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Structure and Madelung energy of spherical Coulomb crystals
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With the help of molecular-dynamics computer simulations, we study the equilibrium con6gura-
tions of systems of N =2—5000 strongly correlated charged particles under the influence of a radial
harmonic external confining force and their mutual Coulomb forces. The temperature is well below
the crystallization point; i.e., the ratio of Coulomb to kinetic energy is as large as 1 = 10 . The par-
ticles arrange in concentric spherical shells with approximately constant intershell distances. On the
surfaces plane hexagonal structures are well pronounced. The calculated radii, occupation numbers,
and energies per particle are compared with results of classical geometrical and shell models with
homogeneously charged shells corrected for hexagonal surface occupation. The closed-shell particle
numbers also agree well with those of multilayer icosahedra. From the computer simulations we
extract a Madelung (excess) energy of —0.8926, which is close to the theoretical value of the shell
model corrected for plane hexagonal surfaces, —0.8923, but larger than the one of the infinite geo-
metrical lattice, —0.8944, and of the bcc value of —0.8959. Surface-energy eÃects are positive and of
the order of N

PACS number(s): 32.80.Pj, 52.25.—b, 52.65.+z, 52.75.Di

I. INTRODUCTION

The experimental verification of Coulomb crystals in
magnetic traps [1—5] stimulated the continuation of the-
oretical research on the finite one-component plasma
(OCP) at very Iow temperature. Whereas the structure
and thermodynamics of infinite Coulomb matter have
been studied extensively, for a review see Ref. [6], the
two-dimensional calculations of Thomson [7] were long
the only information available on finite systems. These
studies were followed by calculations and computer sim-
ulations on the structure of cylindrical systems [8, 9], on
two- and three-dimensional spherical and spheroidal sys-
terns [10—16] with the most recent systematic study of
the structure of small systems by Rafac et al. [17], on
the slab geometry [18], and by realistic calculations in a
Paul trap [19].

The essential information gained from these studies
is that a strongly correlated infinite OCP crystallizes
in a bcc lattice if the plasma parameter, i.e. , the ra-
tio of Coulomb to thermal energy, reaches the value [20]
I' 171. Furthermore, finite systems exhibit hexagonal
structures on the surfaces, however imperfect, due to the
incompatibility between a perfect lattice and a curved
surface and due to the incommensurability of two adja-
cent shells. A change of structure (in the case of slabs)
from the plane hexagonal into the bcc one occurs only if
the dimensions of the system become as large as about
100 interparticle distances.

The energetics of finite systems, however, has not been
studied in detail. Apart from results on cylindrical struc-

tures [16], on small spherical systems [17] and on slabs
[18] systematic calculations on other finite systems, in
particular on large spherical systems, are not available.
It is the main purpose of this paper to calculate the
Madelung energies of small to large spherical Coulomb
crystals and to study the lattice structure and its ge-
ometry. Here any realistic calculation must reach very
low temperatures corresponding to plasma parameters
well above the crystallization point. Since the relative
energy difference of two different structures, which have
the same number of particles and which are both close
to the absolute energy minimum, is of the order of 10
plasma parameters of 10, for very large systems up to
10, must be reached.

We employ the molecular-dynamics (MD) technique
and calculate the equilibrium configurations of systems
of 2 to 5000 particles and control the kinetic energy by
reducing the momenta. After the system has settled into
up to ll shells with clearly visible hexagonal lattices the
results are analyzed according to their total, single-shell,
and rms radii, the shell occupation numbers, and their
Madelung energies, i.e. , the difference in energy per par-
ticle of the MD system and the equivalent homogeneous
system. These results then are compared to results of
simple geometrical and onion-shell models where the dif-
ferent shells consist of layers of homogeneously charged
spheres with the energy corrected for hexagonal surface
occupation. The MD computer simulations are presented
in Sec. II, and in Secs. III—VI the homogeneous, geomet-
rical, and shell models and their limits for large particle
numbers are developed and the results are compared with
each other.
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II. MQLECULAR DYNAMICS

