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We describe an approach for numerically integrating the time-dependent Schrodinger equation for
an atom in a radiation field. The time propagation is based on the split-operator technique, with the
full Hamiltonian split into two parts, the atomic Hamiltonian and the atom-field interaction. Both
parts are represented on a complex Sturmian basis. The method is relatively e%cient; ionization
yields and level populations for atomic hydrogen can easily be computed on a workstation for modest
pulse durations (e.g. , 50 cycles or so) and modest intensities (e.g. , of order 10 W/cm for a frequency
of 0.2 a.u.). We present results of an application of the method to atomic hydrogen, and to illustrate
the performance we compare our results with those obtained previously by Kulander [Phys. Rev.
A 35, 445 (1987)]. We also illustrate the stabilization of atomic hydrogen against ionization by an
intense high-frequency field, and the sensitivity of the ionization yield to the relative phase in the
case where the field is bichromatic with one field a htrmonic of the other,

PACS number(s): 32.90.+a

I. INTRODUCTION

During the past few years, numerous approaches
have been suggested for solving the time-dependent
Schrodinger equation for an atom in a radiation field [1].
Despite impressive advances, for example, the calculation
of high-order peaks in the photoelectron energy spectrum
[2], storage and execution time requirements still pose
significant obstacles to extensive computation. In this
paper we suggest a method that holds some promise for
improving computational eFiciency. We have tested the
method by carrying out calculations of rates and yields
for multiphoton ionization of atomic hydrogen, and we
present some results that illustrate several interesting fea-
tures. In particular, we demonstrate the stabilization of
atomic hydrogen against ionization by an intense high-
frequency field [3], and, in the case where the field is
bichromatic with one field a harmonic of the other, we
illustrate the sensitivity of the ionization yield to the rel-
ative phase [4].

We describe the radiation by a classical field, within
the dipole approximation. The full Hamiltonian is
H(t) = H, + V(t), where H, is the Hamiltonian of the
atom and V(t) is the interaction of the atom with the ra-
diation. We represent H, and V(t) on a basis consisting
of products of complex radial Sturmian functions and
spherical harmonics. The Sturmian functions [5] have
many useful properties which allow matrix elements in-
volving Coulomb and dipole interactions to be calculated
recursively, and with little roundofI' error, and they have
been shown to give a good representation of atomic wave
functions [6]. As in previous Floquet calculations [7], we
choose the wave number of the Sturmian functions to be
complex. , so as to allow for the absorption of the Aux
due to ionization. It, is well known that a real basis re-
sults in rejections of the emitted photoelectrons from the

boundaries of the basis, and in order to minimize these
reflections a very large basis must be used. Thus the
basis size can be substantially reduced by allowing for
absorption of flux [8]. The time propagation of the state
vector is based on the split operator technique [9], with
H(t) split into the two parts H and V(t). This technique
calls for H and V(t) to be exponentiated, which at first
sight might seem to be a drawback. However, if a matrix
can be readily diagonalized, its exponentiation is trivial.
Now, the matrix representation of II~ is block diagonal
(in t, he orbital angular momentum quantum number) and
can be diagonalized very rapidly. Furthermore, since II
is time independent, it need be diagonalized only once.
Although V(t) is time dependent, this time dependence
has a very special form: It is contained entirely in a c-
number which may be factored out of V(t). Thus V(t)
also need be diagonalized only once. Furthermore, the
symmetries of V(t) can be used to significantly expedite
this diagonalization. Consequently, it is practical to ex-
ponentiate both H and V(t) [10]. Finally, the symme-
tries of the problem may be used to significantly reduce
the number of matrix elements that must be calculated
and stored in the time propagation.

In Sec. II we describe our method in more detail. In
Sec. III we present our results. To illustrate the per-
formance of the method, we compare our estimates of
ionization rates with those obtained earlier by Kulander
[ll], as well as to those obtained by Chu and Cooper [12]
using the Floquet method.

