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Line-shape analysis of transitions in a quantum system is a method widely applied to study relaxation
processes on a microscopic scale. In many practical cases, this relaxation arises from stochastic modula-
tion of the Hamiltonian due to interactions with a surrounding heat bath. Using a separable class of sto-
chastic operators, the line-shape problem for a Hamiltonian with a single transition has been solved in
closed form. This method is not appropriate for more complicated Hamiltonians with closely spaced
multiplets, as the modulation may lead to significant coupling between the individual transitions in the
multiplet. In this work, therefore, an investigation of the response function of a modulated multiplet is
undertaken. The dynamical equation is derived from the stochastic Liouville equation for the density
matrix. It is solved rigorously for two practical examples drawn from magnetic-resonance spectroscopy.
These exact results are used to investigate the accuracy of approximations found in the literature.

PACS number(s): 32.70.Jz, 33.25.Bn, 33.35.Ex
I. INTRODUCTION

The study of the linear response of dynamical systems
provides information on the system’s internal structure as
well as on its internal relaxation processes: The first
determines its resonant behavior, whereas the latter
determine the precise form of the resonant line shape.
Many experimental studies of relaxation processes there-
fore employ line-shape analysis. Of the abundance of ex-
amples we mention the propagation of electromagnetic
waves in random media [1], light scattering on particles
in liquids [2], magnetic-resonance-absorption spectrosco-
py [3], phase noise in lasers [4], Kerr-effect relaxation [5],
and electronics [6]. The resonant character of the
dynamical response of such systems often allows a formu-
lation in terms of harmonic oscillators, the frequencies of
which are continuously modulated by the relaxation pro-
cesses. For those cases where the relaxation is induced
by random frequency fluctuations of Markovian nature,
Kubo [7] formulated an equation of motion for the prob-
ability distribution function of the modulated process,
from which physical observables may be subsequently
computed. For a nonrelativistic quantum system it is
commonly called the stochastic Liouville equation (SLE).
This has found its widest application in the fields of
magnetic-resonance and optical spectroscopy. Except for
the limiting cases of very slow or very fast fluctuations
(rigid-limit and Redfield regimes, respectively) where
good approximations exist, the SLE is difficult to solve
and has been conventionally treated with eigenfunction
expansions [8-10]. However, these methods require a
considerable numerical effort and lack the theoretical
justification for such expansions (indeed, counterexam-
ples can easily be constructed). Moreover, numerical
problems are unavoidable for slow modulation, as the ei-
genvalues become dense. These problems motivated the
author to introduce relaxation operators of separable
form and to solve the SLE by algebraic rather than eigen-
function methods. Of crucial practical importance is the
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possibility of modeling even complicated relaxation pro-
cesses with separable stochastic operators of very low
rank.

In a previous paper [11] this method was applied to a
modulated two-level system. This simple structure ad-
mitted reduction of the SLE to the equation of motion of
a single harmonic oscillator undergoing frequency modu-
lation. Many spectroscopic applications, however, in-
volve the response of multiplets with several observable
transitions. These may be sufficiently close as to be
mixed by the modulation process. In that case the full
problem in solving several coupled oscillators needs to be
addressed. A physical realization of great practical im-
portance is found in magnetic-resonance transitions in
the presence of anisotropic hyperfine interactions (as they
arise in nitroxide spin-probe spectroscopy, for example).

These complications have been recognized a long time
ago and their implications studied within the framework
of eigenfunction expansions. We will readdress this prob-
lem here with the approach based on separable dynamics,
where the analytical and numerically rigorously stable
solutions admit a clear view of the effects due to state
mixing. Although we formulate the problem in terms of
the familiar hyperfine couplings, we stress the applicabili-
ty of the method to more general cases with stochastic
state mixing.

In Sec. II we will present the dynamical equation for
the linear response of a randomly tumbling paramagnetic
particle with anisotropic hyperfine coupling to nuclear-
spin degrees of freedom. The stochastic operator will be
chosen of the simplest rank-one separable form and the
system of coupled equations will be solved in close form
for two special cases. The first case of a spin-1, nuclear-
spin-J system will be presented in Sec. III. The case of
spin-1 and arbitrary nuclear spin will be treated in Sec.
IV. Section V is devoted to a detailed study of the singu-
larities of the response functions in the complex frequen-
cy plane. Special attention will be given to the effects
caused by state mixing. The exact solutions obtained ad-
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mit a study of the consequences of approximations found
in the literature. A final section provides conclusions and
suggestions for further application, followed by two ap-
pendixes providing some details on more technical alge-
braic manipulations.

II. REDUCED EQUATION OF MOTION

In a previous [11] paper we derived exact expressions
for the response of a modulated simple two-level system
without internal degrees of freedom. We assumed validi-
ty of the high-field approximation, which allowed
identification of the spin quantum number as a conserved
quantity of the Hamiltonian of the particle under con-
sideration. This property admitted a total factorization
of the coupled equations of motion into a complete set of
decoupled scalar equations. The latter were individually
solved with a suitable separable stochastic operator
describing the modulation process. For systems with a
more complicated structure, like coupling to internal de-
grees of freedom, such a decomposition will not neces-
sarily occur. A prime example is given by the hyperfine
coupling in magnetic resonance. Since Hamiltonians for
realistic cases are dominated by the electronic Zeeman in-
teraction with anisotropies of about a percent, the elec-
tronic spin quantum number is conserved to within a
very good approximation. As the nuclear Zeeman term
usually is much smaller, the nuclear-spin quantum num-
ber may not be conserved under the modulation process:
For practical cases the hyperfine coupling is strongly an-
isotropic and relaxation processes like molecular tum-
bling will induce non-negligible mixing of the nuclear-
spin states.

