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Intramanifold level mixing by time-dependent electric fields: Multilevel Landau-Zener effect
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The mixing of substates of an isolated Rydberg manifold (constant n, m) is studied using time-
evolution matrices U(t, to). Coherent mixing is effected by a linearly ramped electric field, F(t)=Ft.
The spherical l' basis, diabatic (hydrogenic) p basis, and adiabatic (nonhydrogenic) q basis are considered.
In the linear Stark regime, the diabatic levels are coupled by F(t) through the atomic core, parametrized
by quantum defects. The resulting adiabatic levels Eq in this model group into a submanifold degenerate
at F =0 plus shifted levels split off from the adiabatic manifold. Analytical expressions for the q levels

Eq and their coupling I
qq

are derived as a function of rescaled field or time ~. The time evolution of the
levels' populations is studied first for the two-level case —the usual Landau-Zener effect (LZE)—which
is generalized to a multilevel Landau-Zener effect (MLZE) for any n manifold. The matrices U(t, to) are
constructed in the Riemann product representation, including Magnus corrections up to fourth order.
The probability Pq q ( VI ) of making a transition from state q to q upon a one-way pass across the mani-
fold depends on a single parameter V, =[2tJ&/(3Fn9)]'~' (when one p&%0). Numerical results for
l =m =0 indicate that either diabatic (p~p'=p) or adiabatic (q~q'=q) transitions always predom-
inate, no matter what the ramp rate F. Strong evidence supports the conjecture that outer diabatic tran-
sitions between edge states of a manifold obey Pd"b(V)=exp( —P„~V') for i =m =0, with P„=1 for
n =2 (the LZE) and I3„=inn for n ))2 (the MLZE), and that a similar analytical result holds for arbi-
trary [p; I and m.

I. INTRODUCTION

The transfer of population between eigenstates of a
quantum-mechanical system is usually envisaged as
proceeding in two possible ways: (1) an external time-
dependent potential, such as a weak photon field, may
couple the states, or (2) the energy levels themselves may
shift in response to a parameter of the system that varies
in time. Examples of the latter include variable internu-
clear separation in atomic collisions, spin precession in
atomic beams passing through a magnetic field, and any
electric or magnetic field applied externally to an atom.
The standard two-level models for these processes lead to
(1) the optical Bloch equations and Rabi oscillations, and
(2) the Landau-Zener effect (LZE), respectively [1]. The
application of a weak, homogeneous but time-dependent
electric field F=F(t)z to an atom in a highly excited
state offers the opportunity to study both Rabi oscilla-
tions and the LZE in a multilevel setting. This paper, the
first in a series on Stark level mixing, will explore the
effects of linearly ramped fields on population distribu-
tions within an isolated Stark manifold.

This study is experimentally motivated. Rubbmark
et al. [2] considered two-level avoided crossings subject
to arbitrary F(t) Their experim. ents showed that an-
ticrossing Stark levels in Li are indeed mixed by linearly
ramped fields in accordance with the LZE. In an effort to
understand selective-field ionization, other researchers [3]
followed an initially populated level through the se-
quences of level anticrossings encountered as the field is
ramped to values sufhcient to ionize the atom
(F)O. ln a.u. ). The compounded probability of steer-

ing adiabatically or diabatically along one path or anoth-
er as a function of ramp rate presumably underlies gen-
eral rules for identifying initial states with ionization sig-
nals. When a state is initially populated at near-zero
fields, however, coherent state mixing within an isolated
Stark manifold is critical to determining the relative frac-
tions of states emerging at higher fields. This view was
suggested by other observations of ionization rates of He
atoms in static [4] and microwave [5] fields. Rolfes,
Smith, and MacAdam [6] exposed excited Na atoms to
slewed fields that were reversed once through F =0 and
observed ionization signals attributable to a redistribu-
tion of population within a single Stark n manifold.

The key process that needs to be addressed is how a
time-dependent electric field mixes a manifold of levels

amongst themselves. To this end we consider a theoreti-
cal model based on the linear Stark effect in Rydberg
spectra of singly excited atoms. We introduce the model
with a brief discussion of Stark manifolds, the range of
field values for which the model is valid in practice, and
the form of F(t). [Atomic units are assumed unless noted
otherwise. To convert to a.u. : F (a.u.)=1.945 X10 ' F
(V/cm), dF/dt (a.u. ) =4.704X10 'dF/dt (V/ cm @sec).]