The infinite OCP is neutralized by an oppositely
charged background. An i'/-particle finite Coulomb crys-
tal, on the other hand, is bound by an external harmonic
confining force acting on particle i,

radii, the energy per particle, and the I' value aimed at.
For the small systems N ( 27, they agree with those of
Ref. [17]; in particular, that the second shell starts at
N=13. In addition, the third shell starts at %=61, and
the next ones at or around %=147, 309, 565, 900, 1400,
and 2100, respectively. These magic numbers are equal
or close to those of the multilayer icosahedra of Mackay
[21],

which, at equilibrium and zero kinetic energy, cancels the
Coulomb forces of all other particles of charge q in the
interior, N = 1+) (10v +2), (7)

2X r, —r&
(2)

In the outside region, however, there remains an eR'ective
binding force. The classical equations of motion

which recently were found in alkali-metal clusters [22].
The magic icosahedra particle numbers are listed in Ta-
ble II and for large N the number of shells becomes

mr';=F', „f+Fc„) (i=1,. . . , N)
M=

i

—N
q10 2

1/3

aws= I—
i, I&

(4)

and energies in units of q2/ass = (q4I~. )i/s. The confin-
ing and Coulomb energies per particle then become

are solved numerically with given initial coordinates and
velocities. The latter are chosen at random so as to give
an initial kinetic energy corresponding to I 1. The
initial coordinates of N ions usually are chosen as those
of the (N—1)-ion system with one ion added at random,
thus reducing computer time as compared to an initial
random system, because only one ion has to find its place
in the lattice with the other N —1 particles only moving
slightly. The system is then followed in time until thermal
equilibrium has been reached. Then the momenta are
reduced (usually by a factor of 10) and the procedure is
repeated until the desired I' value has been reached. For
small systems N & 60 even the expected final structure
was taken as the initial configuration and the different
final energies were analyzed according to the absolute
minimum, thus assuring that for N & 60 the minimum
energy structures had been found. For N ) 60 this need
not always be the case. This is diA'erent from the method
of Ref. [17], where many random initial conditions were
used. An additional check of whether the final structure
has reached equilibrium is provided by the fact that for
spherical systems the Coulomb energy of the system is
equal to twice the confining energy [14]. Systems with
N = 2, 3, 4 simply are calculated analytically.

In the following, distances (radii) will be measured in
units of the Wigner-Seitz radius
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The subshell numbers here are given by 10N2 + 2 and
can also be found partially in Table I.

Even at the high values of I indicated, the particles in
the inner shells of large systems have more kinetic energy
than those in the outer shells because in the interior the
confining potential is very weak, thus washing out the
inner shells. An exact analysis of the inner shells, hence,
is not posssible. The largest system analyzed with 5000
particles has at least 11 shells.

An infinite Coulomb system can take advantage of all
long-range interactions in order to arrange in a bcc lattice
and to minimize the Madelung energy by summing up all
long-range contributions. A Anile system, on the other
hand, can explore only the short- and intermediate-range
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&coul = ~ ri —rj
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and the total energy per particle is just the sum of both.
The results are listed in Table I together with the rms

FIG. 1. The front hemisphere of the outer shell of the
5000-ion system. Note the haxagonal structure with approx-
imately equilateral triangles and the point defect below the
center.
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TABLE I. Structures (PM + NM q + + Ny particles in subshells), rms radii, and energies
of N-particle systems.

