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Cold collisions oIr ground- and excited-state alkali-metal atoms
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This paper examines two collisional mechanisms by which cold alkali-metal atoms can escape from a
neutral-atom trap, due to collison of excited- and ground-state atoms. One is fine-structure-changing
collisions, by which the atoms are heated by the amount of the fine-structure splitting. The other pro-
duces hot ground-state atoms following emission of a red-shifted photon during the course of a collision.
A rate expression is obtained that applies to both normal and ultracold temperatures ( & 1 mK). This ex-
pression assumes a canonical distribution of initial states, low-intensity excitation, and a semiclassical
treatment of the survival probability relative to excited-state decay during the long time of the ultracold
collision, and uses fine-structure-changing probabilities found by quantum scattering calculations. The
known properties of the attractive molecular states of the alkaline-metal dimers are used to identify and
calculate the probabilities for the specific mechanisms. We conclude that the earlier semiclassical
analysis by Dashevskaya [Opt. Spectrosk. 46, 423 (1979)] of the fine-structure-changing mechanisms for
the various alkali-metal species is qualitatively correct. We present quantum-mechanical calculations of
the rate coe%cient for fine-structure-changing collisions between ground- and excited-state Cs atoms
from 1000 K to 100 pK. Collision-rate coeflRcients for the trap-loss processes are calculated for pairs of
Li, Na, K, Rb, and Cs atoms at low temperature. There is a wide variation of predicted loss rate among
alkali-metal species from the fastest for K and the slowest for Li. Retardation corrections to molecular
lifetimes must be taken into account to predict the correct rate coe%cients for Na, K, and Rb. Good
agreement is obtained with the observed trap loss rate in a Cs trap.

PACS number(s): 34.50.Rk, 34.50.Fa, 32.80.Pj

I. INTRODUCTION

Recent advances in the laser cooling and trapping of
neutral atoms make possible the confinement of alkali-
metal atoms at ultracold temperatures, T & 1 mK
[1—15]. Collisional processes are expected to limit the
density and time of confinement in such atom traps
[16—23]. We proposed [16] and carried out calculations
[19]on the rate of a radiative escape (RE) mechanism by
which ultracold atoms in a neutral-atom trap can be lost
from the trap:

A + A ( P3i2)+E, ~ 2 + A +h v+EI,

where E; and Ef are the kinetic energies in the respective
initial and Anal states. This mechanism is a generic one
which will apply to any laser-cooled atom, irrespective of
whether or not it has one or hyper6ne structure. Gal-
lagher and Pritchard [21] (GP) introduced an additional
mechanism for alkali-metal atoms which involves a
change of fine-structure (FS) level:

A( P gg)3+E; ~3 + r4( Piy2)+Ef

They developed a semiclassical model for calculating rate
coe%cients which gives qualitative agreement with the
measured trap-loss rates in a Cs trap [22]. They also
showed that the rate of the FS process is larger than the
rate of the RE process for alkali-metal species.

In the RE mechanism the gain Ae in kinetic energy due
to emission by the A 2 molecule of a photon h v, which is
red shifted from the atomic transition energy h vz, is

AE=Ef —E, =hv~ —hv .

In the FS mechanism the kinetic energy gain is

AE =Ef—E; =AEFs,

(3)

(4)

6=h v~ —h vi =by ~,
where y„ is the linewidth (in Hz) of the atomic transi-
tion. We do not consider here the case where the detun-
ing 5 is large compared to bye so that bound states of
the molecule are excited, nor do we consider the role of a
second "catalysis" laser [22] at frequency v2, where

hv„—hv2)&by~ . (6)

The basic picture of the ultracold collision provided by
the Gallagher and Pritchard paper [21] certainly captures

where AEFs is the energy diIterence between fine-
structure levels. If AE is large enough, the hot product
atoms will escape the weak trapping forces of a neutral
atom trap and thereby be irreversibly lost from the trap.
In a laser-cooling experiment an appreciable fraction of
excited atoms will always be present if the cooling laser
with energy h v& is tu~ed slightly to the red of h vz.
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the essence of the novel physics of such collisions, and
their semiclassical method provides a useful framework
for describing these most interesting collisions. However,
the GP theory made unnecessarily restrictive assump-
tions which miss important physical effects at low T and
do not allow the theory to go correctly to the normal
high-T rate expressions as T increases. We relax these as-
sumptions and show how to calculate the collision rates
as a function of T. The production of the excited atom
only occurs when the atoms are separated by a very large
internuclear separation R, whereas the RE and FS mech-
anisms are molecular processes which only occur at
much shorter R. Our generalizations are to introduce the
role of relative angular momentum and of the known
molecular states into both the long- and short-range
physics. Rate coefticients for ultracold collisions can also
be severely attenuated because the excited molecular
state must survive relative to spontaneous emission dur-
ing the collision as the atoms progress from the long-
range zone where they are optically excited to the short-
range zone of RE and FS transitions. We have discussed
this effect in some detail elsewhere [19,23 —27]. As GP
did, we use a semiclassical treatment of this survival pro-
cess, but show that it is necessary to include the effect of
retardation on molecular decay rates.

We examine the molecular physics of RE and FS col-
lisions for alkali atoms in order to address the following
questions for low-T collisions: (1) What are the basic
physical mechanisms of these transitions and how do
they vary among alkali-metal species? (2) How do the
rate coe%cients vary as a function of collision energy~
We develop simple expressions for the rate of FS and RE
collisional trap-loss processes which permit us to make
estimates of the rate coefficients of trap loss for all alkali-
metal species. We will identify a number of unresolved
problems and hope to stimulate new research on the sub-
ject of collisions of ground- and excited-state alkali-metal
atoms of the same species. We will first review the basic
physics of ultracold collisions, and then derive the gen-
eralizations of the Cip model. We will then review the
basic molecular physics of alkali-metal dimers and de-
scribe the FS and RE processes at normal temperatures,
including new calculations for the FS cross section in Cs.
Then we will calculate the corrections due to excitation
and survival at ultracold temperatures, and make predic-
tions of the variation of trap-loss rate among alkali-metal
species. We will conclude with suggestions for future
research.

II. THEORY OF LOW-TEMPERATURE COLLISION
RATE COEFFICIENTS

A. Laser cooling and trapping

A variety of experimental methods are available for the
slowing and trapping of neutral atoms [2—15]. Two
main characteristic temperatures appear in the laser-
cooling process. One is the Doppler-cooling tempera-
tures TD given by

k~TD —by~ /2,

where ks is the Boltzmann constant and the natural
linewidth y~ = I/(2m'„) is inversely proportional to the
radiative lifetime ~~ of the upper state of the cooling
transition. TD is 240 pK for Na and 130pK for Cs. This
already very low temperature can be achieved for atoms
with a nondegenerate ground state, but in the general
case, much lower temperatures can be achieved by polar-
ization gradient cooling [28,29]. This other mechanism is
limited to be a few times the other characteristic temper-
ature, namely, the recoil temperature Tz given by

ks T~ =A' k, /2m,

where k is the wave vector of the photon in resonance
with the atomic transition and I is the atomic mass. At
this temperature the atomic de Broglie wavelength is
equal to the wavelength of light used for cooling. This
limit is very low indeed: T~ =2 pK for Na and 0.2 pK
for Cs. In an alkali optical confinement area the lowest
temperatures reported have been = 10 pK for Na [11,12]
and =2 pK for Cs [14,15], but the density is not very
high ( = 10 cm ). In traps, higher densities up to 10"
cm have been achieved, although often the tempera-
tures are higher, on the order of 100 pK or greater.

Laser-cooling methods can be applied in one dimension
to slow a beam of atoms, in two dimensions to slow the
transverse velocity components and brighten a beam, or
in three dimensions to trap atoms. Although we will be
primarily discussing collisions in traps here, we anticipate
that longitudinal and transverse cooling will be applied to
produce atomic beams with some degree of control over
beam velocity [30]. We express the hope that single or
crossed beam experiments may be possible in the future
in which collisions can be studied at temperatures be-
tween the very cold temperatures (1 mK in current
traps and the normal temperatures of conventional beam
experiments. Therefore, it is important to have a theory
of the temperature dependence of cold rate processes.

B. Characteristics of ultracold collisions

Collisions in a trap irradiated by lasers typically in-
volve excited states, since there will usually be a
significant fraction of excited atoms. Consider first an
atom with a ground S and excited P state. Collisions can
involve S+S, S+P, or P+P, and it is necessary to con-
sider all such possibilities, although we concentrate here
on the role of S+P collisions.

The long-range potentials are extremely important in
ultracold collision dynamics. Neglecting for the moment
retardation effects, the lead terms in the potentials for
S+S„S+P, and P+P are, respectively, the E. van
der Waals term, the R resonant dipole-dipole term,
and the R quadrupole-quadrupole term. (This neglects
magnetic R terms which are dominant only at very
long range; see Sec. III A. ) The longest range potential is
clearly the E. potential for S+P, for which the poten-
tial is on the order of the natural linewidth, or 2k~TL„
near the characteristic distance

(9)
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0
which is about 1000 A for alkali atoms. Since the atomic
velocity at T~ is only 6 A/ns for Na and 2 A/ns for Cs,
the internuclear distance R z =Uv. ~ traveled in an atomic
lifetime ~~ is much less than R . Therefore, the truly
new feature of cold collisions is that the duration of the
collision is considerably larger than the excited state life-
time. This introduces considerable complication in the
description of such collisions.

During a collision involving two cold atoms in the
presence of near-resonant laser light, the nearly station-
ary atoms can absorb and reemit many photons as they
slowly approach one another at distances on the order of
R . The quasimolecule does not remain in an asymptoti-
cally prepared state, but it is optically pumped. This may
have important consequences if the ground state is degen-
erate. In this long-range region, the energies and the life-
time no longer have the free-atom values, but are affected
by the molecular formation, including retardation effects.
This quasimolecular optical optical pumping may perturb
not only the internal state distribution, but also the veloc-
ity distribution of the two atoms with respect to the iso-
lated atom distributions. Moreover, correlations between
the states of the two atoms may be induced by optical
pumping. We regard this problem of describing the
long-range approach of the cold atoms as a fundamental
unsolved problem, which is being addressed in a prelimi-
nary manner by several groups [31—33].