The energy level of a hydrogenic state of principal
quantum number n and fixed m = ~mt ~, E„=—

—,'n, is
split by a static field F=Fz (F)0) into a manifold of
n —m levels, where the projection mI of angular momen-
tum onto the field axis is a good quantum number [7].
These hydrogenic levels lie at [8—10]

E„„(F)= —,' n + ,'Fn (n i
—n2 )—+0—(F n

1
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where n, =0, 1, . . . , n —m —1 (i = 1,2) are the usual par-
abolic quantum numbers and n, +n2+ m + 1 =n; adja-
cent levels have spacing EE(F)=3Fn T. he gross struc-
ture of the nonhydrogenic n manifold at moderate field
strengths imitates the hydrogenic fan of levels (see Fig. 1).
Most of the levels appear to cross at E„at zero field and
all nearly attain the same equal spacing hE(F) at large
fields. However, at F =0 the few lowest angular momen-
turn states are shifted to their Rydberg levels by core
effects:

E„t= —
—,'(n —pt ) =E„p—tn (1.2)

where p& is the quantum defect (mod 1) (with
~ p~ ~

& —,
'

) for
the Rydberg series [11]. Thus, the essential structure of
this "bowtie" model is a field-tuned crossing of many lev-

els at F =0 plus at least one level that avoids crossing
with the rest (Fig. 1). We assume that all but the largest
one or two quantum defects are precisely zero —this will

be justified in Sec. V—although numerical calculations

do not require any such restriction.
An isolated manifoid is defined here to range over field

values F~ &F,„ that extend out to the "hydrogenic"
limit, where the n —m levels all diverge linearly. This
occurs when the largest Stark shift from E„exceeds the
maximum core shift: ', Fn —))

~ p ~
n or

F,„=F(hydrogenic) ))2~@~ /3n (1.3)

F «F(overlapping)=1/3n =175(n/25) V/cm .

(1.4)

where p is the largest quantum defect (mod 1) with I ~ m.
On a larger scale, however, one sees from a Stark map
[12] of energy levels versus F that a manifold will overlap
its neighbors when its total spread ( =3Fn a.u. ) exceeds
the Rydberg level separation (=n a.u. ). Manifolds
"interact" wherever 3Fn & 1 on account of the non-
Coulombic potential arising from the core electrons. The
resulting forest of avoided crossings must be traversed
during selective-field ionization. The focus here on "iso-
lated" n manifolds would seem to require
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Co~patibility of Eqs. (1.3) and (1.4) would then demand
~p(mod 1)~ && —,'. Nevertheless, Eq. (1.3) will be taken for
granted here for core interactions of any strength [13],
even if (1.4) is violated, so that large-F limits of intra
manifold effects are well defined. Our treatment of indi-
vidual n manifolds establishes a prediagonalization
scheme; any future considerations of their interactions in
the overlap region 3' & 1 will involve the coupling of
several isolated manifolds.

Although the nonoverlap criterion (1.4) may be violat-
ed in this model, ionization has to be strictly forbidden in
order to maintain unitarity within each manifold. If one
follows the levels (1.1) out to their intersection with the
classical ionization limit E; „= 2&F, one s—ees that the
uppermost level (n2=0) ionizes there first [14] when
Fn = 1/(11+V'112), so we must have
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21.SS

n 4. (1.5)

The requirements (1.3) and (1.5) are both satisfied only
when n is large and [13] ~p~ &n/15; we assume this in-
equality holds. Note that, as a bonus, the condition
Fn « 1 implies that the linear-Stark approximation used
in Eq. (1.1) is a reasonable one. The important features of
level mixing will depend anyhow on the crossing and an-
ticrossing substructures within the bowtie as illustrated in
Fig. 1—not on nonlinearities in the distant splay of lev-
els.

The nonstatic behavior of F(t) is restricted in this pa-
per to linearly ramped electric fields,

FICx. 1. Stark maps (bowties) of single n manifolds. Field-
time scale r, Eq. (2.24); energy scale is that of (2.26), (2.30), and
(3.11), with Vo =1. Diabatic levels (dotted lines) labeled n&.
E~(r) =pr, slopes p =2n, —n +m + 1. Adiabatic levels (solid
lines) E labeled (q). (a) n =10, m =0, and three nonzero quan-
tum defects, p0=0. 1, p&= —0.04, p2=0.015. (b) n =6, m =0
and one nonzero @~=0.l. Note large-~~~ limits; degeneracies
Eq =0 and shift Eo = —nVat r=0.

