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Relativistic calculations for hydrogenic atoms in strong
magnetic fields vvith Slater-type basis functions
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A relativistic finite-basis-set method is used to calculate the ground-state energy of hydrogenic
atoms in strong magnetic fields with B up to 10 G, for several values of the nuclear charge Z. A
modified Slater-type basis set with different values of the total angular momentum is used. Both
accurate relativistic and nonrelativistic binding energies of hydrogen can be obtained with this basis
set, with more than seven significant digits accuracy for magnetic fields in the range 0 & B & 10 G.
The relativistic corrections are found to diR'er substantially from previous calculations based on
adiabatic approximations. In the case Z = 1, B = 4.7 x 10 G, for example, our calculation yields a
relativistic correction that is a factor of 7 larger, and of the opposite sign, than the previous result.
For very strong B and small Z, a basis set that mixes Slater- and Landau-type functions is required
to avoid a large expansion in angular momenta.

PAQS number(s): 32.60.+i, 31.30.3v, 31.10.+z

I. INTRODUCTION

Hydrogenic atoms in strong magnetic fields have been
the subject of intensive study because of the existence
of strong magnetic fields on neutron stars [1] (B
10 i —10i G), and on white dwarfs [2] (B 10 —10
G). The strong-field effects also exist for excitons (they
behave like hydrogenic atoms) in condensed matter at
laboratory fields [3, 4]. There is a mixture of spher-
ical and cylindrical symmetry in the problem, so that
the Dirac or Schrodinger equations are not separable in

any coordinate system. The problem has been attacked
by many authors [5—11]. Very accurate nonrelativistic
numerical results have been obtained recently [6, 8—11].
These include Hartree-Fock calculations [6], variational
calculations [8], finite-element analysis [10], and rigorous
bounds by the moment method [9] and by Kato's method
[ll]. (For example, the precision in the calculation of the
ground-state energy of hydrogen with a magnetic field
B = 4.7 x 109 G is about 10 9 a.u. [11].) The relativistic
corrections are, however, of the order of (nZ)2 10
a.u. for a nuclear charge Z = 1, where n 1/137.036
is the fine-structure constant. It is therefore necessary
to include relativistic corrections in such highly accurate
calculations. To our knowledge, there have not been rel-
ativistic calculations performed to this level of accuracy
yet.

There are two purposes for this paper, one is to get ac-
curate relativistic binding energies for hydrogenic atoms
in strong magnetic fields, and the other is to explore
the relativistic variational method for one electron in the
presence of a highly nonspherically symmetric potential.

Several theorems and techniques have been developed
in recent years to overcome the di%culties associated
with relativistic variational methods [12]. These difFicul-

ties include the problems of variational collapse, spurious
roots, and, in the many-electron case, of continuum dis-
solution. It has been shown [13, 14] that the problems

of variational collapse and spurious roots can be avoided
by an appropriate choice of basis sets (i.e. , by constrain-
ing the basis functions using boundary conditions), and
a rigorous proof of bounds can even be obtained for the
Coulomb case [13]. As a result, finite-basis-set techniques
have been very successful for calculations involving the
one-electron Dirac-Coulomb Hamiltonian (e.g. , relativis-
tic two-photon decay rates [15]) or the many-electron
Dirac-Hartree-Fock Harniltonian (based on screened cen-
tral potential approximations) [13].

These techniques have not been applied yet to the
case of a nonspherically symmetric potential. It is there-
fore interesting to analyze the behavior of these meth-
ods in this case as well as to apply them to a test case,
namely the problem of hydrogenic atoms in strong mag-
netic fields. The potential in this problem is highly non-
spherically symmetric and the Dirac equation has difkr-
ent boundary conditions from those in the case of the
Coulomb or the Dirac-Hartree-Fock potentials.