Structure

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
54
60
61
62
63
64
65
66
80
96

100
115

3
4
5
6
7
8
9

10
ll
12

12+1
13+1
14+1
15+1
16+1
17+1
18+1
19+1
20+1
21+1
21+2
22+2
23+2
24+2
24+3
24+4
26+3
27+3
28+3
28+4
29+4
30+4
30+5
30+6
31+6
32+6
33+6
34+6
35+6
35+7
36+7
37+7
38+7
38+8
38+9
39+9

42+12
48+12

48+12+1
48+13+1
48+14+1
48+15+1
49+15+1
50+15+1
58+20+2
67+25+4
69+27+4
78+31+6

0.6300
0.8327
0.9721
1.0901
1.1850
1.2736
1.3500
1.4198
1.4846
1.5453
1.6002
1,6535
1.7036
1.7508
1,7956
1.8387
1.8852
1.9197
1.9583
1.9947
2.0311
2.0657
2.0990
2.1318
2.1633
2.1941
2.2241
2.2532
2.2818
2.3098
2.3368
2.3635
2.3895
2.4150
2.4401
2,4646
2.4885
2.5123
2.5356
2.5585
2.5810
2.6031
2.6222
2.6464
2.6667
2.6881
2.7078
2.8254
2.9335
2.9511
2.9680
2,9849
3.0017
3.0183
3.0345
3.2479
3.4625
3.5123
3.6876

0.5953
1.0400
1.4174
1.7820
2.1065
2.4321
2.7331
3.0238
3.3058
3.5822
3.8407
4.1009
4.3542
4.5972
4.8364
5.0707
5.3010
5.5275
5.7521
5.9705
6.1873
6.4001
6.6090
6.8166
7.0197
7.2206
7.4200
7.6162
7.8098
8.0026
8.1900
8.3788
8.5648
8.7488
8.9307
9.1107
9.2887
9.4676
9.6437
9.8187
9.9921

10.1638
10.3342
10.5041
10.6711
10.8376
11.0029
11.9737
12.9085
13.0611
13.2135
13.3642
13.5146
13.6644
13.8128
15.8244
17.9833
18.5035
20.3963

1O'
10'
10'
1O'
10
10
10
10
10
10
10
10
1O'

10
10'
10
10
1O'
1O'

10
1O'
1O'
1O'
10'
1O'

10
10
10'
10
105
1O'

10
10
1O'
1O'
10'
1O'
1O'
10'
1O'

10
1O'
10'
1O'
10'
10
1O'

10
1O'
10'
10
10
10'
lO'
10'
10
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TABLE I. (Continued)

125
128
132
144
146
147
160
192
224
256
288
305
308
309
320
350
384
448
512
561
565
570
585
634
640
768
888
900
923

1024
1200
1370
1415
1600
2000
2057
2837
2869
3816
3871
5000

Structure

82+35+8
84+37+7
85+39+8

93+41+10
93+41+12

93+41+12+1
100+46+13+1

114+59+18+1
128+67+25+4
142+75+32+7
156+86+37+9

163+92+40+10
163+93+42+1Q

163+90+43+12+1
172+93+42+12+1

181+105+49+14+1
195+113+56+19+1

2 15+132+70+26+5
239+146+84+35+8

255+161+93+42+10

256+160+93+43+12+1

257+161+96+43+12+1
260+168+96+47+13+1

277+181+106+53+16+1
278+181+110+54+ 16+1

318+211+133+72+29+5
355+238+158+89+39+9

356+247+154+92+38+12+1

361+253+160+93+43+12+1
390+275+108+111+53+16+1
448+309+212+132+70+25+4
482+354+245+155+91+35+8

491+365+244+163+94+44+13+1

538+398+285+185+115+58+19+2
633+470+357+246+163+85+40+6

641+491+363+257+158+93+44+1Q

805+634+480+356+246+173+143
808+644+482+361+249+165+2 60

986+793+618+481+938
992+801+639+2 439

1183+980+802+2035

&rms

3.7958
3.8273
3.8683
3.9865
4.0054
4.0150
4.1342
4.4016
4.6409
4.8578
5.0571
5.1569
5.7404
5.1799
5.2419
5.4042
5.5774
5.8768
6.1487
6.3418
6.3570
6.3760
6.4324
6.6097
6.6308
7.0516
7,4052
7.4389
7.5023
7.7696
8.1952
8.5683
8.6619
9.0270
9.7287
9.8209
10.9384
10.9796
12.Q798
12.1379
13.2229