F(t)=Ft, (1.6)

where F=dF/dt )0 is typically 1 —10000 V/cmpsec.
The coherent mixing of state amplitudes as the field (1.6)
is ramped through an n manifold will be denoted the mul-
tilevel Landau-Zener eft'ect (MLZE). Note that we con-
sider here only a single pass through the bowtie, as op-
posed to the double passage often considered for an-
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ticrossing molecular states [15]. Evaluation of the MLZE
will always consist of (i) populating one Stark eigenstate
at an initial time to ~—~ (numerically, to will be chosen
so that F« F—,„), (ii) integration of the Schrodinger
equation over the range to & t &

l to l
in an appropriate

basis, and (iii) evaluation of the manifold's states' ampli-
tudes at t =

l to l
~ ~ (i.e., at F))F,„). The time-

evolution operator for this system, U( oo, —~ ), is to be
regarded as a scattering matrix, insofar as the states are
uncoupled asymptotically (as

l tl, lFl ~ ~ ) and are mixed
only at "short range, " i.e., at small values of the field pa-
rameter (lF &2lpl l3n ). Analytical expressions for
transition amplitudes are difficult to come by except in
special cases (see Secs. III B and IVC); e.g. , Demkov's
contour-integral method [16] is not directly applicable to
the bowtie problem because the diabatic levels (1.1) all
have different slopes dE„, /dt. The matrix elements of

1

U(t, to) are computed through its Riemann product rep-
resentation [17],whose factors, of the form

U(tz, t, )=exp i —dt'H(t')
1

(1.7)

are to be calculated for successive small time intervals
[t„t2] within the range [to, t]. A major feature of the
present calculation is the use of second- and third-order
Magnus corrections [18,19] to the exponent in (1.7),
which significantly reduces the number of time steps re-
quired for the convergence of U( t, to ).

State mixing by nonlinear dynamical fields will be ana-
lyzed in subsequent papers and applied to experiments.
The computer code TIMEPASS that calculates U(t, to) has
been developed and used here for linear fields, but is
designed to accommodate arbitrary functions F(t).
Half trauersals of-a manifold, akin to half-scattering or
photoionization, wherein an initial population is slewed
from F=0 to F =F „,have been used in recent experi-
ments of MacAdam [20]; in this case the start-up behav-
ior of the ramp may be critical. Quasioscillatory fields
F(t)=Fo(t)cos(cot +a) are relevant to the microwave-
induced state mixing observed in the experiments of Ref.
[21], and to multiphoton absorption and ionization pro-
cesses in general. Such potentials are typically handled
by Floquet analysis [18,21], but Floquet methods lose
their advantage when the Fourier transform of F(t) is no
longer simple. The time evolution operators (1.7), on the
other hand, can be applied to any form of F(t) and are
unitary by construction.

The bowtie model is analyzed in both diabatic (hydro-
genic) and adiabatic (nonhydrogenic) bases in Sec. II; the
usual LZE is reviewed in this context, and its many-state
counterpart (with one quantum defect) is diagonalized
semianalytically at fixed F. The positions and coupling of
the adiabatic levels is analyzed in some detail in II C to
provide the groundwork for future studies of n manifolds.
In Sec. III, the time dependence of F(t) is invoked to
generate U(t, to) and U( ca, —oo ), including Magnus
corrections and limiting cases amenable to analytical
treatment. In Sec. IV we present numerical results, in-
cluding the evolution of U(t, to) with t; the mixture of
states represented by U( ~, —~ ) upon full traversal

across the manifold; variations with n; the MLZE, and its
implications for experiments. The effects of additional
quantum defects are brieAy considered in Sec. V. Con-
cluding remarks are given in Sec. VI, and some
mathematical results are collected in the Appendixes, in-
cluding convergence properties of U( t2, t, ).

II. THE BOWTIK MODEL —ANALYSIS

A. General formulation, basis sets

The wave function 4 of the Rydberg electron will
evolve in time according to the Schrodinger equation,

. 8% - 1 , 1
i =H%= ——V ——+r F(t)+ V (r)

Bt 2 r non-H

%'(t) =g a„.(t)g„. ,
k'

(2.2)

when substituted into Eq. (2.1), leads to a set of n —m
coupled linear differential equations for the coefficients
tak(t)}:

dak
i

d
=g Hkk (F)—i itk

~
a„

k' Bt
(2.3)

where Hkk(F)=(gklH(F)leak ) and we have used
( gk gI, , ) =5kk . The effective Hamiltonian in large
parentheses in Eq. (2.3) is Hermitian, so the normaliza-
tion condition

(2.4)

holds at all times. We will let the time dependence of the
function F(t) remain implicit and arbitrary for the time
being.