II. METHOD

The formal solution of

h —I+(t)) = H(t) I+(t)),
G

(1)

subject to known boundary conditions at time t = to,
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~@(t)) = U(t&to)~'I((to)), where U(t, to) is the time-
evolution operator, which satisfies the group property
U(t, to) = U(t, t')U(t', to) for any triad of times t, t', to.
Thus, if we divide the interval Co & t ( t~ into N
subintervals t„~ & t & t,„, n = 1, . . . , N, we can ex-
press U(t(v, t(i) as the product of I(I evolution operators
U(t„, t„ i). Provided that b„= t„—t„ i is sufFiciently
small, we have [9]

U(t„,t„,) = exp i—"0—
~

" "
~

[1+O(b„')]
(t„+t„,&

h ( 2

b„ t.„+t„, (
r' b„.= exp i —"V " "

exp i "H- —
2h 2 ) (, h

x exp —i "V
~

" "
~ [1+0(b„)],.b„(t„+t„ i 5

1 d2 l(l+1)
2 d (6)

.n(r, 1Ii(+i —-r
~
S„"((r)= 0,r 2

with the asymptotic boundary condition that S„"((r)be-
haves as r"e'"", for large r Th.e Sturmian functions sat-
isfy the orthonormality condition

dr S„",(r)(1/r)S„",, (r) = —x{~/n)b„„, (8)

where we have chosen the normalization

the radial Sturmian functions are solutions of the differ-
ential equation

~Q ~~Q~H =XD X

V = YD,„,Y-', (4)

where D and D;„~ are diagonal matrices, Hence, if
Q(t„,t„ i) is the matrix representation of U(t„, t„ i),
we have

U(t„, t„ i) = Y U;„,(t„,t„ i)
xM„Q;„,(t„,t„ i)Y '[1+O(b„)], (5a)

.b„M„—:(Y 'X) exp
~

—i—"D,) (Y 'X( (5b)

. b (t„+t„
LI;„,(t, t i) = p — "J'

I I D;. . (5 )2h,

Note that the matrices X and Y appear only [13] in the
combination (Y X), and that the inverses of X and Y
may be computed irrunediately —the inverse of X is its
transpose, and the inverse of Y is its Hermitian adjoint
(see below). If we choose the time step to be constant,
so that b„, and therefore M„are independent of n, we
need evaluate M„only once, and the time propagation
of the state vector reduces to the single multiplication of
M„with a vector at each time step. If we choose a vari-
able time step, and in general this is preferable, at least
two matrix-vector multiplications are required per time
step. However, by utilizing the block-diagonal structures
of X and X and the special properties of Y and Y
(see below), these matrix-vector multiplications can be
carried out rapidly, and it turns out that the number of
operations per time step is the same whether a fixed or
variable time step is used. In fact, we use the same (the
latter) scheme whether the time step is fixed or variable.

Using atomic units, and writing

(2)

where the second step follows from using e(+++ls
e~ I l e e~ I l s[1 + O(b )]. We now write V(t)
f(t)V, where V is time independent, and we represent V
and H on an oHhonormal basis by matrices V and H, .
Furthermore, we put these matrices in diagonal form,
that is, we write

«[S."((r)]' = 1.
We can analytically continue Eqs. (8) and (9) to arbi-
trary complex ((:. Defining 0 = ir/2 —arg((".), we choose
0 ( 0 ( x/2, so that the basis functions can represent
both the closed channels and the outgoing wave open
channels of the exact wave function. Note that the Stur-
mian functions are not orthogonal; rather, the overlap
matrix g(, whose elements are I dr S„"((r)S„",((r), is tridi
agona/. If I~& denotes the matrix representation of the
kinetic energy operator K~ on this nonorthogonal basis,
we have, from Eqs. (7)—(9),