Notice that in the nonrelativistic case, a simple scaling
relation for the energy

E(Z, B) = Z F(1,B/Z2)

follows from the Schrodinger equation [16]. Thus it will
suKce to consider only the case Z = 1 for the nonrela-
tivistic results. In the case of the Dirac equation, how-
ever, there is no such scaling relation and it is then neces-
sary to perform separate calculations for different values
of Z.

In this paper we calculate the relativistic ground-state
binding energies of hydrogenic atoms in magnetic fields
with 0 & B & 10 G for several values of the nuclear
charge Z. Our method provides both accurate nonrela-
tivistic and relativistic results, with more than seven sig-
nificant digits accuracy for magnetic fields in the range
0 ( B & 10 G for Z = 1, and higher accuracy for larger
Z. In the nonrelativistic limit (taking n ~ 0), our results
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agree (to the quoted precision) with the mast accurate
nonrelativistic calculations available. Our method gives,
however, accurate relativistic corrections that diff'er sub-
stantially from previous estimates based on adiabatic ap-

e accurate to the precision quoted by means of the virial
t eorem and the relativistic low B limit where compari-
son can be made with perturbation results.

-Ar p„+n —1

N„
(8a)

where yK& is a two-component spherical spinor dr an n:
, ..., ¹ Three types of radial functions in the basis

set are chosen.

II. FINITE-BASIS-SET METHOD (8b)

The Dirac equation for an electron in the field of a
fixed-point nucleus with charge Ze and in a constant
magnetic field B is

2-Ar-Pre p ) (8c)

with the Hamiltonian H given by

H = IIo+en A, (2)

A= 2B x I, (4)

where B = Bz. In the following discussion atomic units
m = h = e = 1 will be used, and by convention, the mag-
netic field will be given in units of (e/h) m c 2.35 x 10
G. The Hamiltonian conunutes with the z component of
t e total angular momentum, so that the corresponding
quantum number p is conserved.

Since the total angular momentum j is no longer a
conserved quantum number, coupling between sets with
difI'erent total angular momenta is required for a repre-
sentation of the energy eigenstates. The variational so-
lutions to the Hamiltonian in Eq. (2) are then obtained
with trial functions of the form

2N K
yP ) ) vy&P

K

where z is the Dirac quantum number defined as K =
+ j+ —'& for I = 2, Am~x is the largest absolute
value of K in the expansion, and a& are linear variationalK

coefficients. The orthonormal basis vectors

where

Hp ——coax p + Pmc
Ze

p

is the Hamiltonian for the pure Coulomb field, and n and

P are the standard Dirac matrices. The vector potential
A can take the form

where y„= [K' —(nz)']'~' p = [n' —(nz)']'~' far the
ground state, N„ is a normalization constant, and A and

P are nonlinear variational parameters. The choice of
~ ~

type-(ii) and -(iii) basis functions are based on consid-
eration of symmetry in the basis set, and in these cases

a ype- ii asisAI » is taken to be N. It turns out th t t
unctions are more efIicient than type- d t

e isadvantage of type-(iii) basis functions is that the
optimization with two nonlinear parameters takes much
more computer time. [In the following discussion, we will
cansider, for simplicity, only the case with type-(ii) basis
functions given by Eq. (8b) with I~ „=N.] The radial
unctions are similar to those for a pure C l b
ia; t e efI'ect of the magnetic field is accounted for by
he couplings between diA'erent values of z.

The matrix elements for Hp in the basis set of Eq. (7)
can be evaluated analytically [12] and they are diaganal
with respect to z. The matrix elements of n A can be
written as

( 4„""~n A~C~+"„, )= r„"„"A„„, —
where

rP„"(i.)P"„,(r)dr

is a radial matrix element and

-1.02221 0

-1.02221 4—

2N

) I~ @rP

J=1
(6)

-1.02221 8

bQ
-1.022222

are obtained by the diagonalization of the l
CKP ~ KP,

e over ap matrix
~C J & between basis vectors of the form

„~ iy„„/r&n:Fn I 0 I)

-1.022226—

-1.02223 0
1

N=9
——N=1 0

c, IC/l

Xrp ji

(7) FIG. 1. The va
'

variational energy of the ground state of hy-
drogen for B = 4.7 x 10 p otted against nonlinear varia-
tional parameter A.
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FIG. 2. The variational energies & H & and ( U ) de-
fined in Eq. (14) plotted against the nonlinear variational pa-
rarneter A for the ground state of hydrogen with B = 4.7 x 10
G.