It is therefore convenient to divide an ultracold col-
lision into three characteristic zones of distinct physical
behavior. We designate these the outer, intermediate,
and inner zones. The quasimolecular optical pumping
which leads to the "preparation" of the two atoms for the
collision occurs in the outer zone. The boundary between
the outer and intermediate zones is by no means sharp,
but should be regarded as occurring near R . The inter-
mediate zone is described by almost conventional col-
lision physics. It extends from R =R to the short-range
distances where exchange overlap effects become impor-
tant. Optical pumping can continue in the outermost
part of this zone. As the atoms come together, the detun-
ing introduced by the molecular interactions causes the
molecules to no longer be in resonance with the laser
tuned near the atomic transition. Since the molecule can
no longer be efficiently excited, the excited-state popula-
tion will typically decay by spontaneous emission before
reaching the inner part of this intermediate zone. Such
loss can suppress strongly the scattering Aux in the excit-
ed channel and lead to greatly reduced effective cross sec-
tions [19,21—25]. However, we show below that it is
possible to excite at R =R a molecular state which be-
comes metastable at short internuclear distances so that
the state does not have significant radiative loss. The
third and innermost zone, extending to a few tens of a0,
is characterized by strong molecular interactions. In this
zone curve crossings and nonadiabatic interactions cause
inelastic energy-transfer processes.

It is evident that the long time and distance scales of
ultracold collisions introduce novel behavior into such
collisions. In fact it is not clear that it is appropriate to
describe such collisions by a conventional rate coefficient,

because of the nonconservative, or dissipative, part of the
efFective Hamiltonian introduced by spontaneous emis-
sion over the time scale of the collision [23]. In the outer
zone the normal assumption of collision theory is violated
that the atoms be "prepared" at t= —00 independently
of the collision. For ultracold collisions the "prepara-
tion" cannot be separated from the "collision, " which is
no longer described by a conservative Hamiltonian, but
by a dissipative one. The optical pumping at large R
should be described by density-matrix methods (optical
Bloch equations) which treat spontaneous emission in a
natural way [23]. Indeed, at very large R the theory must
reduce to the density-matrix description of laser cooling
of isolated, independent atoms [28,29]. On the other
hand, the collision in the inner zone is most naturally de-
scribed by quantum-wave-function methods, which readi-
ly treat the multiple trajectories on different molecular
potentials, but do not address the problem of optical
pumping and spontaneous emission.

Our approach tries to give a simple description of what
occurs in each of the three zones described above, there-
by enabling us to define an efFective rate coefficient for
the overall process: (1) Optical pumping in the outer
zone is not treated. We assume that the pair distribution
function is simply the canonical distribution of incoming
pairs at the initial temperature. (2) The excitation at
large R of each molecular state is described by spherically
averaged absorption cross sections, a procedure valid at
low laser intensity. (3) Propagation in the intermediate
region is treated semiclassically. The radiative losses are
calculated for each molecular state by numerical integra-
tion of the decay along the trajectory, giving a survival
factor which depends on the molecular state. Emission in
the wing of the line, responsible for the RE process, is
also treated semiclassically. (4) In the inner zone the
nonadiabatic transition probabilities are found by a
close-coupling wave-function calculation, using the best
knowledge of the molecular states and their couplings.
In describing (1)—(3) above, we ignore the splittings
caused by hyperfine structure and light shifts. We also
assume adiabatic motion on the body-fixed molecular
states in the outer region where excitation occurs, and do
not treat the nonadiabatic dynamics associated with the
dynamical frame transformation between space- and
body-fixed reference frames of electronic angular momen-
turn quantization.

The strongest set of assumptions made by this kind of
~odel are clearly those associated with the long-range
physics. We ignore the correlations and velocity changes
induced by the long-range optical pumping of the real
atoms with hyperfine structure. GP made a similar set of
assumptions, but applied them in an oversimplified
manner that misses important physical effects (see Sec.
IIIB, IVB, and IVC). The basic question we address
here is the energy variation of the effective rate
coefficients from the normal to the ultracold regime.
This question was not addressed by GP. In fact, their
formula leads to an incorrect high-temperature limit,
since they did not treat the efFect of relative angular
momentum l on the collision. The improvements we
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make in the Gp theory are twofold: to incorporate the
role of I and to use the real physics of the actual molecu-
lar states instead of a single "effective" state with aver-
aged properties. The former improvement applies to as-
sumptions (1), (3), and (4) of the previous paragraph,
whereas the latter applies to (2), (3), and (4).

C. High-temperature rate expressions

Before describing ultracold modifications to rate
coefficients, we will 6rst give the normal high-
temperature expressions. In the molecular adiabatic pic-
ture, the cross section for a given adiabatic channel p is

channel P occurs at

Ro(E,p) = [C3(p)/2E ]'

and the cutoff is at

b,„(E,P)=l,„(E,P)/k =&3RC(E,P) .

The channel rate coefficient can be written as

K(E,P) =Kc(E,P)P(E,P),
where

(p)2/3
Kc(E,P)= 3n.

p (2E)

(15)

(16)

(17)

(18)

o (E,P) =(m lk ) g (21+ 1)P(E,1,P),
1=0

(10)

K(E,p) =o (E,p)U, (13)

where U is the relative collision velocity. In a cell with a
statistical distribution of Zeeman sublevels, the observed
rate coefficient for the ground- plus excited-state collision
is the average of the coefficients for the 2g, g2 asymptotic
channels,

K(T)= g (o(E,p)U),1

2g &g2
(14)

where the brackets ( ) imply a thermal average, and
g „g2 are the respective ground- and excited-state atomic
degeneracies. For our case of Sj»+ P3», 2g&go=16
[34]. Note that p=1, . . . , 16 labels a nondegenerate
molecular state component. For states with molecular
angular momentum projection QAO, the molecular de-
generacy is 2, and both components must be included in
the sum.

The reaction probability will always decrease when l is
larger than some characteristic l,„. In the present case,
if T & 5TD (see below), the cutoff for a given channel is
due to the presence of a barrier in the excited-state en-
trance channel potential due to the competition between
the attractive C3(P) /R potential and the repulsive
ih' l(1+ I)/2pR centrifugal potential. The barrier for

where the entrance channel kinetic energy is
E=fi k /2p, p is the reduced mass, and the quantum
probability of the process of interest for relative angular
momentum 1 is P(E, l,P) The q.uantum number 1 is re-
lated to the classical impact parameter b by

b =(1+—,')/k .

Using (11) to change the summation over 1 in (10) to an
integration over b, the corresponding semiclassical ex-
pression for the cross section is

o (E,P) =2mfbP(.E,b, P)db . (12)
0

We have shown that for collisions dominated by the R
resonant dipole-dipole interaction, a semiclassical treat-
ment of the near-threshold collision dynamics should be
valid as long as T» Tz [19,23].

Instead of cross section, we prefer to use the rate
coefficient K(E,P):

is the familiar Langevin capture rate coefficient for a R
long-range potential associated with capture cross section
mb „,and P is the average probability of reaction

max max

P(E,P)= g (21+1)P(E,l,P) g (21+1) . (19)
1=0 1=0

In a thermal average (2E )
'~ in (18) is replaced by

I(—', )
2/m

(2k, T)'" (20)

and P(E,p) is replaced by the thermal average P( T,p).

D. Low'-temperature modi6cation
of collision-rate coe%cients

'2 —1

( p)
v 1

1
25(R)

2m g2i hyp(R)
(22a)

e(R,P) .
27T g )

(22b)

Here 5(R) is the R-dependent detuning 5 —C3(p)/R for

Let us now formulate the low-temperature rate expres-
sions. GP introduced the number of pairs between R and
R +dR and assumed all pairs react with equal probability
and survival factors. This assumption fails as T is in-
creased, since only pairs in the right l range can react and
survival depends strongly on the initial kinetic energy E.
Our generalization is to introduce the number of
ground-state pairs per unit volume between R and
R +dR which approach each other with energy between
E and E+dE and with angular momentum l,

dN(R, E,1)= dR dE, (21)
2 hu(R, E, 1 )Q„

where Q„=(2vrpk~ T/h ) is the translational partition
function per unit volume. The ground-state potential has
been assumed to be a constant equal to zero in the long-
range excitation region. The derivation of (21) is outlined
in Appendix A. Each pair is excited to state P at the
weak-field excitation rate o(R,P)P, where P is the laser
Aux, and the mean photoabsorption cross section o., aver-
aged. over the g, ground-state components, is derived in
Appendix 8:
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The survival probability is

t(0)S(R,E, l, p) =exp —f 2ny&(t')d. t'
t(R)

(25)

where the time integral is over the classical path from ex-
citation at distance R at time t(R) until reaction at time
t(0) in the inner zone. Since the attractive potential
strongly accelerates the approaching atoms, the fast
short-range part of the path makes a negligible contribu-
tion to the integral in (25) and S is independent of the ac-
tual location of the crossing points that lead to reaction.
Thus, t (0) is taken to be the time to reach the inner turn-
ing point.

After introducing (21) and (22) into (24), the reaction
rate can be rewritten either in terms of an effective rate
coefficient Ks( T) for ground-state collisions or an
effective rate coefficient K*(T) for ground-plus excited-
state collisions:

R ( T) =Kg ( T)N =K *(T)NN*,

where

(26)

and

K(sT)=( g/2g )(iA, /2m)gr~e„K*(T) (27)

K*(T)= y (K(E,P)I(E,P) &1,
2g, g2

(28)

and K(E,P) is given by (17). In deriving (27) the low-
power relation between N* and N is assumed:

N' =(g, /g, )(X'/2~)yr„e„N . (29)

A11 effects due to excitation and spontaneous emission are
included in the integral,

I(E,P}=a~ ' f e(R,P)S(R,E,P)dR /~~ u, (30)
0

where

e~ =[1+(25/hy~) ] (31)

is the atomic line-shape factor and S is found by averag-

state p with spontaneous decay rate 2m.y&(R), where 5 is
given by Eq. (5), and

(h yIi/2)
e(R, )=

(bye/2) +5(R)

is the line-shape function introduced by GP, normalized
to unity at 5(R)=0.