Ii( ——K Q( —K I(

where I& is the identity matrix. We construct an or-
thonormal basis from the eigenvectors of Q(. The matrix
representation of K~ on this orthonormal basis is RtI& &R&,
where the tilde denotes the transpose of a matrix, and
where R(S(@ = I( a d R(R( = S( . Assuming that
R( is a square matrix, so that I(',(R( ——S(, we see from
Eq. (10) that the eigenvalues of R(Ii(R(, and hence of
Ii(, are e(; = (s(; —2)/(2s(;)K, i = 1,2, . . . , where the
s(;, i = 1, 2, . . . , are the eigenvalues of Q(. Both R( and
S( are real for all ((:, and since S( is also symmetric the s(,
are real. In general, the e(, are complex, but when 0 = 0
(that is, when ((: is positive imaginary) Ii( is Hermitian
and positive definite, and in this case the e~; are real and
positive. It follows that 0 ( s~; & 2 for all K. We ex-
clude from our basis those eigenvectors of g( that have
eigenvalues s~; that are very small, since such eigenvec-
tors are nearly linearly dependent, and the kinetic energy
eigenvalues are very large (and give rise to rapid tempo-
ral oscillations in the t, ime propagation, necessitating a
very small time step). We also exclude those eigenvectors
that have eigenvalues s~; very close to 2, since the kinetic-
energy eigenvalues are very small, and by excluding these
eigenvectors we avoid wastefully representing those very
high Rydberg states that play almost no role. As a result
of this reduction of the basis, R& is not a square matrix.

From Eq. (8) we see that the Coulomb potential Z/r-
is diagonal on the nonorthogonal basis, with elements
iZ(r, /n. It follows that the hydrogen atom Hamiltonian
is represented on the oHhonorma, lized basis by the block-
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rapidly. To construct Vsym we first construct the matrix
representation of the operator V on the nonorthogonal
Sturmian basis; this matrix is very sparse. We then ob-
tain U, on the orthonormalized basis, by pre- and post-
multiplying by g and R, respectively. The matrix V
can be immediately symmetrized to give V, = QtVQ,
where Q is a complex tiiagona/ matrix (representing Q)
whose diagonal entries are either 1 or i. Furthermore,
by grouping the even and odd orbital angular momenta
separately, we can arrange that the upper left and lower
right quarters of V, consist entirely of zeroes (with the
upper right quarter the transpose of the lower left). If
Y sym is the rea/ matrix which diagonalizes the real Vsy~
we have Y = QY, , where YtY = Y Y't = 1. Note that
this Y diagonalizes V for arbitrary r, since for P g 0 we

simply multiply the elements of D;„, by e ' . Finally, we
note that the eigenvalue spectrum of V, is symmetric
with respect to the interchange of positive and negative
eigenvalues, and that when P acts on an eigenvector of V
it produces another eigenvector of V corresponding to an
equal and opposite eigenvalue; hence we need only cal-
culate half of the eigenvalues and eigenvectors of V,
Summarizing, due to the structure of V, , we can ex-

Ysym

(B, B+ l—sym
= (12)

where B+ are real matrices whose row and column di-
mensions are 4.n,~ and (l~ + l )n„d/2, respectively,
where n, d is the number of radial basis functions per
orbital angular momentum quantum number / (we have
taken n„g to be independent of /) and where I+ and I

are, respectively, the maximum numbers of even and odd
/. Hence we need not store the full Y—we need only store
the rea/matrices B+ and B, each of whose dimensions
are roughly half those of Y. The structure of Y, is
exploited in carrying out matrix multiplications with Y
and Y

III. TEST RESULTS

We show results for both ionization rates and yields.
Before reporting our results for the rates, we describe
how we extract a, rate. To the extent that an ionization
rate is meaningful, the system may be described by a
single Flaquet (dressed) state vector, with a quasienergy
E(I) which depends parametrically on the intensity pro-
file I(t). Let v(t) denote the state vector of the atom on
our orthonormalized basis, and suppose that the field is
monochromatic, with frequency cu. We have

t
dh' E(I')