We therefore consider the linear response of a single
isolated paramagnetic multiplet to a microwave probe
field. In a nonrelativistic formulation its Hamiltonian is
written as the sum of an electron Zeeman and hyperfine
coupling term (we neglect the very small nuclear Zeeman
contribution)

H(Q)=Hyg(Q)-AS—#S-A(Q)-I, (1

where #S and #I are the electronic and nuclear-spin
operators, respectively, satisfying the usual canonical
commutation relations [S;,S;]=i€;;S) (idem for I). The
dominant Zeeman term is proportional to the external
static magnetic field H, Both the gyromagnetic and
hyperfine tensors g and A account for anisotropy in the
magnetic interactions as they have dependence on the
orientation Q of the particle with respect to the magnetic
field. Being symmetric, each tensor should assume a di-
agonal form in some frame of reference. We make the
usual assumption that a single molecular frame exists
where both tensors diagonalize at the same time. We
then specify the molecular orientation through the three
Euler angles Q=(a,,7) which rotate the laboratory
frame to the diagonalizing molecular frame. Let the di-
agonal forms of the coupling tensors be labeled with a
subscript d. Then, in the laboratory frame, the coupling
tensors acquire the usual rank-two dependence on  (in
the conventions of Ref. [12])

g(Q)=R (Q)g,R " (Q), (2a)
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A(Q)=R (Q)A,R "1(Q), (2b)

R(Q)=e "W oo™ (3)
For practical cases the anisotropy in the dominant Zee-
man term is less than a percent. This makes the projec-
tion of the electron spin along the magnetic field H, a
nearly conserved quantity. In the laboratory frame we
choose this direction as the z axis: Hy=H¢,. Neglect-
ing the nonsecular terms ~ .S, and S, (high-field approxi-
mation) as before, the Hamiltonian takes a form in which
the spin and nuclear-spin degrees of freedom are factor-
ized:

H(Q)=S,2#A[0(Q)—a(Q)-I]

=S, H(Q), 4)

where the second line defines the reduced Hamiltonian A
in the space of nuclear-spin states. It is again a Hermi-
tian operator. The orientation-dependent, reduced split-
tings are defined as

o(Q)=|H,l8,-9(Q), , 5

a(Q)=¢,-A(Q) . ©6)

It should be noted that the three-component object a(Q)
does not transform under rotations in the usual vectorial
sense but rather as a row of a rank-two Cartesian tensor
[cf. Eq. (2b)]. For example, a loses any Q dependence if
the hyperfine coupling is taken to be isotropic.

The time evolution of any physical observable may be
computed from the density matrix. In the presence of
stochastic modulation, the equation of motion for the
density matrix is commonly called the SLE [7,13]. In the
linear-response regime (nonsaturating microwave powers)
it is sufficient to consider the deviation p(£,?) of the den-
sity matrix from its equilibrium value. For compactness
we will refer to this deviation p as the density matrix as
well. For this quantity the SLE takes the following form
[11]:

p=*;—[p,H(Q)]—Fp+2KSx coswt ¥

On the right-hand side, the commutator accounts for the
free-Hamiltonian time propagation of the particle. The
final harmonic driving term accounts for the electron-
spin transitions induced by the transverse microwave
probe field of strength « and frequency w, Power ab-
sorption of this field is the usual experimental observable
in cw absorption spectroscopy. The stochastic operator
" accounts for the ongoing tumbling motion of the parti-
cle due to interactions with the surrounding medium, but
is not allowed to induce transitions between spin or
nuclear-spin states ([I',S]=[TI',I]=0). Since both the
Hamiltonian and the stochastic operator I' conserve the
spin quantum number, the density matrix p must be a
linear combination of elementary matrices with definite
in- and outgoing spin quantum numbers:

lm" ) (m @ (1,Q) 8)
where the reduced density matrices p,,,, have com-
ponents in nuclear-spin space only. Expansion of the
SLE on this basis leads to a separate equation for the re-
duced density matrix of each individual spin quantum
pair (m’,m):
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b= ((m—m") (B, B} +(m +m"[p,A))—Tp+2c(m’|S, |m Ycoswyt ©)
P=3 b m JoR p+2k{m’|S,|m )coswyt ,

I
where we suppressed the subscripts m’,m for notational r=r"Y1-1II,) . (12a)

simplicity. According to the classification of Ref. [14],
Eq. (9) is an example of an inhomogeneous multiplicative
stochastic differential equation. It constitutes a set of
coupled equations for (2I +1)® complex quantities for
each individual pair (m’,m). Only for the special case
where the hyperfine  coupling is  isotropic
[A(Q)=const X 1] the nuclear-spin quantum number is
conserved as well and complete factorization of Eq. (9)
occurs. In the following we will only consider the aniso-
tropic case. From inspection of the harmonic driving
term it is clear that only terms with spin quantum num-
bers satisfying m’'=m=*1 are being driven by the mi-
crowave field. Precisely these components contribute to
the transverse magnetization M, =#itrpS, which is
detected in a typical absorption experiment. The driving
strength depends on the spin value S through

(m=£1[S, |m)=1V(SFm)(SEtm +1) . (10)

Interestingly, this is the only location where dependence
on S enters the equations. We observe that the reduced
equation of motion contains both commutators and an-
ticommutators. This indicates that no preservation of
Hermiticity or probability will occur for individual re-
duced density matrices p. Instead, the components with
other (m’,m) quantum numbers have to be considered as
well to retrieve the usual Hermiticity and preservation of
trace for the full density matrix.

The reduced equation of motion Eq. (9) may be solved
rigorously for several spin nuclear-spin combinations us-
ing a stochastic operator of separable form. In the next
section we treat the case of a spin- hyperfine doublet.
While the essentials of this problem were already present-
ed in Ref. [15], we here give a more elaborate discussion
of the algebraic details and the physical aspects of the
solution. This will facilitate the subsequent investigation
of the dynamical singularities in the line-shape function.

IIIl. THECASES =1, 1=

N

With S=1lo, I=10 and o the usual Pauli matrices,
the equation of motion for the positive helicity com-
ponent (m’=1,m = —1) takes the form [cf. Eq. (9)]

ﬁz%{ﬁ,ﬁ}—rﬁ+xcoswot . (11)

The second driven component with negative helicity
(m'=—3,m=1) obeys the complex-conjugate equation.

In what follows we will only consider the e ~'' com-
ponent in the harmonic driving term, since we are in the
linear-response regime where the omitted contribution
may be constructed by changing the sign of the frequen-
cy.

These equations may be solved in closed form with the
simplest rank-one separable choice [16] for the stochastic
operator I

Here Il stands for the operator which averages over all
Euler angles of the particle:

1
HO:g—TrzfdQ , (12b)
which is characterized by monotonic decay towards the
isotropic stationary distribution. This decay is governed
by a single decay time constant 7. This operator may be
extended to account for considerably more complicated
dynamical processes as well [11].