The number of excitations to state p per unit time per
unit volume is o(R,p)pdN(R, E, l }. The number of re-
actions per unit time per unit volume is found by multi-
plying by the probability S(R,E, l, p) of survival on the
excited state to short distance and the probability
P(E, 1,p) of short-range reaction, and then summing over
all states p and angular momenta 1 and integrating over
all distances R and energies E:
R(T)= g g fP(E, l, p)

p I

XS(R,E, I,P}cr(R,P)$ dN(R, E,1 ) . (24)

g (21+1)P(E,1,P)
I

(32)

Note carefully that the cutoff in the l sum need not be
the same in the numerator and denominator in (32). This
is indicated by the l' index in the numerator. The cutoff
in the denominator is due to the excited state centrifugal
exclusion, and is dined to be the same l,„as Eq. (16).
The cutoff in the numerator is the same l,„at high T,
but if E is low enough the cutoff I,„~ is due to centrifu-
gal exclusion in the ground state, since lm» ~ & l'm». We
can make a simple estimate of when the ground-state ex-
clusion applies by evaluating l,„at the point
R =[C3(P)/5]', where the quasimolecule is in reso-
nance with the light with detuning 5 from atomic reso-
nance. Since the ground-state electronic potential is Hat,
setting E equal to the centrifugal potential at R„gives

l,„s/k =V3[C3(p)/5] ~ (33)

Direct comparison of (33) and (15) and (16) shows that

l,„&1,„ if E &(3 ~ /2)5=2. 65 . (34)

If 5/h is one natural linewidth, Eqs. (34) and (7) show
that the ground-state cutoff applies to the numerator in
(32) if T & 5', or about 1 mK for alkali species. Above
1 mK the cutoffs in the sums in the numerator and
denominator are the same, namely, I,„determined by
the excited-state centrifugal exclusion.

This careful attention to the cutoffs to the sums in (32)
is important, since it allows us to reduce (28} to limiting
expressions in two cases, namely, the normal high-
temperature expression, Eq. (14), and the special low-
temperature expression of GP if their assumptions are in-
troduced. First assume the temperature is large com-
pared to the characteristic temperature Tz, at which
atoms moving with relative kinetic energy E=k~ Tz trav-
el R in one atomic lifetime v.~. When T &) Tz the dis-
tance traveled in one lifetime, Rz =v~v, is large com-
pared to R„and the integral in (25) is dominated by the
long-range part of the trajectory, where u(R, E, l)=u,
e(R,p) =e„, and r(p) =r„are constants independent of
R and P. Then S(R,E, l,P) =exp( —R /R „),and the in-
tegral in (30) approaches unity:

I(E,p)~1 when E))k~Ts . (35)

In this limit, the effective excited-state rate coefficient
K (T) in Eq. (28) approaches the conventional expres-
sion in Eq. (14). The nominal order of magnitude of Ts
for alkali collisions is in the range 10—100 mK.

I.et us now show how the expression of CxP is obtained
when their assumptions are introduced. If we assume

ing the survival factor S(R,E,l,p) over angular momen-
tum 1 weighted by P(E, l, p) and u/u(R, E,l) [see Eq.
(21) above]:

S(R,E,P)

g (21'+ 1)S(R,E,1',P)P(E, 1',P)u /u (R,E,1')
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that P and S in (24) are independent of / and that P is in-
dependent of E, having respective values Pop(P) and
SGp(R, E,P), then simple algebra shows that the rate
R ( T) in (24) can be written as in (26) with

1 1K* =
2 2 g (I (E,P)P (P)),
2~A 2g, g2

where

Iop(E, 13)=e„'f 4~R e(R, I3)Sop(R, E,P)dR .
0

(36)

(37)

In order to obtain the GP expression (37), Eqs. (A7) and
(Al lb) in Appendix A are used to carry out the sum in
the numerator of (32), subject to the low-temperature
cutoff at I,„.In addition, GP made an even more res-
trictive assumption that (36) could be evaluated using
only a single "effective" attractive state, here denoted
P=eff, so that gi =go= 1. Also, the thermal average in
(36) was replaced by evaluation of Sop using an empirical
correction to the time integral in (25) calculated assuming
zero initial velocity after excitation. We find their correc-
tion to be valid if T is in the vicinity of 200—300 pK,
where the specific temperature depends on the alkali-
metal species. But their Eq. (4), which gives the correc-
tion, contains a typographical error: the correction fac-
tor of 1.4 should be in the denominator, not the numera-
tor. With these assumptions their Eq. (9) is obtained:

abatic states quantized in a molecule fixed frame. We ig-
nore splittings due to hyperfine structure, spin-spin in-
teractions, and external optical or magnetic fields.

The ground-state atoms give rise to the chemically
bound 'Xg+ ground state and to the repulsive X„+ state
with a shallow van der Waals well. Both states have
identical long-range —C6/R interaction potentials,
which have a magnitude & 1 mK for R & 89ao for Na
and R & 115ao for Cs; at larger internuclear separations,
the ground-state potential is essentially fiat. Meath [39]
showed that the actual long-range form when relativistic
spin-spin interactions are taken into account is on the or-
der of a /R, where a is the fine-structure constant, due
to the long-range spin dipole-spin dipole coupling be-
tween the two electrons. At long range this relativistic
term equals the van der Waals term at about 300ao for
Na and 500ao for Cs. At these large distances, the mag-

1000-

—1000-

1 1
IC op =

Iop (eff)Pop ( eff)
A

(38)
-8000-

where Sop in (37) is evaluated using the rotationless po-
tential of the "effective" state. The extra factor of 2 in
the denominator of (38) should appear in Eq. (9) of GP if
Pop(eff) is interpreted as the average probability of reac-
tion, averaged over the eight attractive channels [if Pop
were interpreted as the probability averaged over all 16
entrance channels, attractive and repulsive, the factor of
—,
' in (38) would be missing]. We do not recommend using

Eq. (38), since the restrictive assumptions miss important
physical effects which affect these collisions. In particu-
lar, we show below that it is seriously wrong to use a sin-
gle efFective state with "average" properties and that P
and S show strong dependence on I. The correct expres-
sions (28) and (30) are almost as simple to evaluate nu-
merically as (38), and these expressions permit an accu-
rate evaluation of the physics of the collision in the
intermediate- and short-range zones, as well as yielding
the temperature dependence.

III. MOLECULAR PHYSICS
OF ALKALI-METAL DIMERS
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The molecular electronic states which correlate asymp-

totically at large R with S+S and S+P alkali-metal
atomic states are well known [35—50]. Retardation
effects on the molecular potentials and lifetimes occur
when R is comparable to or larger than the critical dis-
tance R in Eq. (9) [36—38,40]. Assume for the moment
that R & R so we can work with the usual molecular adi-

FIG. 1. (a) Nonrelativistic potential-energy curves for Cs2
calculated by Krauss and Stevens {Ref. [47]). Interatomic dis-
tance R is in atomic units, lao=0. 529177X10 cm. The solid
circles show the calculated points. Hund's case-(a) molecular
symmetry labels are shown. (b) Nonrelativistic long-range
potential-energy curves for Cs2 calculated by Krauss and
Stevens.
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TABLE II. Atomic parameters d in atomic units and 'To in 10 s.

d2

A

Present

'Reference [50].
bReference [54].
'Reference [55].
dReference [56].
'Reference [57].
"Reference [58].

Li

5.51'
26.9+0.8"

27

Na

6.48'
16.1+0.3'
16.0+0.5

16.1'

16

9 34'
27.8+0.5'
26.0+O.S
26.0+0.5g

27.3'
27

~Reference [59].
"Reference [60].
'Reference [61].

10.1'
27.0+0.5'
26.0+0.5
25.8+0.8"

25.7'
26

12.2'
30.S+0.7'
32.7+1 5
29.7+0.2'

29.4'
30

[36—38,40]. For our present purposes, we will ignore re-
tardation effects on the potentials but will examine the
effects on the molecular lifetimes. As long as R (R but
R is large enough that C3(p)/R «bE„s, the C3(p)
coefficients and molecular lifetimes are R-independent
constants. When the Hamiltonian for the electronic plus
spin-orbit energy is diagonalized in this R range using
well-known methods for alkali-metal dimers [48—50], the
C3(p) coefficients in Table I are found for each of these
adiabatic entrance channels. Table II shows for each
alkali-metal dimer the magnitudes of the d matrix ele-
ments in Table I used to calculate these long-range C3(p)
coefficients.

B. Molecular spontaneous decay rates

The retardation effects on the lifetimes have been cal-
culated in the nonrelativistic basis (neglecting electron
spin) [37,38]. We have transformed these results into the
asymptotically diagonalized basis of the electronic plus
spin-orbit Hamiltonian. Following Meath [40], the re-
tarded decay rate of molecular state p can be written as a
power series:

A&(R)=rz a(R)=v'~ (aop+a2 ~u +a4pu ),
(39)

The serjes (39) through u terms agrees with the exact
long-range formula to 0.1% or better when u & 1, and is
only in error by about 2% when u =2. The lead term in
the expansion, ao p~z'=~0 & in Table I, agrees with the
nonretarded formulas in Table III of Movre and Pichler
[62]. The decay rates of the 0„+, 1, and 0 states are fas-

ter than the atomic decay rate, whereas the 1„state de-

cays with a rate slower than the atom. Although spon-
taneous radiative decay of the 2„state is forbidden in the
dipole approximation. Table II shows that at u =1 the
rate is only about five times slower than for the atom.
The 2„state will play an important role in the FS process
for Na, K, and Rb pairs at low T.