Three difterent bases [Pk(r) } are appropriate represen-
tations for the amplitudes [ak(t)} in various regions of
the manifold (Fig. 1). Note that in the absence of both
Stark and atomic potentials (F =0 and pi =0), all (hydro-
genic) eigenfunctions are degenerate at F.„. This
Coulomb degeneracy arises from the O(4) symmetry of
Eq. (2.1) whereby it is separable in both spherical and

(2.1)

The Hamiltonian operator H(F) includes the following
potential energy terms: —1/r, the asymptotic Coulomb
potential of the nucleus and core electrons;
r F(t) =zF(t), the Stark potential; and V„,„H(r), an
effective, short-range potential representing all nonhydro-
genic effects of the core electrons (screening, exchange,
etc.) aside from the Coulomb term. Consider an ortho-
normal basis set of wave functions [Pk(r)} that may de-
pend on the field F ( t ) and hence on t. Each gk is an
eigenfunction of L, and the set is taken to lie in a sub-
space of fixed [7] m =0, 1, . . . . The basis spans a Stark
manifold of fixed n, where it contains n —I states. The
n —I values of the index k will refer implicitly to the
quantum numbers (n, m) and explicitly to a third label (l
or p or q) that depends on our choice of basis. The ex-
pansion
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parabolic coordinates [8]. Henceforth all energies will be
shifted by —E„so that a chosen nth Rydberg level of hy-
drogen occurs at E =0 and subscripts n are no longer
necessary.

1. Spherical basis

The [g&(r) } are the zero-field spherical eigenfunctions
of hydrogen (n, m fixed), labeled by i =m, . . . , n —1.
They diagonalize H when F=0 in Eq. (2.1) but core
effects shift their eigenenergies to [13]

da1
i =g HP'" (F)at. ,

1'

HP'"(F) =Ft gt l
z

l 0i ) pin '5ll—,

(2.6)

(2.7)

[cf. Eq. (1.2)]. The exact eigenstates of the atom can be
precisely labeled by l only at zero field. (A common error
is to label the adiabatic levels on a Stark map —as they
are continued away from I' =0—by s,p, d, etc. , yet as-
surne the eigenstates retain spherical character even when
lFl))0.) At FWO each noncrossing level adiabatically
tied to E =E& remains dominated by that i)'j& so long as

lFl ((2lp&l/3n, i.e., where the Stark shift from E& is
predominantly quadratic [10]. The levels that cross at
F =0 [all but three in Fig. 1(a)] correspond to some field-
dependent mixture of l states. In any case, the basis func-
tions I itjt } themselves do not depend on time. Equations
(2.3) and (2.1) thus reduce to

which ranges from —(n —m —1) to +(n —m —1) in
steps hp =2, corresponding to n, =0, 1, . . . , n —I —1,
The eigenenergies (1.1) are now

E~ ( F)= ,' np—F, (2.10)

(2.12)

At large F (lFl =F,„),Hz&' approaches a diagonal ma-
trix having the hydrogenic Stark eigenvalues (2.10), while
the exact eigenstates approach I g } as F~+ oo .

The connection between the l and p bases is established
for fixed (n, m) by an orthogonal, field-independent trans-
formation [8,10,26] U~&™=(g& lg ):

n —m —1 n —1

U(nmtq y
—y U(nm)q (2 13)

p = —n +m+1 1=m

w here U' ' is the transpose of the matrix V'" '. To
avoid confusion with the time-evolution matrix U(t2, t, ),
we define the renormalized coe%cients

to first order. These levels appear as dotted lines in Fig. 1

and in subsequent plots of E(F). The most important
feature of these eigenstates is that each g is independent
of F as long as Fn ((1. This is the principal advantage
of working within the linear Stark approximation: the
hydrogenic states or levels cannot be mixed by any varia-
tions in the field whatsoever, so that Bg /Bt
=(Bf~/BF)F =0. Equation (2.3) reduces to

da
(2.11)

p

H,',",'(F)=E,(F)5„,+(y, l V„.„„lq,, ) .

where

1/2
l —m—l 51 1.
4l —1

(2.8)

u =Qn U'~m'
pl p1

which obey

y u /up/
= n 5it, y up/up / = n 5'

p 1

(2.14)