~ u(t),( i
v(~) =exp

~

——
h

where u(t) is approximately periodic in t (with period
2n./~). Writing

E(I) = Ep + A(I) —iI'(I)/2, (14)

where Eo is the unperturbed initial energy level, we can
calculate the width I'(I) and the shift A(I) (modulo 2hcu)

diagonal matrix

H, = K I—+ R(Do —K l)g, (11)

where the diagonal blocks are labeled by /, ~here I
and R consist of diagonal blocks I& and R&, respec-
tively, and where Dc is a diagonal matrix whose diago-
nal elements in each block are iZr/n The. block diago-
nal matrix X, which diagonalizes H, may be obtained
rapidly. Note that H is a symmetric matrix, and there-
fore XX = X X = I. Since K lies in the upper right
quadrant of the complex plane, those eigenvalues of H
which correspond to continuum levels are complex, and
have negative imaginary parts (the arguments are ap-
proximately equal to —20), while those eigenvalues which
correspond to bound levels remain (approximately) real
(they have only very small negative imaginary parts).
Therefore LI(t, tp) is not unitary, and in fact decays as
S increases. This is reasonable; our basis can only de-
scribe the atom over some finite volume V of space, and
the probability for finding the electron inside P dimin-
ishes as the atom ionizes. By choosing basis functions
that can describe the correct comp/ex boundary condi-
tions, we do not need to introduce ad hoc absorbing walls
at the boundary of V to avoid reflections of the pho-
toelectron. To obtain the ionization probability at the
end of the pulse, we simply compute the population in
the bound states and subtract this from unity. However,
since LI(f, tp) is not unitary, we cannot calculate the pho-
toelectron energy spectrum, or the angular distribution,
by projection onto the continuum states; rather, we must
calculate the flux which passes through the surface of a
sphere that is centered at the atomic nucleus and has a
radius of a few atomic radii [14].

In the velocity gauge, we have (for a one-electron sys-
tem) V(t) = (1/c)A(t) p, where A(t) is the vector pa-
tential, and where p is the canonical momentum (in the
center of mass frame) of the electron, while in the length
gauge we have V(t) = F(t) x, where F(t) is the electric
field vector and where x is the position coordinate. As
in the Floquet method [7], the choice of gauge is impar-
tant. The true eigenvalue spectrum of V is continuous,
and extends from —oo to oo. Now, in the velocity gauge
the eigenvalues of V are spread over a relatively narrow
energy range, while in the length gauge they are spread
over a wider range. Thus the low-energy portion of the
spectrum of V is not covered so weH in the length gauge.
Furthermore, the larger eigenvalues of V, which are more
numerous in the length gauge, are of less physical im-
portance, and only give rise to aggravating temporal os-
cillations. We therefore work in the velocity gauge In.
this gauge, V commutes with the product of the parity
operator I and the time-reversal operator T. We may
therefore write V = QV, & Qt, where Q = (PT)i~ and
V,&

——QVQt. Since T complex conjugates c numbers,
sa does QQt, and therefore the matrix representation of
Vsym &

which we denote by V, on the orthonormalized
basis, is symmetric. Furthermore, when 0 vanishes, V is
Hermitian, and therefore V,z is both real and symmei
ric. Since V scales with 0 as e ', we need only diag-
onalize the real symmetric V»~, and this can be done
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[15], by evaluating the ratio v(t)v(t)/v(t)v (t), where
the tilde denotes the transpose, and where t and t are
two times that differ by one period 2'/u; with t the
1arger time, this ratio is approximately e
Note that in calculating v(t)v(t) we encounter the ma-
trix Y Y = Y,y Q QY, but this consists only of the
identity matrix in the upper right and lower left quarters,
and the null matrix in the other two quarters .

All of our calculations were carried out for linear po-
1ariz ation . In Table I we present estimates of the rate
for multiphoton ionization of H(ls) at some different fre-
quencies and intensities. In obtaining the results of Table
I we took the temporal profile I(t) of the intensity to be

I(t) = Ioe ('/'&l for t & 0 and I(t) = Io for t ) 0, with

2+in(2)t&, the full width at half maximum (FWHM) of
the 0aussian, equal to seven cycles. Typically, we b egan
the propagation at t = —2O cycles, and, from t = {3, we
propagated for 30 cycles at the constant intensity Ip (a
total of 50 cycles). In Table I we compare our estimates

0.55
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0.20
0.20
0.20
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1.4[13]
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1.2[13]
2.8[12]
4.O[14]
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with those obtained by Chu and Cooper [12] using the
Floquet method, and those obtained by Kulander [11],
who also extracted rates from the numerical integration
of the time-dependent Schrodinger equation. Our results