21.6132
21.9726
22.4456
23.8383
24.0668
24.1807
25.6373
29.0651
32.3067
35.3969
38.3607
39.8904
40.1573
40.2460
41.2166
43.8084
46.6582
51.8042
56.7100
60.3288
60.6189
60.9814
62.0623
65.5302
65.9488
74.5869
82.2570
83.0047
84.4277
90.5438

100.7410
110.1259
112.5436
122.2270
141.1975
144.6764
179.4717
180.8258
218.8847
220.9917
262.2696

10
10
1O'
1O'
10
10
1O'
1O'

10
10
10
10
10
1O'
10
10
10
10
10
10
10"
10
10
10
10
1O'
10"
1O'

10
10
10
10
10
1O'
1O'
1O'

10
1O'

10
1O'
1O'

Exact static calculation.
The rema. ining shells cannot be resolved.

parts of the Coulomb interaction. It is well known that
systems with short-range interactions arrange themselves
in fcc or hcp lattices with coordinations (the number of
equal nearest-neighbor distances) of 12 but with higher
Madelung energies. A finite Coulomb system, hence, will
arrange itself in such a way as to maximize the coor-
dination, i.e. , to achieve the maximum possible number
of equilateral triangles. The eight-particle configuration,
for instance, is not the cube where each particle has three
nearest neighbors at the same distance but a cube whose
upper plane is twisted by 45' with respect to the lower

one so that that there are four nearest neighbors [17]. In
Fig. 1 is shown the front hemisphere of the outer shell
of the 5000-particle system. Here the overall hexagonal
structure is well pronounced, however, with dislocations
and point defects (one particle is missing just below the
center, thus making room for a pentagonal structure).
The ions on the three outer shells of the same system
are shown in Fig. 2. Here the particles in the next inner
shell most often are positioned below the line connecting
two particles rather than below the center of the triangle.
This suggests the following simple geometrical model.
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Shell

0
1
2
3
4
5
6
7
8
9

10
11
12

Subshell N

1
12
42
92

162
252
362
492
642
812

1002
1212
1442

Total N

1
13
55

147
309
561
923

1415
2057
2869
3871
5083
6525

TABLE II. Last subshell and closed-shell particle num-
bers of multilayer icosahedra.

nearest intershell interparticle distances are also a and
the ions also form equilateral triangles with sides a if
viewed across the shells. This lattice, hence, has two
hexagonal surfaces and a square one, and the unit paral-
lelepiped has basis vectors

a = a(1, 0, 0),
b = a(-' ~s 0)

c=a(1 0 ~3)

The unit areas occupied by one particle normal to the c
and b directions are equal, f = ab& ——ac, , and the unit
volume is n = abzc, = 3as/4, which, by definition of the
Wigner-Seitz radius (4), is equal to 4x/3. The minimum
distance, hence, becomes

(16ma=
~

=1.7742
9

III. GEOMETRICAL MODEL

and the intershell distance is

d = a = 1.5365 .~3
2

(12)
Denoting the minimal interparticle distance by a, in

an ideal hexagonal lattice on a shell an ion occupies an
area of twice the area of an equilateral triangle with side
a,

As suggested by the MD results we assume that the next
inner and outer shells are shifted by a/2 in an arbi-
trary lattice direction with respect to the reference shell,
thereby disregarding curvature efFects. Furthermore, the

Q I

These geometrical values are the same as in the cylindri-
cal case [9], where the structures were assumed to consist
of helices. The coordination here is 10 (six intrashell and
four intershell or vice versa). This lattice is shown in
Fig. 3.

On the other hand, a bcc system has the smallest in-
terparticle distance ~3c/2, where c = (3/2) ~ a is the
unit distance of the cube with the same density as the
hexagonal system. This would give the bcc intershell dis-
tance

db„— —1.4361 . (13)
2

However, in a bcc system the triangles are not equi-
lateral. From Fig. 4 it can be seen that neither limit

4
0 +

0
0

0
0

+ 4 0 0 e+ +
U)

cO 0-
0

0 0

+ a

0+
0

) I

0 ~
0

0

x (aws)

FIG. 2. Close view at the center of Fig. 1 with three outer
shells (~, outer shell; +, second outer shell; o, third outer
shell).