FIG. 3. The ground-state variational energy for Z = 1
and B = 4.7 x 10 G as a function of the size 2N of the basis
set.

~I —g (fQ ( g~p 0 X I z g ~lp

is an angular integral involving the two-component spher-
ical spinors g„„.Similar to the calculations of the general
Paschen-Hack effect from the Dirac equation [17,18], the
nonvanishing matrix elements can be calculated (after
some angular momentum algebra) to be

4rp
4K2 —1

and

(12)

with a = zjIrI. Since the operator n A transforms
under rotations like a first-rank tensor, it can connect
states with angular momentum j' and j satisfying the
triangle relation j' = j, j + 1. The matrix elements
of the Hamiltonian [Eq. (2)] in the orthonormal basis
vectors are then obtained by the transformation given

by Eq. (6).
Since we are looking for the stationary states, in a way

similar to the work [13] for the pure Coulomb and the
Dirac-Hartree-Fock potentials, we diagonalize the Hamil-
tonian in the orthonormal basis vectors to obtain the
variational energies and eigenvectors for certain values of
N, A.

If the basis set is complete when N —+ oo, then in the
vicinity of the true energy, the change of the variational
energy E(A) with the nonlinear parameter A should be
minimum and decrease as the size of the basis set in-
creases Thus a. smoother range of E(A) against A should
be achieved as the power N is increased. We will use
this property to determine the energy as given by the
most stable region of E(A) in the case where t, he basis
set cannot give an upper bound to the energy.

Since the variational energy may not converge to the
exact one if the basis set is not complete as N ~ oo, the
virial theorem is used to provide an additional check. It
follows from the Dirac Harniltonian that [18]

( B )=(P ) mc + 2e ( n . A ),

TABLE I. Relativistic (E) and nonrelativistic (EN@.) binding energies (divided by Z, in atomic units) of hydrogenic atoms
in a strong magnetic field B (in units of 2.35 x 10 G). For Z g 1, ENR is obtained by the scaling relation of Eq. (1). The
relativistic correction is given by De = (E —ENa)/ENa

1
1
1
1
1
5
5
5
20

0.1
1
2
3
10
25
50
250
800

0.899 777 12 —5.7 x 10

0.547 526 480 401 1
0.831 168897
1.022 213 91
1.164 533
1.747 8
0.831168897
1.022 213 91
1.747 8
1.022 213 91

ENR

0.831 14
1.022 214
1.164 39
1.747 22
0.831 14
1.022 214
1.747 22
1.022 214

0.547 532 4G8
0.831 173226
1.022 218 0
1.164 537
1.747 8
0.831 277 196
1.022 3170
1.747 9
1.023 879 5

1.08 x 10
52x6
4.0 x 10
3.4 x 10

1.303 x10 '
1.0G8 x 10
6 x 10
1.63 x 10

Reference [7].
The binding energies are obtained by the lower and upper bounds in Ref. [11].' Reference [8].
Present results.
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where & ) denotes the expectation value for a stationary
state. It is then necessary, but not suKcient, for a vari-
ational state to be a good approximation of the energy
eigenstate, that the difference

~
( H ) —( U ) ~, where

TABLE II. Comparison of the relativistic binding energy
E», of hydrogen, calculated in the present paper, with rel-

ativistic hydrogenic perturbation results E„i for low and in-
termediate magnetic field B (in units of 2.35 x 10 G).

& V &=& P & mc'+ 2e & ct A ),
should approach zero when N approaches infinity.