The 0„+ and 1 states correlate at short range with thy

respective II„and 'll chemically bound states; the 2„
state also correlates with II„. However, the l„and 0

where u =R/R, is a reduced distance parameter. An
iinportant distance is R„s=(d /bEFs)'~, where the in-
teratomic interaction becomes comparable in magnitude
to the asymptotic spin-orbit splitting. If R»R», the
a; & coefficients in (39) are constants independent of R,
and the function A&~~ is a universal function common to
all alkali-metal pairs. Figure 3 shows this function and
Table I shows the long-range coefficients in (39). Table II
shows the experimental atomic lifetimes and our choice
of lifetimes to be used in Sec. IV below to calculate the
survival factors S(R,E, I,P) Since R„s. ranges from
17ao for Cs to 150ao for Li, corresponding to u =0.007
and 0.08, respectively, Eq. (39) with the coefficients in
Table I can be used to calculate survival factors for long-
range excitation near u =1.

0$-

0 0$

FIG. 3. Molecular decay rates, in units of the atomic decay
rate 1/~A, vs reduced distance unit u. The R dependence is due
to retardation corrections to the radiative transition probability.
At small u, additional dependence on R is caused by the switch-
ing from the asymptotic Hund's case-(c) basis to the short-range
Hund's case-(a) basis.
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states are "pure long-range" molecular states [63] which
have very shallow wells at large R before becoming repul-
sive at smaller distances. The 1„state adiabatically con-
nects with the spectroscopically known 8 'H„state at
small R, whereas the 0~ state becomes a component of
the H state. The shallowest state of the five attractive
states is the 1„state, which has a minimum of 230 mK at
R =99ap for Na2 and a minimum of only 4.5 mK for Li.
The deepest of the five is the 0 state, which has a
minimum of 109 K at 26Qp foI Cs2. The bound
vibrational-rotational levels in the long-range wells of the
1„and 0 states have been calculated for the homonu-
clear alkali-metal dimers, except Li [63,64].

C. Mechanisms for FS transitions

Experimental studies of the FS cross sections were car-
ried out over 20 years ago by Krause and co-workers
[65—70]. Theoretical interpretations of the possible
mechanisms have also been proposed [48,71,72]. The
semiclassical estimates of theoretical cross sections in all
cases were found to be smaller than measured ones by a
factor of 2 or more. Krause also notes that previously
measured values by others are not in good agreement
with his values [70]. We have recently carried out close-
coupling calculations of the theoretical cross sections,
and come essentially to the same conclusions as
Dashevskaya [71] concerning the mechanisms and mag-
nitudes of the cross sections. We confirm the discrepancy
with the measured rate coefficients, although agreement
in the case of Cs is possible when we use an approximate
spin-orbit matrix element in the literature. The details of
these calculations will be published elsewhere, but we will
use the calculated probabilities to calculate the low-
temperature collisional loss rates and the temperature
dependence of the FS rate coeKcient.

As Dashevskaya, Voronin, and Nikitin [48] and Niki-
tin [72] have clearly demonstrated, there is negligible ra-
dial coupling at long range between states of the same 0
in the homonuclear alkali-metal dimers at room tempera-
ture. This is because the slowly varying long-range jI/R
potential leads to an adiabaticity parameter much larger
than 1, and there is no possibility of transitions between
states of the same 0,. This is in strong contrast to the
case of alkali-metal —rare-gas collisions, where radial
derivative coupling between states of the same symmetry
leads to large transition probabilities [72]. One demon-
stration of this is seen in the photodissociation of the
B 'H„state of alkali-metal dimers. The relative yields of
the P3 /2 and P J /p products have been measured in
several experiments [73—81]. In some cases, the only
detected product is P3/2, with a P, /2 yield smaller than
l%%uo [73,76—78, 80, 81]. Gerber and Moiler [80] have ex-
plained observations of comparable products in both
channels as a consequence of two-photon excitation of
upper electronic states. Theoretical calculations of pho-
todissociation branching ratios for K2 [81,82] have also
demonstrated that the-branching is almost entirely to the
P3 /2 channel, with which the B ' H „state correlates adi-

abatically. Conversely, photodissociation through the
2 'X„state of Na, has been calculated [83] to yield al-

~, =2'"LE„,Z3=0.47IIZE„, . (40)

However, deperturbation analysis of high-resolution
spectroscopic data for Li2, Na2, and K2 found Vso to be,

most entirely P&/2 product atoms with which the A state
correlates adiabatically.

The gerade electronic states contribute an insignificant
fraction of the cross section. The only significant g-state
mechanism is the crossing of the 1 state from P3/2 and
the Og state from P»2. Dashevskaya, Voronin, and
Nikitin [48] have shown the matrix element and transi-
tion probability to be small from this long-range crossing.
Our close-coupling calculations show the contribution to
0. at room temperature from all the g states to be less
than 1&p for K, Rb, and Cs, and only about 10@p for the
light molecule Na. There is a possible small contribution
at elevated temperature due to the short-range crossing
of the 'X+ and H curves seen in ab initio calculations
[47]. However, the 'X~+ potential has a barrier which
prevents FS transitions except at elevated temperatures.
We estimate that even this mechanism is insignificant ex-
cept possibly for K at elevated temperatures.

Therefore, only the 0„+ and 2„states from P3/2 are en-
trance channel states which give appreciable contribu-
tions to the FS cross section [see Fig. 2(b)]. There are
three basic mechanisms, described by Dashevskaya [71],
which can contribute: (1) spin-orbit mixing of the 0„+

components of the 3 'X„+ and b H„states at their cross-
ing near the minimum of the A 'X„+ potential [see Figs.
1(a) and 2(a)], (2) Coriolis mixing of the components of
the b II state at short range, (3) Coriolis mixing of the
0„+ and 1„states at their long-range crossing. Only the
0„+ entrance channel state contributes to all three mecha-
nisms; the 2„entrance channel state also contributes to
mechanism 2. The alkali-metal species divide into two
distinct classes. The dominant mechanisms at room tem-
perature for the light species Na and K with relatively
small spin-orbit matrix elements are the Coriolis mecha-
nisms (2) and (3), whereas the spin-orbit mechanism (1)
gives only a small contribution. The opposite applies to
the heavy species Rb and Cs with large spin-orbit matrix
elements, that is, only mechanism (1) is dominant at room
temperature. Since mechanisms 1 and 2 only occur in the
inner chemical zone of interaction where the atoms are
close together, we expect the rate coeKcient to be a prod-
uct of the Langevin capture rate coe%cient times the
average channel FS probability, as in Eq. (17). We will il-
lustrate this theory for the case of Cs FS transitions by
mechanism 1 using the ECP potentials of Krauss and
Stevens [47]. We set up the 2X2 Hamiltonian matrix for
the 0„+ states in terms of the nonrelativistic 'X„+ and 'H„
potentials and the asymptotic spin-orbit splitting
[48—50]. The FS probability is determined by the
Hund's case (a) spin-orbit matrix element, Vso=( A 'X„+(0„+)~H ~bso11„(0„+)) at the crossing of the
two nonrelativistic potentials near 10ao (see Fig. 1). If
this spin-orbit matrix element does not vary with R, its
magnitude is related to the asymptotic fine-structure
splitting by [84]
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respectively, 0.338, 0.343, and 0.318 times EE„s [84—86].
These values are only 70% of the value predicted by (40).
The near constancy of the measured scaling factor for
Li2, Na2, and K.2 suggests that the same scaling may be
applied to Rb2 and Cs2. Assuming a scaling factor of
0.34 instead of 0.471 gives estimated Vso values of 81 and
188 cm ' for Rb2 and Cs2, respectively. O'Callahan,
Cxallagher, and Holstein [87] estimated a value of 150
cm ' for Csz based on fitting the low-resolution absorp-
tion spectrum of Csz with a nonadiabatic strong coupling
model which accounts for the avoided crossing of the 0„+
components of the A and b potentials [Fig. 2(a)]. This
magnitude corresponds to a scaling factor of 0.27 instead
of 0.34.

We have carried out a standard quantum-mechanical
two-channel close-coupling calculation of the cross sec-
tion for the P3&2~ Pj&2 FS process for Cs collisions.
The spherically averaged cross section to be compared to
cell experiments is —,

' of the 0„+ channel cross section
defined by Eq. (10) [see comment after Eq. (14)]. The
Incan FS probability P for the 0„+ channel is defined by
Eq. (19). Calculations were done using both spin-orbit
matrix elements, 188 and 150 cm '. Figure 4 shows the
quantum opacity function P(E, /, 0„+ ) as a function of l at
a collision energy of E/k~ =300 K when Vso is chosen
to be 150 cm '. The sharp cutoff at I~,„ is evident in the
figure. The primary effect of lowering E is to lower the
value of l,„as E decreases. Equations (15) and (16)
show that l,„varies quite slowly with E, as E' . The
mean probability P (E) is nearly independent of E, only
varying from 0.41 to 0.43 as E/kz decreases from 300 K
to 1 mK, an energy range of nearly six orders of magni-
tude. These observations demonstrate that Eq. (17) using
the Langevin capture rate is an excellent approximation
for Cs FS collisions. When we take VsQ=188 cm

OB-

0.6—

0.4—

I

300

FIG. 4. Calculated quantum (oscillating) and semiclassical
(line) probability of FS transitions for the spin-orbit induced FS
transition in Cs, calculated at E/k& =300 K. The sharp cutoff
at I,„=540 due to the barrier in the 0„+ entrance channel po-
tential is evident in the calculation.

P (E) varies from 0.24 to 0.29 over the same range of en-
ergy. Note that P is actually larger when the smaller VsQ
is used. When a full six-channel close-coupling calcula-
tion is done which includes all four ungerade potentials
and the effects of Coriolis coupling, these probabilities
are only increased by 5% or less. Therefore, Coriolis
coupling is insignificant for Cs FS collisions, and the
simpler two-channel model is sufficient to calculate the
FS rate coefficient.

The above results are readily understood by using the
familiar Landau-Zener curve crossing formula,

P =2e "(1—e ), (41)

where

A =2nV' /(fiU. *D*) (42)

and V*, U*, and D* are the respective coupling matrix
element, velocity, and slope difference of the potential
curves at the crossing point A of the two curves. The
semiclassical probability shown in Fig. 4 is in excellent
agreement with the quantum probability averaged over
oscillations. The maximum probability in Eq. (41) occurs
when 3 =ln2=0. 693. Since 3 )0.693 for Cs2, the pas-
sage through the crossing tends to be adiabatic on the di-
agonalized potentials, and the probability is actually
larger with the smaller spin-orbit matrix element, as
found in the quantal calculation. This is because the
smaller matrix element reduces the adiabaticity parame-
ter A and leads to a larger P in (41).