FIG. 3. CAD view into the unit cell of the geometrical
model.
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2.0 IV. HOMOCENEOUS SYSTEM

1.8—~ 4
CA

4

CO

1.6—
lA Py ~ 4 44

4
4g ~ ~

14 — ~ ~
~ 4I

4 4 4 ~ ~

The equivalent homogeneous system of radius R has
Coulomb and confining energies

3N
&Coul— 5~ ' (14)

1—2 3 —2
Coll f

Minimization with respect to R gives

(16)
1.2

50 100 150 200

is approached for large systems, the experimental value
being dMD 1.485. This is mainly due to the fact
that there remain dislocations and deviations from the
hexagonal structure on and between the shells because
of curvature effects. The smallest interparticle distance,
Eq. (11), is well reproduced in the MD calculations, as
well as the first peaks of the three-dimensional (3D) cor-
relation function of the plane hexagonal lattice at dis-
tances a, ~3a, 2a, ~7a, . . ., see Fig. 5. The intershell
correlations at +3/2 a are strongly suppressed due to the
relatively small radial dimensions. There is only little re-
semblance to the bcc system.

FIG. 4. Difference of shell radii plotted vs the diR'erence
of the occupation numbers of these shells. The upper line is
the hexagonal geometric limit of Eq. (12) and the lower line
is the bcc limit of Eq. (13).

and the total energy becomes

Note that Zcoul —Kcof,f and that this energy per parti-
cle is stable to the order N for variations of the radius
bR oc N ~ . Since the difference in radius between the
MD data and the homogeneous value is at least of this
order, it suffices to subtract from the MD energies the
homogeneous energy in order to simulate the oppositely
charged background of an infinite OCP. In the follow-
ing we subtract these homogeneous values from the total
energies and take the difference as excess or Madelung
energy.

(17)

V. ONION-SHELL MODEL

(18)

In order to explain the results of the computer sim-
ulations we compare them with those of an onion-shell
model, where the crystals are supposed to consist of M
homogeneously charged shells of radius R„and number
of particles N„,with the constraint P„N„=N. The
Coulomb and confining energies then become

10
V)

C 8—

1 ) N, R„.
This is corrected for the energy per particle of the plane
hexagonal lattice [11,18],

~ ~
~ ~

pl- hex
Mad (2o)

V)
C:

CO

2—
L

OO
0.0 1.0

~ ~
~ ~

~ ~

2.0 3.0
Distance (aws)

~ ~
~ ~
~ ~
~ ~
~ I ~

5.0

FIG. 5. 3D correlation function (in arbitrary units) of the
5000-ion MD system compared to the correlation function of
the bcc lattice (dotted lines). The MD peaks are well situated
at those of the plane hexagonal lattice (arrows).

2D

a
( a

p —1n
i
47r-

b„
b„ b+4 ) lto

~

2xmn —" cos 2smn—
a

(21)

where y is Euler's constant, Ko is the modified Bessel

where n = 1.960515789 and f is the unit area of an ion.
This number has been checked by calculating it with the
method of Ref. [23],
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function, and b~, b„arethe components of the basis vec-
tars of Eq. (10). Equation (21) converges rapidly after
a few terms. With the geometrical value of d, Eq. (20)

pl- hex
takes on the value sM~ ———1.187397. A generalization
of the method developed in Ref. [23] allows us to calcu-
late the second-order correction to Eq. (21) due to finite
curvature 2/R,

1 t'2a'i' x li„' . , t' b„l
AsPP~d ———

(

—
~

— —" ) mn I~i (
27rmn —"

a (Rj 3 a, ( ap

b
x cos

~

2nmn-
a

(22)

This has the value —0.0116K ~ and, thus, is negligible
even for small systems.

