (73) it is also evident that the
average occupation probabilities of unperturbed atomic
states ~n & are not dependent on the length M of the pla-
teau and neither is the average localization length. This
is easily seen in the following way. Denoting time aver-
ages (average over M) by ( &, we have in the plateau re-
gion:

&p..., &
= ( I & n

I U. ..(M) I no & I' &

na +no (76)

and this is independent of M if co is not exactly in reso-
nance with any two quasienergy states

~
a & and ~P &.

The decomposition (73) can also be interpreted more
physically. The propagator U,„switches the system
from the atomic state which was prepared far outside the
waveguide (or the cavity), to the beginning of the plateau
region. The structure of the propagator U &„governs the
time evolution of the atomic system during the plateau
stage, where the interaction field is time periodic with a
constant amplitude. The role of the switch-on phase is to
set up the initial conditions for the propagation with
U &„. The structure information contained in U„&„ is the
basis for the understanding of all the processes that hap-
pen in the plateau region (like beating between quasiener-
gy states or ionization). As far as the structure of these
processes is concerned (e.g. , efficient probability transport
to ionizing regions of quantum phase space at avoided
crossings of quasienergies in the plateau region [41]), they
are independent and decoupled from the switch-on stage.
On the other hand, the percentage of the participating
probability and the initial phases are determined by the
switch-on processes.

If bound-space excitations are to be studied by the ap-
plication of a microwave pulse, special attention has to be
paid to the last stage, the switch-off stage, mediated by
the propagator U,z. If the pulse rises and falls very slow-
ly with respect to internal excitation energy differences
(adiabatic situation), U, s- can act as an efficient "eraser"
undoing most of the excitations (in

~
nlm & space) caused

by the application of U,„and U„„,.
The three different regions, switch on (U,„), plateau

(U»„), and switch off (U,s. ) were already intensively
studied in Refs. [25] and [57]. The point of presenting
our results on microwave-driven rubidium atoms is there-
fore not to elaborate on existing theory but rather to
model the experiment as closely as possible in order to
provide further insight into the dynamics of our particu-
lar experimental situation. In particular we will see that
our experiments are conducted in an adiabatic regime as
far as microwave switching is concerned [57,58].

The basis functions chosen for the calculations are
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[ ~nlm ) ] n =78, . . . , 100 (principal quantum number),
I =0, . . . , 8 (angular momentum), and m =0 (magnetic
quantum number). The spin of the electron, and there-
fore the rubidium fine structure, are neglected. Quantum
defects in the single-particle energies, on the other hand,
are included in the calculations. We chose [59,60]
5O=3. 13, 5&=2.64, 52=1.35, 5»2=0 for the quantum
defects. The wave function is expanded according to

'l(t) ) =g A„I(t) ~
nlm =0)

n, l

and we denote by
2

2m
P„I(N)= A„l N

(77)

1.0 (a)

0.0

1.0

{250)

0.0

the probability distribution of the wave packet over prin-
cipal and angular-momentum quantum numbers after N
cycles of the microwave field.

Figure 12(a) shows the probability distribution P„&(60)
of a rubidium wave function started in the state

~
n = 84,

l =1, m =0) after 60 microwave cycles. The wave func-
tion is sharply peaked at the position of the starting state
since the field had just about reached its 10% value and

the packet hardly had any time to spread. In Fig. 12(b)
we show P„&(250), i.e., the probability distribution for a
time which corresponds to the middle of the pulse pla-
teau. The wave packet is now considerably broader and
extends from n =80 to 86, and from l =0 to 5. Figure 13
shows a logarithmic plot of the probability distribution of
Fig. 12(b). It is seen that on a logarithmic scale (the
proper scale for the investigation of localization phenom-
ena) the probability distribution is very broad. Figure
12(c) shows the wave packet after 440 cycles of the mi-
crowave field, i.e., at a time when the pulse is nearly
switched o6' again. It is clearly seen that practically all
the excitation probability, in fact 98.27%, has come back
to the starting state. After 500 cycles the starting state is
occupied with 99.98% of the probability.

Clearly the excitation process displayed by our model
rubidium atom is very adiabatic [57] and one may
wonder whether the basis chosen for the representation
of our results in Figs. 12—16 is the most convenient basis.
On the other hand, the phenomenon of localization in the
sense used in this paper, and especially the concept of a
localization length [5], is strongly basis dependent. Since
the experiment detects occupation probability in the
eigenstates of the unperturbed atom, we are interested in
localization in the nlm ) basis, and this is why we chose
to represent our results in this particular basis.

An additional calculation with a faster pulse (11 cycles
rise time from 10% field strength to 90% field strength,
total pulse length 120 cycles) yielded qualitatively the
same results. Due to the faster rise time, however, this
pulse leaves the states

~
n =84, I = 1 ) (88.77%),

~n =88, l=5) (1.03%), ~n =88, l =7) (4.58%), ~n =92,
l =4) (2.00%), ~n =95, I =4) (1.46%) appreciably
(P„I) 1%) occupied.

Taken at face value, the theoretical calculations indi-
cate that with the pulses presently used in the experi-
ment, the largest spreading of the wave packet„which
occurs during the pulse plateau, is not accessible to ex-
perimental analysis. For a final conclusion, however, the
theoretical calculations have to take the coupling to the
continuum and residual noise into account. It is possible
that "noise" is also simulated by avoided crossings which

Pt {440)

1.0

0.5

10

o
LO
Al

410
0.0

10

FICx. 12. Calculated probability distribution of a wave packet
launched in the 84P state of rubidium and irradiated with the
pulse whose profile is shown in Fig. 11. The probability distri-
bution of the wave packet over principal quantum numbers n

and angular momenta l is shown after (a) 60, (b) 250, and (c) 440
cycles of the microwave field.