TABLE I. Rate 1' (in Hz) for ionization of H(ls) by a
field of intensity Ip (in W/cm ) and frequency ~ (in a.u.).
The rates are thoses calculated by (a) Chu and Cooper (Ref.
[13]) (Floquet method); (b) present authors; and (c) Kulander
(Ref. [9]). The notation a[b] means a x 10 .
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2FIG. 1. Rate for ionization of H(ls) vs time for a pulse whose intensity profile is I(t) = Ipe & ~ && when t ( 0 and I(t) = Ip
when t ) 0. The peak intensity Ip (in W/cm ) and frequency ~ (in a.u. ) are (a) ip = 0.55, Ip = 7 x 10; (b) ip = 0.28,
Ip = 4.38 x 10'; (c) ~ = 0.20, Ip = 1.75 x 10'; (d) id = 0.20, Ip = 3.94 x 10
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are in reasonable agreement with those of Kulander, and
in remarkably good agreement with Chu and Cooper. We
must point out that our estimates of the rates given in
Table I have been time averaged over the interval t & 0,
when I(f) is constant. The rates, calculated according
to the prescription in the preceding paragraph, fluctuate
with time. This is illustrated in Fig. 1 for some of the
cases shown in Table I. The fluctuations, which are most
pronounced during the rise of the pulse, have more than
one source. There are numerous time scales, for example,
those set by the bandwidth (the inverse rise time), the
atomic orbital motion, the detuning from a resonance,
the transit through a resonance, Rabi flopping, and the
spreading of the electron wave packet. At very large
times, the oscillations begin to grow, most probably due
to the fact that the bound-state population of the atom is
almost entirely depleted and nonexponential time behav-
ior dominates. During the rise time of the pulse, more
than one Floquet state may be populated if the inten-
sity sweeps through a resonance. However, for the cases
considered in producing Table I, t, he populations of the
(dressed) excited states remain small —the Rabi flopping
time (the inverse flopping frequency) is large compared
to the transit time through a resonance (recall the rise
time is only 20 cycles) and so the passage through a res-
onance is, by and large, diabatic. Furthermore, whatever
population does go into a dressed excited state is rapidly
transferred to the continuum. For example, when ~ = 0.2
a.u. there is a two-photon ls-2s resonance [16] at an in-
tensity not far below 1.75 x 10 " W/cm2, but, at this
intensity the 1s-28 Rabi flopping time is many cycles,
while the rate for ionization from the dressed 28 state is
about three times larger than the rate for ionization from
the dressed ls state.

The results presented in Table I were obtained by using
a basis set consisting of 31 radial functions per orbital
angular momentum /, with / & 5. We took 400 time
steps per cycle. Our computations required only 340 Kb
of (core) storage and were carried out on a SUN-4/60
workstation with 8 Mb of CPU memory. The CPU time
was about 2.5 min per cycle. We checked convergence by
increasing the basis size and the number of time steps,
and we encountered no diKculties due to reflection.

In Fig. 2 we show the probabilities for ionization of
the 3s and 48 states of atomic hydrogen versus the peak
intensity Io of a Gaussian pulse I(t) = Ioe ('~'&l (all f)
whose frequency is 0.2 a.u. and whose duration is held
fixed. We have chosen the FWHM of the pulse to be five
cycles (with the total duration 35 cycles). The ioniza-
tion probability is evaluated at the end of the pulse, and
is the diA'erence from unity of the sum of the populations
of all the bound states. As the intensity increases, the
ionization probability at first increases, but it exhibits a
maximum and a slow decrease as the peak intensity in-
creases further. This "stabilization' of the atom against
ionization at very high intensities, and frequencies above
the threshold for one-photon ionization, has been pre-
dicted by numerous theorists [3]. It has also been pre-
dicted [17] that stabilization commences at an intensity
at which the ponderomotive shift P:—2+Is/(c~ ) is ap-
proximately equal to the photon energy u; when ~ = 0.2

&.0
0-
I—
w 0.8
CQ

Q3o 06
CL

o 0.4

~ 0.2—
o

I I

I (tQ W/crn )

a.u. , the ponderomotive and photon energies are equal
at Io 1 x 10 W/cm, which is in the vicinity of the
maxima of the yields of Fig. 2. Incidentally, for these five-
cycle pulses, the frequency bandwidth is so large, and the
peak intensity so high, that more than one Floquet state
is appreciably populated, and it no longer makes sense
to speak of a single rate for ionization.