Minimization of the total energy with respect to the
radii yields

R„=—N + ) N„,
c(&~)

which in turn gives the total energy per particle

(24)

Because the lattice structure of the shell surfaces here
has only been taken into account globally a minimization

I

with respect to N„ofEqs. (23) and (24), such as has been
done in Ref. [11] for the cylindrical system, would give
an unrealistic recursion relation for the occupation num-
bers and radii that converge towards the homogeneous
radius. This is not in agreement with the MD results of
the approximately constant intershell spacing.

We therefore combine the geometric model with the
shell model and demand that the area of a given shell be
occupied by N„areas of equilateral triangles of sides a,
thus also allowing for noninteger particle numbers N, N,

4vrR„= N + —a (v&0), (25)

where the first term comes from Eq. (9) and the second
one is a correction due to finite curvature calculated with
spherical geometry. This has been added in order to also
yield good results for small particle numbers. Equations
(23) and (25) are solved iteratively with initial values
Np = Rp —0 to give the results of Table III. The ex-

pl-hex
cess energies without cM d corrections, of course, here
would be positive, i.e. , higher than the true minimum
of the homogeneous system. The agreement of the shell
model results with the MD results is rather good, even
for the first shell. The opening of new shells is accurately
predicted for parts of a particle number and the radii and
energies are well reproduced, see Table I.

The Madelung energy of the 3D hexagonal lattice of
the geometrical model can be calculated with the general
expression [24] for monatomic lattices

e "& cosc -q —e
Mad Mad c,q 1 —2e "& cosc q+ e

q (go)

TABLE III. Shell model occupation numbers, radii, and energies per particle.

1
2
3
4
5
6

8
9

10
11
12
13
14

20

100
200
500
999

13.2
61.8

167.6
352.3
637.7

1045.5
1597.6
2315.8
3221.6
4337.0
5683.7
7283.4
9158.0

11329.2
13818.7
31803.4

470634.1
3696059.8

29294081.9
455155840.8

3623534378.3

N.-

13.2
48.6

105.8
184.7
285.4
407.9
552.1
718.1
905.9

1115.4
1346.7
1599.7
1874.6
2171.2
2489.5
4407.8

27344.3
109103.0
435862.3

2722075.7
10863792.3

1.8747
3.3465
4.8582
6.3817
7.9103
9.4414

10.9740
12.5076
14.0419
15.5765
17.1115
18.6468
20.1823
21.7179
23.2536
30.9334
77.0241

153.8487
307.5004
768.4575

1535.1835

%ms

1.8747
3.0919
4.2924
5.4881
6.6816
7.8742
9.0661

10.2575
11.4487
12.6398
13.8306
15.0214
16.2120
17.4027
18.5932
24.5454
60.2534

119.7636
238.7828
595.8393

1189.7429

5.2719
14.3399
27.6370
45.1780
66.9666
93.0037

123.2899
157.8255
196.6104
239.6449
286.9290
338.4626
394.2458
454.2787
518.5611
903.7177

5445.7157
21514.9890
85525.8245

532536.6438
2123232.2095

&excess

-0.936670
-0.912238
-0.903548
-0.899507
-0.897306
-0.895976
-0.895113
-0.894520
-0.894096
-0.893782
-0.893543
-0.893357
-0.893209
-0.893090
-0.892992
-0.892695
-0.892353
-0.892301
-0.892288
-0.892284
-0.892283
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b'=/0, , 0/
&

'bv' )
are the reciprocal-lattice vectors. Within an accuracy of
10 5 we can restrict the summation over q in Eq. (27)
over the smallest six reciprocal-lattice vectors with c,q =
2x. The second term of Eq. (26) is the energy of the back-
ground charge and has the value dz/8 = 0.295 114; and
the third term, —0.002100, is the energy of the lattice-
lattice interactions. This yields

cM d
———0.894383, (28)

above the bcc (—0.895929), fcc (—0.895874) and hcp
(—0.895 838) values but below the MD result (—0.892 80),
see Fig. 6, and of the sc lattice (—0.880059).