Other checks are made by taking the nonrelativistic
limit (n —+ 0) and comparing with other accurate non-
relativistic calculations, and by taking the relativistic low
B limit where comparison can be made with perturbation
results.

III. RESULTS AND DISCUSSIONS

0
10
10-'
10
10

P

0.500 006 656 6
0.500 006 706 6
0.500 011656 5
0.500 506 647 7
0,550 005 769 1
0.999 997 781 3
1.499 988 905 9
1.999 980 030 6

E»r
0.500 006 656 6
0.500 006 706 6
0.500 011 656 5
0.500 506 398
0.547 532 408
0.831 173 226
1.022 218 0
1.164 537

We have diagonalized the Hamiltonian in Eq. (2) to
obtain the linear coefIicients in Eq. (5) and energy eigen-
values for different values of N, and the nonlinear pa-
rameters A in the basis sets of Eq. (7). This procedure
leads to N (more generally %Km „) positive energies
and N negative energies for each value of the nonlin-
ear parameter in the basis set. The dependence of the
ground-state energy of hydrogen on A with basis func-
tions of the form Eq. (8b) is given in Fig. 1. The diagram
shows that the energy dependence on A gets smoother as
N increases. However, there is no upper bound on the
energy. We determine the optimal variational energy for
each N by searching for the minimum absolute value of
the first and second derivatives of E(A) with respect to A

[i.e., the most stable region of E(A)] as well as the mini-
mum absolute value of the difference between ( H & and
& V ) from the virial theorem in Eq. (13). The energy
determined in this way converges to the same value as N
increases, when any of the three types of radial functions
of Eq. (8) are used in the basis set. The dependence of( H & and & U & on A for the ground state of hydro-
gen is shown in Fig. 2. The difference between ( H )
and & U ) decreases as N increases and tends to zero
as N —+ oo. The convergence of the variational energy
with N for B = 4.7 x 10 G using an arbitrary fixed
A = 2 [close to the most stable region of E(A)] is shown
in Fig. 3. The convergence is achieved from both sides
of the true energy, so that no bound is preserved in the
calculations.

A comparison with previous results for hydrogenic
atoms is made in Table I. For B & 10 o G, our calcu-
lated relativistic ground-state energies of hydrogen are
deeper than the corresponding nonrelativistic energies,
while previous relativistic calculation based on the adi-
abatic approximation [7] gave a different sign and a dif-
ferent magnitude for the relativistic correction for B =
4.7 x l0 G. Our results in the nonrelativistic limit agree,

to the accuracy we achieved (eight significant digits for
B ( 5 x 109 G and Z = 1), with the most accurate nonrel-
ativistic calculations, and the accuracy is good enough to
obtain the relativistic corrections in this case. The adia-
batic results, on the other hand, agree only to two signifi-
cant digits in the nonrelativistic limit with the most accu-
rate nonrelativistic calculations. Our variational results
are also checked by comparing with the relativistic per-
turbation results (relativistic general Paschen-Back ef-

fect) of hydrogen for low and intermediate magnetic field
B. Table II shows that they agree very well for the range
of B where the perturbation method is valid.

Our calculations indicate the necessity to include rela-
tivistic corrections given the current numerical accuracy
of the nonrelativistic calculations. The previous rela-
tivistic calculations based on adiabatic approximations,
however, are not accurate enough for intermediate strong
magnetic fields and low Z atoms or for very strong mag-
netic fields and high Z atoms.

Besides the lack of bounds on the energy, the basis set
used ab ove is not very efficient for very str ong B and
small Z. For B ) 10 G and Z = 1, the calculations
with the present basis sets fail to converge to the required
accuracy to obtain the relativistic corrections. Since the
orbitals will be more similar to the Landau orbitals than
the Coulomb orbitals, it is necessary to include many
couplings of x in order to get good convergence. A bet-
ter basis set would be one that is exact in both limiting
cases B = 0 and B ~ oo. These generalizations will be
presented in a second paper.
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