The commutator algebra of Eq. (11) is simplified con-
siderably by expanding the reduced density matrix on the
basis of the Pauli matrices plus the unit matrix
{o}U{1}. We therefore associate each 2X2 matrix p
with a complex four-component quantity ®:

p=p-ot+p,X1=(p,p, ) =D . (13)

Due to the anticommutator identity for Pauli matrices
{0;,0;}=28,;; the Fourier transform of Eq. (11) takes the
form of an algebraic vector equation

(A—iD)<p=r—l$+§e4 ) (14)
where €,=(0,1), ®=I1;®, and A=io(Q)—iwy+7 '

The operator D introduces coupling between various
components and is of dyadic form

D= %(843 + a'é4)

ax
0 a

1 an (15)
2 a,
a, a, a, 0

where we identify a=(a({2),0) in an obvious way. Alge-
braic solution of Eq. (14) requires computation of the
resolvent, i.e., the inverse of the complex 4X4 matrix
A—iD. This resolvent necessarily has the form of a linear
combination of 1, D, and D? as higher powers of D are
reducible due to its dyadic character. Solving for the
coefficients, we find the resolvent:

iD D?
A24a2/4  A(A2+a2/4)

(A—iD) 1=A"14 (16)

A closed algebraic equation for ® is subsequently ob-
tained by application of the angular-averaging operator
II,. Conveniently, the equations for the first two com-
ponents of @ turn out to decouple as the angle averaging
reduces the full four-component problem to a 16 162 set
of algebraic equations:
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In most cases, one is interested in electron-spin observ-
ables which require the trace over the nuclear-spin de-
grees of freedom (for example, absorption or spin-echo
spectroscopy). As only the fourth component of ® sur-
vives under this trace, the desired amplitudes are located
in the two-dimensional subspace spanned by €;®€,.
Hence they may be solved algebraically by inversion of a
2X2 matrix. The cw power absorption P(w,), for in-
stance, is found as the sum of the positive and negative
helicity components

=%ww’ Re , (19)
+
— __1____gi +d/7'2
T

where d =g, (g, +g,)+g3 is the discriminant of the 2X2
submatrix in Eq. (17). This exact line-shape formula has
a variety of applications. First it provides predictions for
microwave absorption spectra of hyperfine doublets. (cf.
Ref. [15] for this application to a realistic nitroxide dou-
blet). Moreover, imposing proper initial conditions, the
Fourier transform of the response function may be used
to describe the propagation of the transverse magnetiza-
tion in real time, as is required for time-resolved spectros-
copy. In the latter case longitudinal components of the
magnetization will generally be needed as well (as, for ex-
ample, in longitudinally detected electron spin resonance,
spin-echo spectroscopy with nonideal pulse shapes, or
measurements of longitudinal relaxation times). This re-
quires consideration of the reduced matrices with
(m'm)=(3,3) and (— 4, —3) spin quantum pairs as well.
For completeness, we quote the associated equation of
motion:

ﬁ(m’=m)=%m[ﬁ,ﬁ]—[‘ﬁ. (20)

It is mathematically equivalent to the damped anisotrop-
ic Zeeman precession of a spin-1 particle in a static mag-
netic field. We do not pursue that direction in this paper
further, but just remark that this problem may be solved
in closed form as well. As a final application, the angle-
averaged density matrices ® may be resubstituted into
Eq. (14) to reconstruct the complete angle dependence of
the density matrix itself. The latter procedure is required
for evaluation of orientation-dependent observables as
they arise in optical spectroscopy, for example. In what
follows, however, we will restrict ourselves to a closer
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consideration of the basic absorption line shape as given
by Eq. (19).

IV. THE CASE S =1, I ARBITRARY

As a second application of the reduced equation of
motion we will consider a spin-triplet system with
hyperfine coupling. Historically, this system is relevant
for the simulation of absorption spectra of biradical spin
probes. In principle, the high sensitivity of such spectra
for microscopic orientational order makes these stable
compounds the spin probes of choice for structural stud-
ies [17] in liquid crystals or lipid membranes. In practice,
widespread application has been hampered by technical
difficulties associated with the synthetization chemistry
and purification (for a review cf. Ref. [18]). In the past
years, however, the progress in time-resolved spectrosco-
py has greatly increased the interest in transient-spin-
triplet systems. The latter not only have crucial impor-
tance for photochemical studies, but also afford excellent
experimental sensitivity. The latter results from the large
spin polarizations [19] induced in photoexcited systems
by spin-selective intersystem crossing (ISC) or chemically
induced electron polarization (CIDEP). These typically
exceed thermal-equilibrium Boltzmann polarizations by
several orders of magnitude.

As it turns out, the reduced equation of motion as-
sumes a very simple form for electron spin S =1. The
tranverse components of the magnetization now involve
four spin quantum pairs (m’,m)=(1,0), (0,—1), (0,1), and
(—1,0). In what follows we will only consider the posi-
tive helicity amplitude with (m’,m)=(1,0). From this
amplitude the final three may be constructed by Hermi-
tian conjugation or time reversal. The equation of
motion for the (1,0) pair is found from Eq. (9):

p= %’ﬁp— Tp+V 2k coswgt . @1

The square-root strength factor derives from Eq. (10).
As in the S =1 case, we proceed by Fourier transform to
frequency space and the rotating-wave truncation
2k coswgt=xe . Being Hermitian, the reduced
Hamiltonian may be diagonalized by a unitary transfor-
mation S. Technical details of a suitable choice for §
have been given in Appendix A.

In frequency space, the equation of motion is (denoting
the Fourier transform of 4 with p, and a =|a|)

S(A"iaIZ)SszT_IF_)+K/‘/§ . (22)

Except for frequencies on the usual cuts A=iua
(u=-—1, ..., +I) the left-hand side operator has an in-
verse T (usually called the resolvent)

T=S(A—ial,)"'st. (23)

A closed algebraic equation for p is subsequently ob-
tained by application of the angular-averaging operator
IT,. As explained in Appendix A, this angle average
renders 7 in a diagonal form:

T=0,r=3 |u)T,(ul, (24)
i
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where p runs over the eigenvalues of I,. As a direct
corollary, we find that the reduced density matrix p must
be diagonal in nuclear-spin space as well. Its solution is
easily found:

— T,
ﬁ=(K/\/2)2|,u)“‘"“:‘l—_—<,u| . (25)
“ =777,
From this relation the full angle dependence of p may be

reconstructed explicitly using
p(Q)=T(Q)r " p+Kk/V2), (26)

which is seen to have off-diagonal elements as well.