VI. ASYMPTOTIC FORMS

with the first term given by Eq. (21). Here, q = k,a' +
kt, b', ks, ky take on integer values and

(2~ 2mb

a '
abv

(27)

rMD ———0.8926 6 0.0001+ 0.0088K ~ + 0.096K

where the error is estimated from fits to N ~ 200 and
N & 500, respectively. For systems with N ( 64, there
are strong shell eKects in the excess energy with peaks,
and minima if a new shell opens, in particular the tran-
sitions at N = 12, 60, 146. These shell efkcts, however,
are about four times smaller than in the cylindrical case
[16].

Large systems then exhibit rather well an N ~3 sys-
tematics of the surface-energy correction. The shell
model corresponds to smearing the ion charge over one
shell or, in other words, only using q = 0 in Eq. (26).
The shell model, thus, does not give a correction to the
excess energy, which goes like N ~ . Here the surface
term is missing and the curvature correction is propor-
tional to N ~~a Equa. tion (26) sums up all interactions
of a particular ion with those in the inner and outer lay-
ers. Ions in the surface layer, however, have only an inner
neighboring shell. The surface correction to Eq. (26) can
therefore be estimated from the missing contributions of
terms with q g 0. According to Ref. [24] this energy per
ion is

For very large particle numbers the system of equa-
tions [(23),(25)] converges towards equidistant concentric
shells with shell spacing d and excess energy

xc, e) cosc q.
Q6y Cp Q

(31)

-0.86
(fJ

-0.87—
CJ"

I ('

Q
I

I
I

CA -0.88—
(D

-0.89 —;
V)

O
X

-0.90
0.0 0.1 0.2

I I

0.3

N &is
0.g

FIG. 6. Excess (Madelung) energy per particle in units
of q /aws vs N ~ . The dots are molecular-dynamics data
and the dotted line is to guide the eye. The full line is the
best fit for N & 300. The open arrow points to the result
of the shell model including a correction for plane haxagonal
surfaces, the full arrow is the Madelung energy of the infinite
3D lattice of the geometrical model, and the long a.rrow is the
Madelung energy of the infinite bcc OCP. Open circles are
results of fragments of spherical bcc matter with up to 25 000
particles together with a fit (dashed line).

(29)

Here the second term is identical to the second term of
Eq. (26). However, as can be seen from Table III, up to
this accuracy this limit is reached only for 10 particles.

The excess (or Madelung) energies are compared in
Fig. 6 with the MD results. Here the best fit for N ) 300
gives which takes on the value 0,004 85' t . Higher con-

tributions from larger reciprocal-lattice vectors within a
layer go like e 2~a, e 4, . . . , and those across more
than one shell like e 4, . . . . Other higher-order terms
also arise from unevenly spaced shells [18]. These effects
of surface relaxation change the value of c, , and their con-
tributions are differences of the terms (32) with slightly
different values of c, . One can describe this process as
the response of the harmonic crystal to an external force
proportional to e 2, and in this case the change of en-
ergy is proportional to e 4 . All these higher-order terms
are neglected, as they are smaller by at least two orders
of magnitude.

Alternatively, one can also vary the plane unit area f
with respect to d under the constraint of constant unit
volume, and minimize the excess energy d /8 —n/~f
with f = 4m/3d with respect to d, as has been done in
Refs. [18, 16]. This gives

g ) 1/3

dm =
I I

= 1.5425 (33)

and the minimized excess energy becomes

——d = —0.892 290,3 2

8
(34)

For two neighboring ionic layers this contribution there-
fore becomes e 2"/a per surface ion. The number of sur-
face ions is 4+R~/ab& ——3c,N~~s and, hence, the surface
correction per particle becomes approximately

z 2x + 1/33c
Mad )a
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FIG. 7. MD shell radii vs N compared to the shell
model result of Eq. (35).