The calculated cell cross section for Cs FS collisions at
300 K are 120ao and 68ao when the respective 150 and
188-cm '

VsQ are used. Since the measured cross section
is 110ao, better agreement is obtained when the 150-
cm ' matrix element estimated by O'Callahan, Gal-
lagher, and Holstein [87] is used. However, the magni-
tude of the experimental error is uncertain, and Cs is the
only alkali-metal species for which such good agreement
can be obtained between our close-coupled calculations
and experiment (see below). Therefore, some question
remains whether the agreement between theory and ex-
periment for Cs may be partly fortuitous. It is clearly
desirable to obtain VsQ by more reliable means, either by
high-resolution spectroscopic analysis or from careful ab
initio treatment.

We have also carried out two- and six-channel close-
couPled calculations for Rbz, using the scaled VsQ 81
cm ', and six-channel calculation for Na2 and K2, using
the measured VsQ. The calculated cell average cross sec-
tion at E/k~ =300 K for Rb FS collisions is 95a o for the
two-channel calculation. The cross section is increased
by 40% in the six-channel calculation which includes
Coriolis coupling. The increase is due to partial waves
with large l, near I,„, since the probability due to
Coriolis coupling increases approximately as l . Our six-
channel cross section is about 25% larger than the rough
semiclassical estimate of Dashevskaya [71],and is about a
factor of 2 smaller than the measured value of 240a 0.

In contrast to Cs2 and Rb2, the dominant mechanism
of the fine-structure-changing transition in Na2 and K2 at
normal temperatures is Coriolis coupling. The spin-orbit
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TABLE III. Calculated FS probabilities at E/k& = 1 mK.

Species P(E, l, P)
p —0+

lmax p(&,p) P(E, I,p)
=2.l,„ p(E,p)

Na
K
Rb
Cs

2. 5 X 10-"l(l+1)
1.9 X 10-'l(l+1)

0.36
0.28

23
34
52
70

0.066
0.12
0.36
0.28

3.2X 10 l(l'+1)
1.1X10 'l(l+1)
7.5 X 10-'l(l+1)
9 X 10-'l(l+1)

19
29
45
59

0.064
0.049
0.0079

10

mechanism, which is so important for Rb2 and Cs2, con-
tributes only a small fraction of the cross section in these
lighter alkali-metal species. At long range the 0„+ state
from P3&2 is crossed by the 1„state which correlates
with P, &2. At short range both the 0„+ and 2„states
from P3&2 become components of the H„state, and mix
with the 1„component of this state which connects with

P, &2 asymptotically. This short-range mixing is that
which is responsible for the transition from Hund's case
(a) to Hund's case (b) in the II„state. We have verified
the dominance of the Coriolis mechanisms by full close-
coupled calculations with model potentials for Na2 and

Kz which include the contributions of all three mecha-
nisms. We find cross sections of similar magnitude to
those of Dashevskaya [71], which are also about a factor
of 2 smaller than the measured ones for these alkali-metal
species. We find large mean probabilities, on the order of
0.5—1, for a large range of partial waves below the cuto6'
value l,„. However, the probability drops off rapidly as
l —+0 because the Coriolis coupling operator is approxi-
mately proportional to I.

Table III summarizes for all four alkali-metal species
the results of the close-coupled calculation of P(E, I,P) at
low collision energy for the 0„+ and 2„entrance channels
(probability per nondegenerate component in the case of

2„). Figure 5 illustrates the feature that the probability
of the Coriolis mechanism at fixed l is nearly independent
of E at low collision energy, as long as I remains less thanI,„. The probability for the Conolis mechanisms can be
approximately represented as P(E, I,P)=pc(P)l(l+I),
where po is independent of the collision energy E and is
found by fitting the calculated probabilities. Table III
also gives l,„and the mean probability, Eq. (19), at
E/k~ = 1 mK. Note that l,„))1 in all cases, implying
that this low T is still very large compared to the temper-
ature where only s waves (l =0) contribute in the quan-
tum threshold limit [23]. The calculated P for Na, aver-
aged over the eight attractive entrance channels, is
[0.066+ ( 2 )0.064] /8 =0.024, which is over an order of
magnitude smaller than the value assumed by GP for
their single "efFective" attractive state [21]. This is be-
cause extrapolation from room temperature to ultracold
temperature is invalid for the case of Coriolis coupling.
This is one of the features missed by the original GP
theory. It is significant because we show below that the
Coriolis mechanism is the dominant one for FS at low T
for all alkali-metal species except Cs.

D. Rate coefficients for RE transitions

The spectrum of emitted light for the RE process, Eq.
(1), as a function of the red shift b,E in Eq. (3) is calculat-
ed from Eqs. (10) and (14) from the spectral probability
density due to entrance channel P [88,89]:

OB-

14 K

P~(E, l, I3 +f;b E)—
=h(64~ /3hZ, )[(E,l, l3td(R)~EI, l,f ) ~

=h
A p) (E, l, P~E/, l,f & [

(43a)

(43b)

0.4-

OZ-

FIG. 5. Calculated quantum probability of the FS transition
for the 2„channel of f molecular parity for three different col-
lision energies E/kz for Na collisions. The rapid increase with
angular momentum l is a consequence of the Coriolis mecha-
nism. The sharp cutoff at l,„ is evident at each energy. Below
the cutoff, the probability is insensitive to energy.

where d(R) is the transition dipole moment, and the
second expression (43b) in terms of the Einstein
coefficient A & applies if d (R ) is independent of R. Here
the index f implies summing over all ground-state molec-
ular components. The probability of emitting a photon
with shift between b,E and b.E+d(EE ) is Psd(b, E), and
P~ has units of energy . The probability of emitting a
photon which leads to RE is obtained by integrating the
spectral probability P& over all hE greater than some
minimum BEE which defines the escape energy in Eq. (3):

P(E, l,p~f;ARE)= I Ps(E, l,p~f;bE)d(EE) .

(44)
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An extremely useful approach to the RE process is to
introduce the semiclassical approximations which lead to
the quasistatic picture [89—91]. The classical Franck-
Condon principle is satisfied at the stationary phase point
R* at which the emitted photon energy matches the
difference potential. Since the ground state is Hat at large
R, the red shift is just the excited-state attraction:

b.E =C(P)/R *' . (45)

By introducing the usual stationary-phase and random-
phase approximations for the integral in (42), the semi-
classical approximation is readily derived (assuming only
a single R ' point) [91]:

2d R"
~(E, I,p~d(R)IEf, &,f &I2=

hu*(E, I )D*(p,f )
(46)

where U* and D* are the respective velocity and potential
slope difference at R *. Upon noting that
d(b.E ) =D dR, Eqs. (43) and (46) immediately lead to an
expression with a simple and obvious physical interpreta-
tion:

P(E, I,P~f;bRE)= f „APf(t)dt . (47)

Equation (47) gives the probability of spontaneously emit-
ting a photon with hE )E~E over the classical trajectory
from R * to the inner turning point and back to R . The
probability (47) will be much less than unity as long as
the passage time 2t* is short compared to the decay life-
time A& '.

An escape energy ARE permits escape from a trap
AzE/2k~ deep, since both atoms share the kinetic energy
equally. We will assume b,R /E2 kshas the order of mag-
nitude 1 K. Since AzE &)E and 5 in the low-temperature
limit, the excitation occurs at a very long range beyond
the centrifugal barrier position Rc(p), whereas R will
lie well inside Rc(p). Thus, the channel spectral rate
coefticient for photon emission, uncorrected for spontane-
ous emission losses, is

Ks(E,P~f;bE ) =Kc(E,P)Ps(E,P~f;bE ), (48)

where Pz is averaged over l, Eq. (19). For all alkali-metal
pairs except Li (see below) almost the whole spectrum
comes within the interval R» «R * (&Rc(p), and A& is
given by the parameters in Table I. Using Eqs. (45) and
(46), the semiclassical approximation to the spectral
probability

emission with BATE ~ 6&E is

p(p f .b )
—(23/2/5) A pl/2C (p)1/3/b 5/6 (50)

6772' A P C3 (P)
/5/6(2E )1/6

(51)

The thermal average is found by making the replacement
in Eq. (20). After Eq. (51) is used in Eq. (28) to do a low-
temperature spherical average for cell conditions, the rate
coefficient gives the emission rate of photons with a red
shift larger than A~E, or equivalently, the loss rate of ex-
cited P atoms. The RE contribution to the trap-loss rate
should be twice this, since two hot atoms appear per pho-
ton emitted.

Since the 2„state makes negligible contributions to RE
for all alkali-metal species because of the very small de-
cay rate in the region of R* where the RE emission
occurs, the A& factor in the spectral probability P& or P
in Eqs. (49) or (50) is just the ao t1 factor in Eq. (39). Ex-
cept for Li, ao &

can be taken as an R-independent con-
stant. Since R * &&RFs for Li due to the extremely small
bE„s=0.3353 cm ' [92], the actual R-dependent short-
range Hund's case-(a) form of the potentials and aot3
coe%cients must be used for Li. Qnly two states are
chemically bound enough to give a 1-K red shift for RE
in Li, namely, the 0„+ and 1 states. The former corre-
lates at short range with H„and the latter with 'll .
Both have potentials that vary as d /R when R «RFs.
Although the decay rates vanish in a pure Hund's case-(a)
basis, both of these states have small decay rates that can
readily be worked out using perturbation theory when
R (RF&. Defining

X=
EFsR 3

(52)

and neglecting small terms in u, we find in the R range
of interest for the Liz molecule,

A(1 )=r„' (X~ 1)
162X

(53)

and the corresponding channel rate coefficient for calcu-
lating the photon production rate per unit volume is

K(E,p~f;bRE) =Kc (E,p)P(p~ f;bRE)

Ps(P~ f;bE )

=(21/ /3) A p /2( (p)1/ /b/ / (/ (&bE )

A(0„+)=rg'
2 (X 1) .4

(9X—1)
(54)

is independent of the incident energy in this low-
temperature limit. We have verified by direct numerical
calculation [19,26] that the spectrum calculated from (49)
passes through the center of the quantum oscillations of
the spectrum calculated from the quantum probabilities
(43).