The total power absorption P(w,) is found by adding
contributions from all spin quantum pairs which are
driven by the transverse microwave field and taking the
trace over the nuclear-spin states:

P(wq) ~ g tr,‘%[pu,owp-(o, —1)+p(0,1)
+5(—1,0)]

=h“’0"tr1_‘j—§ Rep(1,0)

T
=fiop’ Re 3, ——F— . 27)
w 1—7°T,

This line-shape function has an interesting analytical
structure under conditions of fast modulation. The
dynamical poles located on the physical sheet may be in-
vestigated with the methods of the Appendix in Ref. [11].
After choosing a closed contour running along the
branch cuts and encircling the upper half of the physical
plane, the number of poles in the response function is
given by the winding number of the denominator around
zero. Every individual Tﬂ has 27 +1 branch cuts in the
complex plane, each with a non-negative spectra density.
Since these cuts are disjoint, each cut produces at least
one loop of T# in the complex plane. Therefore the equa-

tion 1—77'T, =0 must have at least 27 +1 solutions un-
der conditions of fast modulation. The precise number
depends on the detailed properties of the spectral densi-
ties over the cuts. This implies the presence of at least
(2I +1)? poles in the full line-shape function (barring ac-
cidental degeneracy). This abundance of poles must be
located between the branch cuts and the real axis, as
demanded by causality. A subset of 27 +1 of these re-
sides close to the real axis (the so-called Redfield poles),
whereas the rest stay very close to the distant branch
cuts. These non-Redfield poles soon leave the physical
plane as the correlation time 7 is increased. This unex-
pected behavior becomes clear by shifting the contour
used for counting the dynamical poles in the physical
plane. As soon as the contour is shifted away from the
cuts over a distance of about the separation between the
branch points of adjacent cuts, each individual function
7_"” will trace out only a single resonant loop in the com-
plex plane as its argument runs along the test contour.
This implies that the shifted contour now encloses a sin-
gle isolated pole only, i.e., the Redfield pole. All the oth-
er, non-Redfield poles must therefore lie outside of the
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contour. By implication, they must lie close to the cuts,
and only reside on the physical plane for very short
correlation times. Since under such conditions the cuts
are located far away from the real axis, the same must
hold for the non-Redfield poles also. Each individual T’p
is seen to provide at least 21 of such remote poles. For
the full line-shape function this implies the interesting sit-
uation of the existence of at least 27 (2 + 1) singularities
in the physical plane which are never observable.

In the next section we will apply the line-shape formula
to S =1 hyperfine doublets and triplets, and study the
effects caused by a number of approximations.

V. TEST OF APPROXIMATIONS

Apart from being useful for the analysis of experimen-
tal data, the exact line-shape formulas Egs. (14) and (27)
may be used to investigate the merits of certain approxi-
mations which are often found in the literature. In this
work we will study three prescriptions: The Redfield ap-
proximation (RA), the pseudosecular approximation
(PSA), and the modulus approximation (MA).

The first, RA, is most widely used and valid for short
correlation times (of the multitude of discussions c.f., eg.,
Ref. [20]). The relevant expressions for our problem are
derived in Appendix B. In contradistinction, the PSA
and MA do not impose conditions on the correlation time
but rigorously account for the stochastic dynamics. In-
stead, they apply a truncation which renders the reduced
Hamiltonian diagonal in nuclear-spin space [cf. Eq.

4)]:

#Alo(Q)—a-1] (Exact)

flw(Q)—a,I,] (PSA) (28)
filo(Q)—lall,] (MA).

=

In the following we will use the term ‘“diagonalizing ap-
proximation” for both PSA and MA. For isotropic
hyperfine couplings, the three forms of Eq. (28) are
equivalent. For anisotropic couplings the PSA is expect-
ed to be reliable for short correlation times where pseu-
dosecular terms ~1,,I, will be averaged out by the fast
modulation process. The MA, on the other hand, is ex-
pected to be reliable in the rigid limit, where the correla-
tion time 7 tends to infinity. Both PSA and MA lead to
reduced density matrices p which are diagonal in
nuclear-spin space themselves. Their angle averages 1,5
may be easily solved from Eq. (9). For a positive helicity
component m’'=m +1 we find the line-shape function,
valid for both diagonalizing approximations and arbi-
trary spin:

! Q
Oep=x{m +1|S,Im) 3 |u)—L—ul, 29)
p==1 1=7779,
where we defined
1

and Y=a, for PSA, and y=a =|a| for MA. For spin 1,
this formula is markedly different from the exact result
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TABLE I. Positions of the dynamical poles A, and A, for S =%, I =% as a function of correlation
time 7 (in ns). Pole positions are shown in f =w /27 space and taken relative to the center X-band fre-

quency. The top and bottom halves of the table give, respectively, the high- and low-frequency poles A,
and A, in MHz. The numerical parameters and the meaning of the approximations are given in Sec. V.

T Exact RA PSA MA

0 (30.5,0.0) (30.5,0.0) (30.5,0.0) (36.0,0.0)

1 (30.6,—1.80) (30.5,—1.81) (30.5,—0.63) (35.9,—0.72)

2 (31.1,—3.49) (30.4,—3.62) (30.4,—1.26) (35.9,—1.43)

3 (31.8,—5.01) (30.3,—5.42) (30.3,—1.89) (36.0,—2.16)

4 (32.5,—6.30) (30.1,—7.20) (30.2,—2.51) (36.1,—2.90)

5 (33.3,—7.43) (29.9,—8.96) (30.1,—3.11) (36.2,—3.65)

0 (—30.5,0.0) (—30.5,0.0) (—30.5,0.0) (—36.0,0.0)

1 (—30.3,—4.25) (—30.5,—4.24) (—30.4,—3.05) (—35.8,—3.20)
2 (—29.7,—8.61) (—30.4,—8.48) (—29.4,—6.04) (—35.3,—6.49)
3 (—28.3,—13.1) (—30.3,—12.7) (—28.0,—8.83) (—34.5,—9.89)
4 (—25.5,—17.6) (—30.1,—17.0) (—259,—11.2) (—33.2,—13.5)
5 (—20.7,—20.7) (—29.9,—21.3) (—23.5,—12.9) (—31.0,—17.1)

Eq. (19), except for large values of the correlation time,
where the exact response function reduces to the MA re-
sult: g, =X(Q 4 +Q_). For spin 1, at first sight the ap-
proximate formula closely resembles the exact expression
in Eq. (27) provided the Q,, are good approximations for
the Tu' But this cannot be the case, as the former con-
tain a single branch cut only, whereas each individual 7-"#
contains all 27 +1 cuts.

This is a clear warning that any approximation may
drastically affect the analytical structure of the response
function in the complex frequency plane. The Redfield
approximation, for example, completely removes the
branch cuts which dominate the line-shape formulas un-
der conditions of slow modulation. The diagonalizing ap-
proximations, on the other hand, suppress the coupling
between the individual transitions within the multiplet.
These two approximations therefore remove the cluster
of non-Redfield poles which is known to exist far from
the real axis under conditions of fast modulation.