We have also studied the yield for ionization of H(ls)
by a bieh, romare radiation field, that is, by a super-
position of two vector potentials A~(i) cos(~Ht) and
Al. (t) cos(ul. t' + PL, ), whose individual intensities have
Gaussian profiles (both peaking at 8=0). In Fig. 3 we
show results in the case where one field has frequency
uL,

——0.099 a.u. , peak intensity 3 x 10 W /em, and a
FWEIM of seven low-frequency cycles, while the other
field is the third harmonic, with frequency co~ ——0.297

I I I I I I I I I I

~ 1.0
CQ 0 g
COo
cL- 0.8
CL

o 0."
I—

~ 0.6
o o.r

I I I I I I I
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P HASE (deg)
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FIG. 3. Probability for ionization of H(ls) by a bichro-
matic field, of frequencies 0.099 and 3 x 0.099 a.u. , vs the
phase of the fundamental Geld. The durations and peak in-
tensities of the (Gaussian) pulses are given in the text.

FIG. 2. Ionization probability vs the peak intensity of a
Gaussian pulse of frequency 0.2 a.u. and a f,".ll width at half
maximum of five cycles, for atomic hydrogen initially in the
3s or 4s state.
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a.u. , peak intensity 1 x 10i W/cm, and a FWHM of
15 high-frequency (that is, five low-frequency) cycles. In
the absence of the high-frequency field, the low-frequency
field cannot significantly ionize the atom, since at least
six photons must be absorbed, but ionization via the si-
multaneous absorption of one high-frequency photon and
several low-frequency photons is quite probable. We see,
from Fig. 3, that the photoelectron yield oscillates with
the phase PL, of the fundamental and apparently this os-
cillation is periodic, with period equal to 2tr/3. The de-
pendence of the yield on the relative phase between two
fields with commensurable frequencies has been observed
in the experiment by Muller ef al. [4]. In general, if the
ratio of the high frequency to the low frequency is p/q,
the yield has an approximate periodicity of 2qtr/p in the
phase ~tL, of the low-frequency field. This may be under-
stood provided that an ionization rate (averaged over the
fundamental cycle) is meaningful: A change of phase of
2qtr/p in the low-frequency field may be compensated for
by a shift in the origin of time by 2tr/uII, the net field
does not change under this combined transformation, as
long as the relative intensities of the two fields may be
treated as constant over the time interval 2tr/uH, and
hence the (Floquet) rate is periodic in $1. [18].

IV. CONCLUSION

Our application to multiphoton ionization of atomic
hydrogen indicates that if the full Hamiltonian is split
into the atomic Hamiltonian and the atom-field interac-

tion, the use of the split-operator technique in conjunc-
tion with a complex basis set is a promising method, at
least for calculations of total ionization rates and level
populations. The results presented here illustrate several
points. First, provided that only time-averaged informa-
tion is required, the Floquet method is applicable even
for moderately short, moderately intense, pulses. Second,
the stabilization of an atom against ionization should be
an observable effect, but the frequency must be chosen
to be several times larger than the threshold frequency
for one-photon ionization so that the maximum ioniza-
tion probability (which occurs at roughly the intensity for
which the ponderomotive shift is equal to the photon en-
ergy) is still small; this is in agreement with the results of
Floquet calculations [3,17]. Of course, the peak intensity
of the pulse must be sufBciently high that stabilization
occurs over a significant volume of atoms (spatial aver-
aging inhibits stabilization since most atoms experience
an intensity below the peak intensity at the focal center).
Third, our results confirm that two-color ionization by a
Geld and one of its harmonics can be very sensitive to
the phase. We hope to report results for photoelectron
energy spectra in a future paper.
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