The spectrally integrated probability from Eq. (44) for

These should be used in Eqs. (49) instead of a constant
ao t3. Since bF. =d /R, we see from Eqs. (52)—(54) that
A varies inversely as (b.E) . This fact allows us to in-
tegrate (49) to get a new Eq. (50) for the probability. The
probability for Li is just » times P in Eq. (50) with

C(p) =d and Eqs. (53) and (54) above used for A&. Note
that the RE rate coefficient scales as AzE for Li,
whereas it scales as h~E for all the other alkali-metal
species.
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IV. CAI,CUT ATION OF RATE CQEFFICIENTS

A. Problems in lo~-temperature calculations

tri l(l+ I ) C(P)
2pR R

(55)

Given the long-range potential and lifetime parameters
in Tables I and II, the FS probabilities in Table III, and
the RE probabilities from Eqs. (50), (53), and (54), it is a
straightforward matter to evaluate numerically Ec, I',
and the excitation and survival integral I for each en-
trance channel and calculate the rate coefticients K* and
Eg in Eqs. (26)—(28). However, in order to calculate
I(E) at low temperature there are two problems that
need to be resolved. The first is simple to fix. If E is low
enough that the ground-state cutoff applies to the
numerator in Eq. (32), there will always be singularities in
the denominator at discrete R values for each I where
v(E, R, I) vanishes at the classical turning point. This
occurs when E/kii is on the order of I mK or less. Gne
way to avoid this problem is to convert l to a continuous
variable and use Eq. (A7) in Appendix A to integrate the
integrable singularity. The other way, which we use here,
is to keep the discrete sum, but not to allow v /v(E, R, I)
to be larger than some maximum value near a singularity.
Our choice of maximum value of 4 for this ratio leads to
insignificant errors in the integral I(E ).

The second problem is more fundamental. It has to do
with the choice of initial kinetic energy E'(R) for motion
on the upper potential. This choice is critical for calcu-
lating the survival probability, Eq. (25). In the usual
scattering picture with a conservative Hamiltonian and
no spontaneous emission the molecular transition is from
an initial state with asymptotic kinetic energy E to a final
state with asymptotic kinetic energy E', and the transi-
tion amplitude is proportional to the Born distorted wave
matrix element (~p (E')~eo.d~++(E)). Since the
broadening due to the finite lifetime of the excited state is
neglected, energy conservation for the overall collision
requires that E'=E —6. This is the normal scattering
picture for a collision in a weak radiation field [93,94]. In
this picture the classical Franck-Condon principle, re-
quiring no change in local kinetic energy at the distance
R where the transition "occurs, " is satisfied only at the
Condon point Rc, where the difference between upper
and lower potentials matches the detuning 6 of the exci-
tation laser. But the excitation function e(R,p) in Eq.
(23), which accounts for the finite lifetime broadening of
the excited state, allows local o+resonant excitation for
which the semiclassical trajectory must violate either the
above conventional energy conservation requirement or
the local classical Franck-Condon principle. The dilem-
ma posed by the semiclassical framework adopted by GP
and us simply rejects the necessity, discussed in Sec. II 8
of the formulation of a proper collision theory which in-
cludes the broadening due to radiative decay. The prob-
lem only occurs in ultracold collisions because E, 6, and
h y ~ are all of comparable size. Therefore, we have tried
calculations using two possible choices of initial kinetic
energy E'(R) for excitation at R: the first satisfies the
overall energy-conservation requirement of scattering
theory but violates the classical Franck-Condon princi-
ple, except at R:

whereas the second satisfies "local" energy conservation
and the classical Franck-Condon principle at R:

fi l(l+ I )

2LMR
(56)

The only alkali-metal species for which the trap-loss
rate coeKcient has been unambiguously measured is Cs
[22]. The measurements were carefully carried out under
low-density conditions that excluded density nonunifor-
mities associated with collective efFects [95]. The trap
temperature was in the range 250—400 pK. Once the
laser power was high enough to exclude loss processes
that were presumably due to collisional changes in
ground-state hyperfine level, the experimental loss rate
was found to be linear in laser power, in agreement with
the weak-field excitation assumption of our theory and
that of GP. A rate coe%cient calculated for the GP
theory was reported which was about a factor of 4 small-
er than the measured value. We will examine the Cs case
in some detail to illustrate the basic feature of the tern-
perature dependence of the rate coeKcient.

Figure 6 illustrates the excitation and survival corn-
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FICi. 6. Absorption and survival factors in the integrand of
the I(E,P) function for the 0„+ entrance channel for Csz for a

detuning of one linewidth. The solid and dashed lines for the
average survival factor correspond to respective choices of Eqs.
(56) and (55) for the initial kinetic energy to calculate the sur-

vival factor.

In either case, E (R) serves as the initial kinetic energy
for calculating the time integral in the survival factor
S(R,E, I,p). The two choices are equivalent only when
R =Rc, where 5=C(P)/R . The second choice seems
more consistent with the spirit of the semiclassical
theory, but it is not obvious which makes the better a
priori choice. The calculations below for the various
alkali-metal species will examine the consequences of
both choices.

B. Trap-loss and FS rate coefBcients for Cs
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ponents of the integrand in the excitation/survival factor
I(E,O„+) of Eq. (30). The absorption factor e(R, O„+)

peaks at unity at the Condon point R& near 2800ao. The
two curves for the average survival factor S(R,E,O„+)

reflect the two choices in Eqs. (55) and (56). These curves
agree at Rc, but the larger initial kinetic energy for the
first choice results in better survival when R (Rc. The
two again agree at small R, since the survival probability
is high and is more determined by the strong acceleration
by the attractive potential than by the initial velocity.
The small "oscillations" in S at small R are due to the
fact that we evaluate the sum over l using discrete I
values rather than the continuous classical representation
of Eq. (A7).

Figure 7 illustrates the dependence of the individual
survival factors on I for short-, intermediate-, and long-
range values of R. A rapid decrease of S(l) with increas-
ing I is evident at the larger R values. This is because the
kinetic energy along the trajectory decreases with in-
creasing l, causing an increase in propagation time to
small R. Since the survival factor Sop in the GP expres-
sion, Eq. (37), is independent of l and calculated for I =0,
S~p always overestimates the average survival factor,
given the same potential parameters. Figure 6 also shows
that S(R,E,O„+) reaches a maximum of only 0.1 near
800ao and then actually decreases to smaller R. Since the
average survival factor is defined as the average over the
70 partial waves I that contribute to Ez for a 1-mK
excited-state collision, this decrease occurs because at
small R the ground-state centrifugal potential excludes
the higher partial waves, thereby reducing the average.

For example, at R =400ao, only 11 partial waves contrib-
ute to the numerator in Eq. (32), causing a decrease in the
average S despite the fact that the individual
S(R,E, l, O„+) factors are near unity for the partial waves
that contribute (see Fig. 7).

Figure 8 illustrates the temperature dependence of the
excitation and survival integral I(E,O„+ ) for three
different detunings 5, using the choice in Eq. (56) to cal-
culate the survival factors. Since evaluation at high T re-
quires integration to large distances where
u =R/R ))1, the exact retarded expression was used
for the radiative decay rate rather than the short-range
expansion in Table I:

(R 0+ ) 1
sin@

5
cosB +5

sinu

2u 2u
(57)

For detunings larger than about bye Fig. 8 shows that
I(E) actually is larger than unity over a range of E. This
is because the molecule can be excited on resonance near
Rz during the collision, whereas the atom is excited off
resonance. At sufficiently high temperature, the phase
space near R& makes only a small contribution to I and I
approaches unity as required. At sufficiently low T, sur-
vival losses cause a decrease in I and a consequent de-
crease in the effective rate coefficient by several orders of
magnitude.

In order to compare the predictions of our theory with
that of the simpler GP formulas, Eqs. (36)—(38), it is
necessary to compare entities that are equivalent except
for the approximations employed. It is best to eliminate
the part that depends on assumptions about FS probabili-
ties and compare only the part which counts the contrib-
uting phase space weighted by excitation and survival.
This is done in Fig. 9, which compares the directly com-
parable quantities I(.'z(E, O„+)I(E,O„+) and Izp(E, O„+)/
2~&. The K* rate coefficient is found from either of these

- R=SOO "
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0.000i
0 10 30 30
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0.0001 0.001 0.01 03. 10 100 1000
FICr. 7. Individual survival factors S(R,E, I,P) for E/k~ = I

mK vs I for the 0„+ entrance channel in Cs2, calculated for three
diFerent distances R and a detuning of one linewidth. The
dashed line shows the I-independent survival factor of the GP
expression, calculated with the same potential and lifetime.

FIG. 8. Collision energy dependence of the excitation and
survival correction factor I(E,P) for the 0+ state of Csz, shown
for three diFerent values of the detuning 5/h.
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FIG. 9. Comparison of the predictions of our rate expression,
Eq. (28), vs the Gp expression, Eq. (36), for the 0„+ entrance
channel in Cs2 and a detuning of one linewidth. These should
be multiplied by a common degeneracy-averaged FS probability
to convert to an actual rate coefficient.

FIG. 10. Collision energy dependence of the effective
excited-state cell-averaged FS rate coefficient for Cs collisions.
The low-temperature curves labeled 6 and I. correspond respec-
tively to initial energy choices of "global" energy conservation,
Eq. (55), and "local" energy conservation, Eq. (56). Experimen-
tal points are shown for 300 K and 300 pK. The calculated rate
including RE loss is also shown at low temperature. The upper
dashed line labeled C represents the Langevin capture rate
coefficient calculated from Eq. (17) in Eq. (14).

by multiplying by the channel averaged FS probability.
The two solid lines show the results when both expres-
sions use the local Franck-Condon choice of initial kinet-
ic energy and the same C(P) and A& parameters. The
GP formula is larger than ours below 1 mK because their
survival factor is too large for the reasons given in con-
junction with Figs. 6 and 7. As T increases, the GP ex-
pression rapidly becomes too large because it overcounts
phase space by neglecting to cut o6' the I sum at the excit-
ed state I,„. Of course, the GP expression was never in-
tended for use at temperatures above ultracold.