After these general remarks let us turn to numeric-
al results for the case S =1, I =%. For a realistic doub-
let the diagonal elements of the coupling matrices g,
and A, were taken to be (2.0081, 2.0024, 2.0061) and
(—10, —47, —8.3) G, parameters which are representa-
tive [21] for a N (I = 1) nitroxide spin probe. Absorp-
tion line-shape predictions for this case were given in Ref.
[15]. For a meaningful comparison of the approxima-
tions we concentrate on the singularities which lie closest
to the real axis. Under conditions of fairly fast modula-
tion (Aw7T=1) dynamical poles are known to exist on the
encircled Riemann sheet. Their positions are fully deter-
mined by the correlation times of the modulation process
itself.

Numerical evaluation of the line-shape formulas was
done as follows. The angle averaging operator II; in-
volves integration over the Euler angles. Whereas the a
integration could be done analytically in closed form, the
remaining angular integrals were implemented numeri-

cally with a standard Gaussian integration. Care must be
taken for the branch cuts which are located at A==xiuy.
As long as these singularities remain separated from the
frequency point under consideration by more than 6
MHz, adequate numerical accuracy is obtained with 16-
point Gaussian meshes for both 8 and y integration. In
particular, no subtraction was required to deal with the
branch-cut singularities. The positions of the dynamical
poles were evaluated with a standard search routine as
well as by integration along properly chosen closed con-
tours. A six-point integration around a circular contour
was used. The methods yielded coinciding results. More-
over, the integration method furnished the crucial addi-
tional information that no dynamical singularities exist in
the encircled region other than the two dynamical poles
(as explained in Ref. [11], the precise number of poles is
closely related to the form of the discontinuity over the
cut).

For a given reduced density matrix p, the (complex)
residue R of a particular singularity (pole or cut) is
_defined as

1 A
=5;95,dwnotr,p, 31)

where ¥ is a closed contour encircling that and only that
singularity counterclockwise, and the trace is taken over
the nuclear degrees of freedom. We normalize the
response functions such that the sum of all residues (poles
and cuts) adds up to unity.

The results of these calculations are presented in
Tables I and II, which show the positions and residues of
the two dynamical poles, respectively, for correlation
times up to 5 ns. For still longer correlation times the
branch cuts have come so close to the real axis that the
pole characteristics cannot be considered a meaningful
representation of the actual line shape. The real part of
the spectral distance between the two poles is equivalent
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TABLE II. Residues of the dynamical poles for S = %, I=1

as a function of the correlation time 7 (in ns). The complex resi-
dues are defined as in Eq. (31). The top and bottom halves of
the table give the residues of the high- and low-frequency poles,
respectively.

T Exact RA PSA MA

0 (0.50,0.0) (0.50,0.0) (0.50,0.0) (0.50,0.0)
1 (0.51,—0.02) (0.50,—0.02) (0.50,0.0) (0.50,0.0)
2 (0.54,—0.03) (0.50,—0.04) (0.51,0.0) (0.51,0.0)
3 (0.58,—0.03) (0.49,—0.06) (0.52,0.0) (0.52,0.0)
4 (0.62,—0.01) (0.49,—0.08) (0.53,—0.01) (0.54,0.0)
5 (0.66,0.01) (0.48,—0.09) (0.55,—0.01) (0.56,0.0)
0 (0.50,0.0) (0.50,0.0) (0.50,0.0) (0.50,0.0)
1 (0.52,0.02) (0.50,0.02) (0.51,0.0) (0.51,0.0)
2 (0.57,0.05) (0.50,0.04) (0.54,0.01) (0.54,0.01)
3 (0.67,0.13) (0.51,0.06) (0.57,0.05) (0.60,0.03)
4  (0.78,0.33) (0.51,0.08) (0.60,0.12) (0.68,0.09)
5 (0.66,0.65) (0.52,0.09) (0.60,0.20) (0.78,0.22)

to the doublet line splitting, and is shown in Fig. 1.

It is obvious that the MA fails for both location and
distance to the real axis. The systematic and severe
overprediction of the line splittings can be understood
from the fact that the MA uses the full length of the
hyperfine vector a [cf. Eq. (28)]. At the same time, this
overemphasis on large effective hyperfine splittings leads
to an underestimate of the linewidths (i.e., the distance
between pole and real axis). For the PSA, on the other
hand, the line splittings are slightly underestimated, but
satisfactorily follow the correlation-time dependence of
the exact calculation. The general trend of rising resi-
dues for both poles is also retained in this approximation.
Turning to linewidth predictions, we observe that the
omission of the pseudosecular terms brings the dynamical
poles too close to the real axis, resulting in a linewidth

70} sl .
MA s
af
(MHz)
60}

(] 2 4
T (NS)

FIG. 1. §=1, I=1 line splitting Af =Re(A;—A,) as a func-
tion of the correlation time 7. The solid curve gives the exact
calculation. The other curves show the effects of the approxi-
mations of Sec. IV.
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reduction by a factor of up to 2. In contrast, the RA ac-
curately predicts the pole position for correlation times
up to 2 ns (Awt =0.4), far beyond the expected range of
validity. For longer correlation times, it fails to repro-
duce either the reduction in line splitting or the increase
in residues found in the exact calculation. This feature is
typical for the Redfield approach as it is caused by the re-
moval of the branch cuts. It may be understood from the
fact that the response function was normalized to unit
residue for a contour encircling all singularities in the
physical plane (poles and cuts). As the Redfield poles are
the only singularities surviving under the RA, their resi-
dues necessarily add up to unity. In contradistinction,
the sum of pole residues easily exceeds unity for the other
three calculations, the compensating spectral weight be-
ing located in the cuts. At 7=35 ns, the latter have come
to within 32 MHz spectral distance from the real axis,
and therefore may not be neglected anymore.

With view to applications in time-resolved spectrosco-
py, an interesting quantity to consider is the effective
phase-memory time T3, defined as the inverse distance
between the real axis and the nearest singularity in fre-
quency space. In a simple Hahn echo experiment, for ex-
ample, this quantity determines the decay of the echo am-
plitude with increasing time interval between the pulses.
The results are shown in Fig. 2. The plot for the exact
calculation (solid line) may be visualized as follows. For
small correlation times, the closest singularity is the
dynamical pole A, which moves away from the real axis
as the correlation time increases. At a critical correlation
time 7, ~11.5 ns, this pole meets the approaching branch
cut and slips onto the second Riemann sheet. The branch
cuts now are the only singularities left in the physical re-
gion and all have the same distance 7~ ! to the real axis.
This implies the identity T3 =7 for 7> 7.. We thus find
that the phase-memory time increases without bound for
both very small and very long correlation times. In the
intermediate region it exhibits a pronounced minimum.