FIG. 13. Same as Fig. 12(b) but on a logarithmic scale
relevant for the investigation of localization properties. The
wave packet is seen to be very broad in this representation.
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FIG. 14. Average occupation probability P„as a function of
the principal quantum number n averaged over 101 microwave
cycles from cycle number 200 to 300 in the plateau region of the
pulse shown in Fig. 11.
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FIG. 16. Average occupation probability P& as a function of
the angular-momentum quantum number l averaged as de-
scribed in Fig. 14.

are due to the fine structure. All these processes, if
sufficiently weak, may change phase relations in the
bounded space without inducing transitions. Given
sufficient time for noise and continuum to act, the phases
will not be right at the beginning of the switch-off stage
of the pulse and the occupation probability is less likely
to return to the starting state. This point was confirmed
by the results of some additional calculations which were
done within the framework of the one-dimensional hy-
drogen model. It turns out that the relation between the

final-state probability distribution (after the pulse is over)
and the localized probability distribution in the pulse pla-
teau region is a complicated function of noise power, con-
tinuum coupling strength, pulse shape, and pulse dura-
tion. We plan to address this difficult issue in a separate
publication. However, assuming that the mechanisms de-
scribed above destroy at least partly the adiabaticity of
the investigated process, there is quite a good agreement
between the experimental and numerical results: Calcu-
lating the Shannon width of the population distribution
along the pulse plateau according to

0.4
$V =exp —g P(n, l )ln P (n, l)

n, l

(78)

0.3

0.2

0.1

0.0

80 90

FIG. 15. Same as Fig. 14 but on a linear scale. The dashed
line indicates the half width of the distribution.

we obtain for the total width 8'=18.0 bound states,
which is in qualitative agreement with the results plotted
in Fig. 9. Furthermore, we can use the reduced probabil-
ities P„(N)=+& P„&(N) and P&(N)=g„P„&(X), to calcu-
late the width of the distribution in n and 1, since P„(N)
and P&(N) give the occupation probabilities of an n state
(trace over /) and an angular-momentum state l (trace
over n), respectively, P„(N) and P&(N) characterize the
localization in n and l directions. Figure 14 shows
P„=+» gq~20O P„(q), the average n occupation probabil-
ity, and Fig. 16 shows P& =—„', +3~20OP&(q), the average 1

occupation probability, both averaged over 101 cycles in
the plateau region of the pulse, on a log scale. It is seen
that for the experimental field parameters the wave pack-
et is indeed approximately exponentially localized in both
n and I directions. The localization in l is consistent with
a dominance of S P D( F) transitions as con-j-ect-ured in
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Sec. II C and in Refs. [3&] and [56].
The width in l is obtained to be 4.6 states. The width

in n is 6.9 states, being more than twice as large as the
half width of P„which is equal to 3, as can be seen from
Fig. 15 where P„ is plotted on a linear scale. This sup-
ports the discussion on the numerical di6'erence between
the concepts of "Shannon width" and the "half width"
presented in Secs. II C and III C of this paper.

Experimental knowledge of the detailed (n, l) state
probability distribution in the plateau region of the pulse
is clearly desirable, since it provides the necessary infor-
mation for extracting the localization length of the wave
packet from the experimental data. On the other hand,
the probability distribution after the pulse is switched oft'

is far more easily accessible with the current setup and
provides valuable information on the phase coherence of
the wave function during the microwave irradiation
stage. The destruction of phase coherence by the applied
(technical) noise is measured by the degree of spreading
of the wave packet after the microwave pulse is switched
off, i.e., by the degree of deviation from the nontrivially
localized population distribution which is induced by the
coherent component of the field. A large deviation of the
packet from this latter level distribution, the width of
which is already significantly larger than the one of the
starting state, indicates the inhuence of noise. From the
change in the width, therefore, one can indeed uniquely
extract the 1V* transition points and compare to the
theoretical predictions. Concluding this section we can
say that the experiment described in Sec. III is indeed ap-
propriate for the investigation of the localization behav-
ior of wave packets in strong radiation fields and of the
inhuence of noise on wave-packet dynamics.

V. SUMMARY AND CONCLUSIONS

To summarize, we derived and solved a master equa-
tion for Rydberg atoms in strong noisy microwave fields

which is based on the atomic Floquet states rather than
the unperturbed atomic states. Based on this theoretical
approach we predicted the existence of four regimes in
the dynamics of Rydberg atoms strongly driven by noisy
microwave fields. We established the existence of a criti-
cal interaction time which marks the end of localization
and the beginning of noise-induced difFusion. The scaling
behavior of this critical interaction time with tempera-
ture (or noise power) was derived. All the theoretical
predictions were verified by an experiment with rubidium
atoms which was also presented in detail in this paper.
We also reported on the first explicit experimental obser-
vation of nontrivial dynamical localization of Rydberg
atoms in a strong coherent monochromatic microwave
field, the localization being manifest in the "freezing" of
the quantum-mechanical wave packet. The addition of a
perturbative noise component to the coherent signal —in
extension of a first experimental evidence published ear-
lier [33]—was shown to lead to delocalization on a time
scale which agrees with theoretical predictions as well as
with numerical simulations.
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