Figure 10 illustrates the temperature dependence of the
cell-averaged K* rate coefficient for the FS transition in
Cs for a detuning of one linewidth. The solid curve la-
beled I. was calculated using the choice of E which
satisfies the local Franck-Condon principle, Eq. (56). The
dashed line labeled G was calculated using the choice of
overall energy conservation, Eq. (55). The two agree
above about 10 mK, but difFer at lower T for the reasons
given in the discussion of Fig. 6. The upper dashed curve
labeled C shows the Langevin capture rate coeKcient for
FS collisions, ICc(E,O„)P(0„+)/16. The room-
temperature rate coefficient agrees with the measured
value, as discussed in Sec. III C. The prominent feature
of Fig. 10 is the rapid decrease of E* below about 100
mK as excited-state survival probability becomes poorer
with decreasing collision energy. The calculated trap-loss
rate coefFicient can be compared to the measured value
using Eq. (27) to relate IC* and E. The loss rate K&„, is'
2K, where both FS and RE contributions are included in
Ks. At a laser power of 10 mW/cm, IC„„=l. 1IC* for
Cs. Figure 10 compares the measured [22] and calculated
rate coefficients for the Cs trap near 300 pK. A value of
ARE/2k& =1 K was chosen for the RE energy. The RE
rate scales as ARE and at 300 pK is calculated to con-

tribute 33% of the total loss rate. The RE rate is so large
because survival for the 1„entrance channel is good, due
to the relatively long lifetime of this channel (see Fig. 3).
The good agreement between experiment and theory evi-
dent in Fig. 10 may be partly fortuitous given the approx-
imations in the theory concerning long-range excitation
and the neglect of hyperfine structure. Between 100 pK
and 1 mK there is an uncertainty between a factor of 2
and 4 in the rate coefficient due to the ambiguity in the
choice of excited-state kinetic energy in calculating the
average survival factor. We favor here the choice based
on satisfying the local Franck-Condon principle because
it leads to agreement with the measured rate. However,
we caution that this is a subject that needs to be explored
more thoroughly by a more rigorous theory. We are un-
able to reproduce the rate coefficient quoted in Ref. [22]
for the GP theory, which is about a factor of 4 smaller
than the experiment. However, the potential and proba-
bility parameters used were not given in that reference.
Figure 9 shows that the GP expressions should give a
rate about twice ours if the same molecular parameters
are used in both calculations.

C. Trap loss for other alkali-metal species

Figure 11 shows our calculated loss rates between 0.1

and 2 mK for a detuning of y„, a laser power of 10
mW/cm, and an initial energy choice based on satisfying
the local Franck-Condon principle, Eq. (56). Table IV
shows the percentage contribution from each mechanism
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FIG. 11.. Calculated trap-loss rate coefficients versus collision
energy at a laser power of 10 mW/cm, a detuning of one
inewidth, and ERE/2k& =1 K. Both FS and RE contributions

are included for all five alkali pairs. The rate for Li has been
multiplied by 10.

FIG. 12. A
the I(E

. 12. Absorption and survival factors in th
' t d fe in egran oe,P) function for the 2„entrance channel for Na2 for a

detuning of one linewidth. The choice of Eq. (55) for the initial
inetic energy was used to calculate the survival factor.

at TD for this choice of E'(R}, as well as the total loss
rates for either choice of E'(R), Eqs. (55) or (56). The ex-
perimental data for Cs are also indicated in Fig. 11. It is
evident that there is a wide variation in magnitude and
mechanism among the alkali-metal species. We will ex-
amine the various cases.

The largest trap-loss rates are calculated for K, Na,
and Rb. Thhe reason the coefficient for K is several times
larger than that for Na, other factors being equal, is that
the k Pr~ factor in Eq. (27) is 3.7 times larger for K than
Na at the same power. Table IV shows that the dom-
inant mechanism for the FS process in Na and K (and
even for Rb) is Coriolis coupling through the 2 ch 1

Th dis ominance of the 2„channel at low temperature is
because of the excellent survival relative to radiative de-
cay. This is where retardation has a very important role
to play (see Fig. 3): the 2„state can be excited at long
range but leads to very slow radiative decay as the atoms
move closer together. Figure 12 shows the contributions

I(E 2
to t e integrand for the excitation and survi 1 f tviva ac or

„) for Na at 1 mK. This may be contrasted with

Fig. 6 for Cs. Figure 12 shows e(R, 2„)peaks sharply at
the Condon point due to the small radiative decay width.
The average survival factor near Rc is near unity. The
dropofF and "oscillations" in S to small R are due to the
same reasons discussed for Cs. Since I(E,2„}=0.75 at 1

mK for Na, there are no significant losses due to excited-

1EO+
state radiative decay, whereas the 0+ ch 1c anne wit
I(E,O„)=0.033 shows major losses. Although the 2
and 0+ chchannels make comparable contributions to FS

Q

collisions for Na and K at room temperature, the 2„
channel is predicted to be completely dominant at ul-
tracold temperature. The FS probability for this channel
decreases strongly at low T because it varies as I
Even in Rb where the 2„FSprobability is small, the 2„
channel makes a major contribution at ultracold T. The
RE process is not very significant for Na K Rb.

The s
a, , or

e species Li is calculated to have a much 11

rap- oss rate than any of the other alkali-metal species.
This is because the FS process will not contribute if we
assume a trap depth on the order of 1 K because of the
small fine-structure interval in Li. The RE probability is

Species
E~„, (10 " cm /s)

6' LbFS (2„)RE

TABLE IV. K&„, at To with 5=by„, hvar= 10mW/cm, and h„E/2k+ =1 K.

% Contribution
TD (PK) FS (0„+)

Li
Na
K
Rb
Cs

140
240
140
150
130

100
5
5

12
35

1

1

30
64

94
94
58

1

0.004
2.1

6.0
3.0
1.8

0.004
3.5
8.9
1.7
0.5

'Uses global energy conservation, Eq. (55).
"Uses local energy conservation, Eq. (56).
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also intrinsically smaller for Li, since the molecular tran-
sitions are forbidden for Hund's case-(a) molecular cou-
pling scheme that applies in the region of the trajectory
that contributes to RE loss in Li. The slight breakdown
in Hund's case-(a) coupling leads to small RE decay rates
that scale as b.ERE ~ for traps near 1 K (see Sec. III D).
The Li rates reported in Fig. 11 and Table IV were calcu-
lated using the potentials and decay rates for the 0„+ and
1 states found from numerically diagonalizing the Harn-
iltonian matrices [48—50].

There is very little data to compare with on the other
alkali-metal species. Prentiss et al. [18] reported a rate
coe%cient, with an estimated accuracy of only a factor of
5, for a trap-loss process in a Na magneto-optical trap
with T near TD. However, the rate coeKcient varied only
slightly with laser intensity over a range of 5 —50
mW/cm, and this experiment has been criticized by
Sesko et al. [22] The magnitude of the reported loss rate,
4X 10 " cm /s, is in good agreement with our calculated
result in Fig. 11 at 10 mW/cm . However, this agree-
ment should not be taken seriously until the experiment
is better understood. One complication that could affect
comparison of theory and experiment is the density varia-
tions and channeling [96,97] that occur on the scale of
the wavelength of light. Recall the warning given in Sec.
II that the collision is a continuation of the process of
laser cooling in which two atoms slowly come together
and are no longer cooled independently but are optically
pumped as a quasimolecule. Proper comparison of
theory and experiment requires averaging over all local
conditions in a trap. We have assumed a uniform density
distribution and a statistical distribution of states. If
these assumptions are violated, the physical mechanisms
and FS and RE probabilities we have provided could still
be used to make an improved estimate of trap-loss rates.

The GP paper reported an effective K* coeKcient for
Na. We estimate from their Fig. 1 that E' is 2X10
cm /s for 5/h =y „,whereas our X„„in Table IV corre-
sponds to a K* of 1.7X10 ' cm /s. The GP theory
misses two critically important effects for trap loss in Na.
Their effective state decays far too rapidly, causing their
survival factor to be too small. This error is partially
compensated by assuming a room-temperature probabili-
ty for FS, which is far too large at low T (see Sec. III E
and Table III). Using the correct low-temperature aver-
age FS probability would cause their rate coefticient to be
about an order of magnitude smaller than reported. This
demonstrates the necessity of using the correct molecular
parameters and mechanisms in order to make valid pre-
dictions concerning low-temperature trap-loss rates.

D. Role of bound states for large red detunings

We have deliberately kept our analysis of the RE and
FS processes as excited-state collisional processes which
connect with normal thermal processes as T is raised.
This is appropriate as long as the detuning is comparable
to y~. But if the detuning of the excitation laser is pro-
gressively detuned to the red, the collision switches over
to behavior characteristic of ground-state collisions
modified by the presence of excited-state rovibronic

for vibrational levels and

28, pl/h ) rp (59)

for rotational levels, where AG„and 8, are the usual vi-
brational spacing and rotational constant in spectroscop-
ic notation. Here r& is the lifetime of state P due to all
decay processes, radiative and predissociation. For ex-
ample, the O„state will be broadened by predissociation
decay into the 0„+ or 1„states which connect with the
P, &2 asymptotic atom. The predissociation decay rate

can be written as

rp '=(b 6, p/h )p(E„l,p), (60)

where P is the probability of the FS process during a sin-
gle vibrational cycle of state P [99]. Using generalized
multichannel quantum-defect theory [23,99], the proba-
bilities P in Table III may be extrapolated across thresh-
old to apply to the bound states below threshold. The re-
sulting predissociation rates are typically much larger
than the radiative decay rate. This fact suggests an ex-
perimental test of the FS changing mechanism and prob-
ability. If the rovibronic levels are well separated, and
the P&&2 product is detected as a function of excitation
wavelength tuned near resonance with a bound level,
then the resulting excitation spectrum maps out the line
shape and width of the level. This gives a direct spectro-
scopic measure of the FS contribution to the probability.
Such an experiment may be feasible using either laser
spectroscopy or photoassociation spectroscopy of cold
trapped atoms [98].