T — T
’
’
’
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_' - I/ =
*
(ZHT2 ) //
/
’
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o, .
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(o] 10 20
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FIG. 2. Effective phase-memory time T for S=1,I=1 asa
function of the correlation time 7. (2775 )™ ! is the distance in
f = /27 space between the real axis and the nearest singularity
of the response function. The labeling of the lines corresponds
to that of Fig. 1. After intersection, the MA and PSA follow
the trajectory of the exact calculation (solid curve).
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This behavior shows that the critical correlation time 7,
plays three important roles in the current model. First
and foremost, it is the correlation time at which the last
remaining dynamical pole leaves the physical sheet.
Second, it is the absolute lower bound for the phase-
memory time. Finally, it is the value of the correlation
time at which the phase-memory time reaches this
minimum.

Since the diagonalizing approximations do not affect
the location of the branch cuts, both PSA and MA trajec-
tories intersect the exact curve. The critical correlation
times for this to happen depends on the spectral densities
of the cuts, and therefore on the approximation used. In
all cases the derivatives of the curves exhibit a discon-
tinuity at the intersection. Since the branch cuts are seen
to be responsible for the increase in 75 when modulation
becomes slow, it is not surprising that this behavior is
completely absent from the calculation in the Redfield
approximation.

Returning to the line shape, we just mention that, for
progressively longer correlation times 7> 7., the MA be-
comes an increasingly better approximation, whereas RA
and PSA produce severe overestimates and underesti-
mates, respectively, of the linewidths. These results may
be compared with previous calculations [22] in an eigen-
value approach using Brownian diffusion dynamics in-
stead of the separable operator Eq. (12). For axially sym-
metric couplings, the Brownian model was able to predict
line shapes over a wide range of correlation times, and re-
ported strong effects of the PSA on the predicted line
shapes. Our results confirm these conclusions. More-
over, we found that the observed effects are caused by the
coupling between the individual transitions within the
multiplet. A further advantage of our model is the validi-
ty of our analytical response function for fully anisotropic
couplings. The latter would require a substantial increase
in the dimension of the matrix employed in the eigenval-
ue approach. Such complications greatly enhance the re-
ported [9] numerical problems concerning the positions
and weights of the line-shape singularities. This is prob-
ably of minor importance for pure absorption spectrosco-
py under conditions of fast or intermediate modulation,
as witnessed by an abundance of experimental literature
with excellent line-shape simulations based on the eigen-
value approach. They do matter, however, under condi-
tions of slow modulation, and in particular for applica-
tions to time-resolved spectroscopy. In this case precise
knowledge of the singularities is required for the evalua-
tion of the contour integrals associated with the propaga-
tion in time of the magnetization. These remarks con-
clude our discussion of the case S =1, I =1, and we turn
to spin-triplet response functions.

First, we quickly consider the hyperfine doublet. At
first sight, the overall lineshape resembles the previous
S=1, I=1 case, in particular under conditions of slow
modulation (the two line shapes coincide in the rigid lim-
it). However, closer inspection reveals an interesting
discrepancy in the dynamical behavior for short correla-
tion times, as the line splitting now is seen to increase
with the correlation time up to around 3 ns (cf. Fig. 3).
This particular feature is significant, since the predictions
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FIG.3. S=1,1 =% line splitting as a function of correlation
time 7. The magnetic coupling parameters and curve labeling
are identical to those of Fig. 1.

from the two diagonalizing approximations are identical
for the S=1 and 1 case. We conclude that the seemingly
correct line-splitting predictions in the S =1 PSA were
accidental and not related to the underlying dynamics of
the full problem. We also note that in the case of RA,
the line splitting has lost any correlation-time depen-
dence. This is a direct reflection of the fact that in the
S =1 calculation the Redfield relaxation matrix R, as-
sumes diagonal form, whereas for S=1 off-diagonal
terms remain.

We now turn our attention to the S =1 hyperfine trip-
let. The line-shape predictions from Eq. (27) are shown
in Fig. 4 for three different correlation times 7. The diag-
onal elements of the coupling matrices were chosen as
g, =1(2.0081,2.0024,2.0061) and A;=(5.6,34.0,5.3) G. As
such it mimics an idealized "N (I=1) biradical with per-
fect alignment of the two nitroxide groups, and where
spin-spin interactions between the groups are neglected.
(Realistic biradicals usually exhibit large zero-field split-
tings, indicating that intramolecular spin-spin interac-
tions should be taken into account. While our model
does admit such extensions, our concern in this paper is
restricted to spin-triplet spectroscopy.) With the above
choice of hyperfine anisotropy, strong effects of the
molecular motion on the absorption line shape can be ex-
pected for correlation times near 5 ns, as is confirmed by
the collapse of the linewidths at that time scale. An in-
teresting feature is the fact that the low field line, while
very broad at slow modulation, collapses to a line which
is even narrower than the central line. The physical
reason is not found in the coupling between the transi-
tions within the multiplet, but rather in the interference
between the gyromagnetic and hyperfine anisotropies.
Inspection of the Redfield expressions for the spin-triplet
linewidths (Appendix B) shows that a calculation with
isotropic gyromagnetic coupling would predict flanking
lines of identical width, exceeding the central linewidth.
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FIG. 4. X-band-absorption line shapes for S =1, I=1, com-
puted from Eq. (27) for three rotational correlation times 7 (in
ns). The line-shape function is normalized to unit residue. Unit
of ordinate is s/Grad.

We conclude that the narrow linewidth of the low field
line results directly from the gyromagnetic anisotropy.
The positions of the dynamical poles are tabulated in
Table III. It shows the Redfield approximation to be
effective up to correlation times of around 1 ns, which
corresponds to Awr~0.2. Upon increase of the correla-
tion time, the PSA predicts inward movement of the

flanking lines, whereas both lines move to the right in the
exact calculation. This feature is a manifestation of the
coupling between the transitions within the multiplet.
However, the total PSA splitting between the two flank-
ing lines is satisfactory. Under the MA, the line split-
tings are systematically and severely overpredicted for
the same reasons as in the spin-} case discussed above.
Turning to the linewidths, both diagonalizing approxima-
tions are seen to underpredict the distance to the real
axis. Hence we obtain insufficient linewidths. This
failure is particularly severe for the central line and may
be easily understood from the nature of these approxima-
tions. For odd hyperfine multiplicities (integer 1) the
spectra exhibit a central line completely devoid of the
broadening effect of the hyperfine coupling. Hence these
central linewidths are determined by the gyromagnetic
anistropy only, which was chosen significantly smaller
than the hyperfine anisotropy in the current calculations.
In applications to realistic spin-triplet spectroscopy these
linewidth problems would be obviated to a large extent
by the large zero-field splittings normally found in sys-
tems with an electron-spin value exceeding 1.