FIG. 9. MD outer shell radius vs the square root of the
number of particles in this shell compared to the shell model
result of Eq. (35).

in close agreement with the geometrical, shell model, and
MD values. In any case, these Madelung energies are
much higher than the Madelung energy of the infinite
bcc OCP of —0.895 929.

In addition, for N && 1, in the shell model the shells
become equidistant with d, thus R = vd. With Eq. (23)
and the particle number conservation this gives three re-
lations connecting R„,N~, and N,

R„= N„/3d = N ~ —(p+ 2)&.

Here, p = 0, 1, . . . , M counts the shells from the outside.
The number of shells then becomes

layer icosahedra cannot be realized exactly as Coulomb
crystals because they are far from being spherical and the
inhuence of the pentagonal substructures is too strong,
the closed-shell ion numbers are well attained. Bringing
Eq. (8) into the form of Eq. (36) would give an intershell
spacing of dML~ = (10/3) ~s = 1.4938 even closer to the
experimental MD value.

As a final test of the model the rms radius is calcu-
lated to second order. In order to maintain the relation
cc „l——2c,o„g the confining energy is one-third of the
total energy, which, in turn is 2R,~, . From this the rms
radius becomes

M=-'N / --'.
d 2

' (36)
model

~Mad N —1/3
3

(37)

These relations are compared in Figs. 7—9 with the MD
results. The number of shells is well predicted (e.g. , 11
shells for N = 5000), but, due to the difference in d and
dMD, there remain small discrepancies in the slopes of
the theoretical results. Note that, although the multi-

The excess of this rms radius, i.e., the second term of
Eq. (37) (the erst term is the homogeneous part), is com-
pared in Fig. 10 with the MD results. For large X there
is perfect agreement.

1500 e l ~ l ~ l ' I

O

1000-
CL

O
O
C3

500—

EA

0 ——
0 50 100 150

N2/3
200 250 300

u) -0.05
.2

CO

-0.10

-0.15
tD
VX

-0.20
0.0 0.1 0.2 0.3 0.5

FIG. 8. MD occupation numbers of the different shells vs
N ~ compared to the shell model result of Eq. (35).

FIG. 10. MD excess rms radius vs N compared to the
shell model result of Eq. (37).
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VII. SUMMARY AND DISCUSSION

We have performed molecular-dynamics computer sim-
ulations of spherical crystals under the influence of a har-
monic confining force and of the interparticle Coulomb
forces. Systems of 2 to 5000 particles were calculated
at very low kinetic energy. The resulting interparticle
distances, radii, occupation numbers, and Madelung en-
ergies were compared with theoretical results by com-
bining a geometric model where the unit cell consists of
two shifted parallel planes of equilateral triangles and an
onion-shell model where the surfaces are homogeneously
charged. The theoretical and experimental Madelung
(excess) energies are in close agreement but higher than
the bcc value, thus indicating that even at such large par-
ticle numbers the hexagonal surface structure still dom-
inates the bcc structure. The particle numbers at shell
closure and the number of shells are also in very good
agreement with those obtained from multilayer icosahe-
dra.

The small surface-energy term is a peculiarity of the
hexagonal (001) geometrical lattice. Other systems
whose structures are not closed packed have much higher
surface energies [12]. The surface energy (30) extracted

from the MD data is the average over the whole surface
and also includes relaxation and reconstruction of the
surface that minimize the total energy. To evaluate the
order of magnitude of surface relaxation we calculated
the excess energies of unrelaxed spherical fragments con-
taining up to 25000 particles, sliced out of infinite ideal
bcc matter with the same density; see the open circles in
Fig. 6. Extrapolation of these data to the bcc Madelung
energy (dashed line) gives a surface-energy coefFicient of
~ 0.4. It crosses the fit of the MD data at N 4 x 10 .
This number of particles at which the infinite bcc lattice
takes over energetically is compatible with the estimate
of Dubin [12].
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