It is simple to work out the detuning ranges in which
rotationally and vibrationally resolved spectra could be
observed. Using the well-known expression for the vibra-
tional spacing for the levels in a I/R potential [100,101],
vibrational resolution according to (58) is achieved when

5 ) [2vrpi(-,') /9I ( —') ] C(P) /r (61)

This is only on the order of a few hundred MHz if the
broadening is due to radiative processes. Using (60) in
(58) shows that resolution is always achieved relative to

bound-state structure. This resonance scattering
viewpoint was adopted by Thorsheim, Weiner, and Juli-
enne [98] in describing photoassociation spectroscopy,
which should be possible for cold collisions. The "ca-
talysis laser" regime described by Sesko et al. [22] occurs
in the transition range between the two limits of small
and large detuning. If the density of excited bound rovib-
ronic states is large enough, as it will be near the dissocia-
tion limit of an attractive I /8 potential, then the quant-
ization of the excited-state levels can be ignored and the
spectrum approximated as a continuum. This is the qua-
sistatic continuum picture used by Gallagher and
Pritchard for red detuning. The criterion for using such
a picture is that the level spacing be smaller than the level
width. This picture fails when the levels are resolved,
that is, when the vibrational or rotational frequency is
larger than the decay rate, or

(58)
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predissociation if I' ((1. Achieving rotational resolution
requires larger detunings. However, in photoassociation
spectroscopy, the ground-state centrifugal potential lim-
its the number of upper rotational levels that can be ex-
cited. Only partial waves with l ( l& contribute if

3/2
2pE

A' ls ( l s + 1)
C(P) .

Setting I& = 1 sets the criterion for only s waves contribut-
ing to the spectrum. In this limit, the spectrum will be
rotationally and vibrationally resolved. This criterion is
only 0.6 GHz for the 1„state of Na2 but increases to 47
6Hz (1.6 cm ') for the 0„+ state of Cs2.

V. CONCLUSION

We have presented a theory that, describes the temper-
ature dependence of the rate coeKcients for collision of
ground and excited states of like alkali-metal atoms. We
have identified the physica1 mechanisms of fine-
structure-changing collisions at both normal and ul-
tracold temperatures. Quantum scattering calculations
verify the basic qualitative picture of these collisions
worked out by Dashevskaya [71]. Except for Cs, the
room-temperature rates tend to be about a factor of 2
smaller than experimental values. We were able to obtain
agreement with measured rates for Cs at 300 K and 300
IMK by using a matrix element estimated from low resolu-
tion spectroscopy. An accurate determination of this ma-
trix element is needed for both Cs and Rb. We hope our
work stimulates interest in new and improved measure-
ments of alkali-metal FS collisions as a function of tern-
perature. It would be especially interesting if the region
from 10 mK to 1 K could be explored where switching
occurs between "normal" collisions and ultracold col-
lisions. If feasible, beam experiments with optical control
of collision energy would be highly desirable, especially if
they could be used to study atomic alignment effects on
the FS rate coefficient.

Low-temperature excited-state collisions are unique in
that the excited state is only produced when the two
atoms are close enough together that they absorb as a
quasimolecule. For near-resonant light the excitation dis-
tance is so large that retardation corrections to the quasi-
molecular radiative transition rates have dramatic conse-
quences for the collision dynamics, at least for the species
Na, K, and Rb. In order to develop a manageable
theory, both we and GP had to make many simplifying
assumptions about the long-range excitation process. It
is important to develop a proper quantum-mechanical
treatment of the cold collision in a radiation field, includ-
ing excited-state decay, in order to examine the role of
the following factors: (1) hyperfine structure and its role
in quasimolecular optical pumping, (2) light shift and sat-
uration effects on the excitation process, and (3) nonadia-
batic channel mixing associated with the transformation
from the laboratory to rotating molecule angular momen-
tum quantization frames as the atoms come together.

In view of the many approximations in our theory, it is
remarkable that such good agreement was found with the
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APPENDIX A: PAIR DISTRIBUTION FUNCTION

The derivation of the pair distribution function, Eq.
(21), follows well-established methods [103—106]. We
provide a brief outline, since we did not find an explicit
derivation readily available in the literature. The classi-
cal partition function of two distinguishable particles due
to their relative motion is

Q=h f f f f f f e dR dOdgdpzdpedp&,

where

H=p~+(pe+p~lsin 8)/(2pR )+ V(R) . (A2)

By making the transformation of variables

q=(pe+p&lsin 8)l(2p), (A3b)

measured rate of the Cs trap-loss experiment. We believe
that it is important to carry out experiments on other
alkali-. metal species to help clarify our understanding of
the trap-loss process. One interesting aspect of this is to
look for isotope effects. A good example might be Rb
and Rb. These isotopes have different hyperfine struc-
tures and may show different trap-loss rates if the
hyperfine structure plays a significant role. Our simple
theory neglects hyperfine structure and predicts the same
loss rate for both isotopes. Measured deviations from
this prediction could provide guidance for developing an
improved theory. We also hope that it wi11 be possible to
do experiments on bound-state spectroscopy near the

P3/2 + S]/2 dissociation limit. This could be done in

high resolution with an ultracold photoassociation exper-
iment and could yield much information about the FS
probabilities. A recent laser spectroscopy experiment
[102] on the Hz molecule very close to the n =2 dissocia-
tion limit revealed unexpected perturbations in the
molecular levels, probably associated with hyperfine
structure, and showed that the spectroscopy of long-
range molecular states is a feasible and challenging op-
portunity. In fact, the possibility of carrying out H2
spectroscopy near n =2 using photoassociation spectros-
copy of cold trapped spin-polarized H atoms is a subject
which we intend to explore.
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y =tan '(p ()sinO/p~),

the Jacobian gives

dPR dP gdgy

{A3c) —oo &p~ & + oo, E ~ V(R)

—oo &p() & + oo, 0 & q & R [E—V(R ) ]
—oo &p ]& + oo, —m. & (()

& m .

(A5)

3/2=2~ sine[E q/—R' —V(R)] '/'dE dq dy,v'2

where the ranges are

(A4)

Stogryn and Hirshfelder [106] pointed out that the ex-
istence of + and —momenta pR, that is, approaching
and separating atoms, required the introduction of the
factor of 2 in the phase volume, Eq. (A4). After integrat-
ing over 8, P, and y to get Sn. , the classical partition
function becomes

(/2
2 R [E—V(R)]

E/k~ T

Q = dR dE(2lJ, /A ) dq
h o v(z) o [E—

q /R —V(R ) ]
'/ (A6)

If the integration over q and E is carried out, using

fR [E—V(R)] 1

0 [E—q/R —V(R)]'

=2R '[E—V(R)]'", (A7)

pairs in volume Vis

N=N~N~QIQ(),

and the number of pairs per unit volume is

(A9)

n =N/V= (N„ /V)(Ns /V)g Ig„=n~ nt) g /Q„.
we get the usual result for the partition function:

Q=Q„f dR 4' e (AS)
Using the classical-quantum correspondence,

{A10)

where Q„=(2~@k~TIQ ) / is the translational partition
function per unit volume. For an ideal gas V(R) =0, and

Q =go =Q„,V, where V is the volume. These results are
standard, and show that we have the correct integration
after making the transformation of variables. The in-
tegration is over both approaching and separating atoms.

If X& and X~ are the respective numbers of nonidenti-
cal species 2 and 8 in volume V, the total number of

q~fi l(l+1)/2p,
dq~(A' /2)M)(21+ I),

(2)u/A )f dq+-+ g (2l+1) .
0 1=0

(A 1 la)

(Al lb)

(Al lc)

Equations (A6) and (A10) show that the density of pairs
in dR and dE with dl =2p dq /A = 1 is

)1/2
dn(R, E, l)=n~n~g, , '

B
dR dE(2p, lk )dq

[E q /R' V(R) ]'—"— (A12a)

2 (2l + 1)
hg„u(R, E, l )

(A12b)

The pair distribution in Eq. (21) follows from (A12b)
upon noting two facts. First, half of the pairs are ap-
proaching and half are separating. The number of ap-
proaching pairs that can react is therefore half of (A12b).
Second, if the species A and S are identical, n z =nz =n,

an additional symmetry factor of —,
' must be introduced in

order not to count phase space twice for the identical
particles, i.e., replace n ~ nz by n /2 By wri. ting
2dR /U(R, E, l ) =dt, where dt is the classical time spent
in dR, the physical meaning of the l-dependent velocity
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in the denominator of (A12b) may be more apparent.
Equation (A12b) is the equilibrium constant for occupy-
ing one quantum of phase space, if dt dE is set equal to h.

I g(5)d5=1 .

For natural broadening

(83)

APPENDIX B: MOLECULAR
ABSORPTION COEFFICIENT

Taking the standard formulas for atomic absorption
from Mitchell and Zemansky [107], the integrated photo-
absorption is

Icr(v)dv=
g' 1

8m. g" ~'

go(0)=
2 IT g

(8&)

is independent of r' and y', and o (v) can also be written
in terms of its peak value

g(5)/h = hy'
(84)2' 5 +(hy'/2)

where y'=(2m'') ' is the natural linewidth. It follows
from (82) and (84) that the peak cross section

where v is in hertz and the absorption is from a lower
state with degeneracy g" to an upper state with degenera-
cy g'. The upper level decays to the lower with lifetime
r'. Equation (Bl) shows cr(v) may be written as

cr(v) = „[1+(25/hy') ]
g

277 g
=cr(0)e(5, y') . (86)

cr(v) = „—,g(5),
g' 1

8m. g" ~'

where g(5) is the normalized line-shape function for de-
tuning 5 in hertz:

Equation (86) immediately shows that the absorption
cross section for a quasimolecule with g"=g

&
degenerate

ground-state components absorbing to a single upper-
state component P(g'= I), which decays back to the gf
ground-state components at rate r& ', is given by Eq. (22).
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