VI. CONCLUSIONS

The discussion of the previous sections has demon-
strated the advantages of the application of separable sto-
chastic operators to problems with multiplicative sto-
chastic modulation. Not only do such operators afford
algebraic solutions to the equations of motion in a num-
ber of interesting cases, but they also admit a detailed
study of the effects of the modulation on the linear
response of the system. Of particular interest are the
singularities in the response function. In all cases con-
sidered so far, these singularities are either branch cuts or
simple poles. In the regime of fast modulation the
response of the system is completely determined by sim-
ple poles close to the real axis, the so-called Redfield
poles. Further branch cuts are located far away. The
presence of coupling between internal degrees of freedom

TABLE III. Positions of the three dynamical poles for S=1, I=1 as a function of correlation time 7

(in ns). The positions are shown in f=w /27 space and taken relative to the center X-band frequency.
Units are MHz. Parameters are given in Sec. V and differ from those of Table I. Note the severe
linewidth errors caused by PSA and MA for the central line (middle section of the table). This is
characteristic for multiplets with odd multiplicity.

T Exact RA PSA MA

0 (41.9,0.0) (41.9,0.0) (41.9,0.0) (50.8,0.0)

2 (43.1,—8.98) (41.9,—9.36) (41.4,—3.97) (50.8,—4.47)

4 (45.4,—18.2) (41.9,—18.7) (39.7,—17.64) (51.0,—9.42)

0 (0.0,0.0 (0.0,0.0) (0.0,0.0) (0.0,0.0)

2 (0.11—8.43) (0.,—11.3) (.01,—0.55) (.01,—0.55)

4 (—0.47,—9.96) (0.,—22.5) (0.06,—1.09) (.06,—1.09)

0 (—41.9,0.0) (—41.9,0.0) (—41.9,0.0) (—50.8,0.0)

2 (—39.7,—17.1) (—41.9,—16.8) (—39.1,—1L.1) (—49.5,—12.3)
4 (—22.9,—28.9) (—41.9,—33.5) (—30.7,—18.3) (—43.6,—26.7)
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produces large numbers of additional poles. Although
these non-Redfield poles appear in the physical plane,
they are unobservable in actual experiments as they
remain in a distant region. For increasing correlation
time the Redfield poles move away from the real axis,
whereas the branch cuts move closer. The non-Redfield
poles soon leave the physical plane by slipping through
the branch cuts. Only the Redfield poles now remain.
For correlation times near the typical inverse linewidth
(AwT~1) the receding Redfield poles also slip through
the approaching cuts. From now on the line shape is
dominated by the branch cuts only and the lines in the
multiplet appear severely broadened. In contrast to con-
ventional numerical approaches, our model with separ-
able dynamics is seen to provide a smooth and very natu-
ral scenario for the change in spectral characteristics
upon transition from the Redfield to the rigid-limit re-
gimes.

The exact solutions obtained were used to study the
effects from three common approximations, the RA,
PSA, and MA. All three were found to severely affect
the singularity structure of the response function. The
complete removal of the branch cuts in the RA proved to
be most rigorous. Not surprisingly, the RA was found
accurate for fast modulation but failing as soon as the
effects from the branch cuts manifest themselves in the
exact calculation. In the slow motional regime where no
poles remain in the physical plane, the MA is clearly best,
its reliability increasing with correlation time. The PSA
on the other hand, predicts line-shape positions reason-
ably well, but fails for linewidths. This failure is most
acute for multiplets with odd multiplicities: In both PSA
and MA the coupling between the transitions within the
multiplet is truncated. Hence the anisotropic hyperfine
interactions do not broaden the central line, leaving the
latter far too sharp.

In contrast to the RA, the diagonalizing approxima-
tions PSA and MA still exhibit many of the characteristic
features of the exact calculation. In particular, they re-
tain the smooth transition between Redfield and rigid-
limit behavior. The reason is that the PSA and MA
modify the character of the singularities in a nonessential
way, namely through removal of the distant non-Redfield
poles. The overall analytical character of the response
function is retained, as witnessed by the unchanged loca-
tion of the branch points. These desirable features are
reflected in the predictions for the phase-memory time,
for example. The observed changes in the overall line
shape are due to the effect of these approximations on the
spectral densities over the branch cuts.

To conclude, our current work has pointed out the
shortcomings of a number of approximations. These re-
sults emphasize the usefulness of exact analytical results,
if available. This provides a strong motivation for further
application of separable dynamical models to resonant
problems undergoing stochastic modulation.

APPENDIX A: STRUCTURE OF THE S=1
RESOLVENT OPERATOR

In Sec. IV we discussed the algebraic solution of the
equation of motion for reduced density matrices for the
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case spin S =1 [cf. Eq. (21)]. This task required compu-

tation of the resolvent operator T and its angular average

I1,7, where T~ ! derives from the reduced Hamiltonian
in nuclear-spin space:

=A—ia-I. (A1)

The Hermitian character of a-I assures the existence of a
unitary transformation S which under the Hamiltonian
assumes diagonal form. Although not unique, the actual
choice of S will not affect the final result. An explicit
realization of S may be constructed in the following way.
Let a denote the length of a, and let O denote a rotation
operator in three-dimensional space which rotates €, into
the direction of a=a®€,:

8, =08, , (A2)

and let S be the representation of 0 in the nuclear-spin
space. Then

a-1=a(08,)- 1=aSI,S"’ (A3)

is seen to be diagonal on the basis of S| ), where | ) are
the eigenfunctions of I,. From its definition Eq. (6) we
find that a depends on B and y only [cf. Eq. (Al2),
below]. The operator S, on the other hand, depends on
the Euler angles in a rather complicated way, in particu-
lar if the diagonal components of the hyperfine tensor do
not have definite sign. However, inspection of Egs.
(2)—-(6) shows that the complications are located in 3 and
v, whereas the dependence on « is like an elementary ro-
tation:

S(a,By)=c “=5(B,y).

Here the reduced unitary operator S depends on 3 and y
only, albeit in a complicated way. These relations allow
us to evaluate the resolvent explicitly:

(A4)

T=c "“:S(A—ial,) 1§ %' (A3)
where the inverse operator is well defined provided the
frequency w, avoids the usual cuts, defined by A=iua,
pu=—1I,...,L

Subsequent application of the projection operator II,
leads to a simple form of II7, since the expression in be-
tween the exponentials of Eq. (AS5) does not depend on
at all. Hence the a integration may be done at once and
leads to a result which is diagonal on the basis of eigen-
states |u) of I,:

N,r=3 |u)T, (ul, (A6)
"

T,=M(u|S(A—ial,) 'S p) , (A7)

which proves the important Eq. (24) of Sec. IV. The
complex functions Tu are explicitly given in terms of
quadratures, where each individual Tu is seen to contain
all 21 +1 logarithmic cuts.

The numerical evaluation of these integrals is easiest if
one parametrizes the rotation matrix S by two new angles
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¥ and @, which are defined through the relation

—ipl, —ipl, _ &
e e

r=S. (A8)

Since S depends on the original Euler angles 3 and y, the
above relation defines a mapping (5,7 )—(¥,@). This
mapping is not necessarily one to one. Expressed in these
particular angles, the diagonal elements of the 7 matrix
assume a simple form which does not depend on ¢:

(ulS1v) (VIS Tu)
A—iav
I 2
=3 W1 (A9)

A—iav

(ulS(A—ial,) '§flu)=3

v

v

We observe that each individual T, contains 27 +1
cuts. The spectral density over the vth cut is expressed as
a square of the Wigner matrices d fw(;b). The physical in-
terpretation of this dependence of ¢ is as follows. For
slightly anisotropic hyperfine couplings the a vector near-
ly points in the direction on the magnetic field, irrespec-
tive of the orientation of the particle itself. This implies
values of 3 close to zero. Since dfw(;b=0)=8”v, the
Wigner matrices will tend to suppress the v#*u cuts in
Tu‘ For increasing anisotropy the a vector will sweep
through a wider range of directions, thereby admitting
larger contributions from the v¥*u components. In this
way we can clearly visualize how increasing hyperfine an-
isotropy induces progressively stronger mixing of the in-
dividual transitions within the multiplet.

The angle-averaged quantities Tu may be computed by
integrating Eq. (A9). This is a straightforward numerical
procedure since the dependence on ¢ is lost, and the mix-
ing angle 9 derives from the Euler angles 8 and y in a
simple though highly nonlinear way:

cosy=¢€,-€,=a,/a , (A10)
a,= A, cos’y sin’B+ A, sin’y sin’B+ 4, cos’B, (A1l
a’= A} cos’y sin’B+ Alsin’y sin’B+ A2cos’B . (A12)

The numerical integration is potentially hazardous due to
the oscillatory behavior of the Wigner matrices, as well as
due to the zeros in the denominator of the integrand.
The latter lead to the logarithmic branch points, which
are located at a distance 7~ ! from the real axis. For
I=1, and 7<20 ns, we found that straightforward
Gaussian integration with 24 meshpoints for both 3 and
v variables provided adequate numerical accuracy. In
particular, no subtractions of the integrand were needed.

APPENDIX B: LINE SHAPES IN REDFIELD
APPROXIMATION

In most problems involving stochastic differential
equations one does not require the full knowledge of the
complicated dependence on the stochastic variables, but
would be satisfied with knowledge of the stochastic aver-
J

i(E—w0)+TR33
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ages {p(#)) as a function of time. Large efforts have
therefore been devoted to suitable formulations of
effective equations of motion for this stochastic average.
For problems involving multiplicative stochastic
modulation, as encountered here, this reduction scheme
is particularly complicated. However, in the regime of
fast modulation (short correlation times), a suitable
dynamical equation for {p) was proposed by Bourret
[23] in the form of an integro-differential equation. When
evaluated on time scales longer than the correlation time
of the stochastic process, the Bourret equation provides
the theoretical justification for the (historically older)
procedure by Redfield [24]. The latter’s dynamical equa-
tion for the average assumes the simple form of a first-
order differential equation. When formulated in frequen-
cy space, the Bourret-Redfield analog for the S =1, I =1
equation (14) would be
(ia—mo—iﬁ+mo>6:—§—e4 . (B1)
This expression only involves stochastic averages like
P=II,®P, etc. Up to second order in time, the effect of
the stochastic modulation is taken into account via the
relaxation matrix 7R,. The latter appears as the time in-
tegral of the Hamiltonian autocorrelation matrix R (¢'):

TRo= [ “drR(1"), (B2)
R(1)=([0(Q)=D(Q)][0(Q,,)—D(Q,;,)]) .

(B3)
With the stochastic operator I' as in Eq. (12) we find im-
mediately

Ry=(0—®)?*—2(D—D)w—a)+(D—D)?, (B4

where the horizontal bars denote angular averages as usu-
al. Straightforward algebra gives

R,y O _
0 Ry,
Ry= R, R, (B5)
- R3y Ry
R33~w2—(o2+(é?—(7§)/4 ,
Ry=w'—@ +(a’*—a? /4, (B6)

R34:5(72_waz .

The explicit dependence of these functions on the Euler
angles is found as in Eqgs. (A11) and (A12) of Appendix A.
We note that the coupling between the third and fourth
component of ® is preserved under the Bourret-Redfield
approximation. As explained in Sec. III, the desired
physical amplitude is €,-® and involves the lower right
submatrix of R, only. After inversion of the 2X2 cou-
pling matrix, the solution of the Bourret-Redfield equa-
tion for the spin-1, hyperfine doublet is found to be

34'6:

K
2 [i(@—wy)+ 7R3 [i(@—wy)+7R 4 ] — (TR —i @, /2)*
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As a function of frequency w,, this expression has two
simple poles in the lower half plane. For increasing
correlation time 7, they move away from the real axis
(line broadening). The logarithmic cuts of the exact re-
sult have been lost under the Bourret-Redfield approxi-
mation. This concludes our treatment of the spin-1
hyperfine doublet.

Turning to the spin-1 case, the Bourret-Redfield analog
for Eq. (21) is

(id—iwy—ia,I,+7Ry)p=k/V?2 . (B8)

As before, the relaxation matrix 7R, derives from the
time integral of an autocorrelation matrix R(z'):

R(1"=([0(Q,)—a(Q,)1][o(Q, ,)—al(Q, )] .

(B9)

In contrast to the spin-% case above, this autocorrelation
matrix is diagonal in nuclear-spin space. Explicit evalua-
tion of the angular integrals gives

Ro=A+BI,+CI?,

A=0’—o*+II +1)a%*—a?)/2,
(B10)

B=—2(wa,—oa,) ,
C=(3a2—a*/2—a?.
In these expressions, a, and a? are again given by Egs.

(A11) and (A12). Since R, is diagonal, Eq. (B8) may be
solved easily to yield the line-shape formula for spin 1

I
P(wg)~Re 3 [i(@—w,—pa,)+m(A+Bu+Cu?)] '.
p=-1I

(B11)
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