(2.14')

are the usual dipole matrix elements [22] for n =n' and
l =I'+1+ 1, times an angular matrix element of cos9
(the second radical). The Hamiltonian (2.7) is symmetric
and tridiagonal —the set of Eqs. (2.6) could represent a
system of coupled oscillators. Note that hydrogenic and
nonhydrogenic spherical bases are identical here because
all states with n'Wn are discarded. Hence the dipoles
used in Eqs. (2.7) and (2.8) are the hydrogenic ones. This
is only a matter of convenience, however. The use of
nonhydrogenic dipoles would necessitate redefinitions of
the eigendipoles [p } and transformation coefficients
U~&"

' defined for the diabatic basis [Eqs. (2.9) et seq. ]-
but the essential features of intramanifold level mixing
would not change.

n —1

H ""(F)=23npF5~ n— g p&u—~&u~ &

1=m

for the diabatic basis.

(2.15)

3. Adiabatic or local basis

Table III in Appendix A lists all u 1 up to l =3. We note
the following features: (a) the s state is symmetric; (b) the
larger (smaller) 1 —m is, the more (u„&) is weighted to-
wards the edges (center) of the manifold, where lpl /n (1
(lpl /n =0); (c) for m&0, the projection of it &

onto the
edge states is very small, (u~i ) =0 (n ™).When applied
to Eq. (2.12), the expansion (2.13) and the energies (2.5)
and (2.10) yield

2. Diabatic or parabolic basis

p =n, n2=2n, ——(n —m —1), (2.9)

The Iit„(r)} are the hydrogenic Stark states [8,23,24]
that diagonalize H when V„,„H(r)=0 in Eq. (2.1), which
is then separable in parabolic coordinates (g, ri, P). The
third good quantum number here is the z projection of
the Runge-Lenz vector [25],

The I
'Il (r) } are the nonhydrogenic Stark states

that exactly diagonalize H(F) at a axed field value
F: H%'F =E"4F The energy . eigenvalues [E } are
labeled from lowest to highest at I' & 0 by
q =0, 1, . . . , n —m —1. These levels appear as solid lines
in Fig. 1. As F~ ~ the adiabatic states reduce to the
pure diabatic states, p = —(n —m —1), . . . , n —m —1,
and we can then equate q with n, . When there are N+
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quantum defects for l ~m with pl )0, and X with

p& &0, the lowest X+ and highest N adiabatic levels re-
tain their ordinal positions when continued to F &0; the
remaining group of levels cross at F =0 and reverse their
order at F & 0 [cf. Fig. 1(a) with three shifted levels]. For
example, for one nonzero pl &0 the order of levels at
F (0 is, from top to bottom, q =

I 1,2, . . . , n —m —1,0I
[Fig. 1(b)]. As F~ —~ these adiabatic levels reduce to
the diabatic levels labeled trH=QE = n—giu, i,

q 1

(2.23)

states ['Il ] do depend on time because the linear com-
bination (2.17) varies with field through c . Time-varying
electric fields thus couple the adiabatic states; however,
the couplings in H' '(F) die off at large field (see Sec.
IIC)—in contrast to the off-diagonal terms in H "(F)
[Eq. (2.15)], which are independent of field. Note that the
trace of the Hamiltonian,

OI

n, = I0, 1,2, . . . , n —m —1I

p =
I (n —m——1), . . . , n —m —1I,

is constant in any basis [(2.7), (2.15), or (2.22)].
We now invoke the linear time dependence (1.6) and

further assume that there is only one nonzero p&, with

pI & 0. We define a rescaled time parameter

V(t)=pa, (t)f, =g b, (t)ql~ .
q

(2.16)

We can expand the eigenstates [ 4 ] in the diabatic basis
at fixed F,

(2.17)

respectively. However, the single noncrossing level
(q =0) switches from ni =n —m —1 at F &(0 to n, =0
at F &)0, while each level in the manifold of crossing lev-
els (q = 1, . . . , n —m —1) shifts one notch from
n i

=q
—1 at F«0 to n i

=q at F )&0. At F =0, the sub-
set of q states that do not cross coincides with the subset
of l states with p&%0.

In order to obtain the Hamiltonian in the adiabatic
basis, we write the general expansion (2.2) in the p and q
bases as

r=( 'nF)' —t=( 'n/—F)' F (2.24)

H " (r)=pr5 —Vu, u

where

(2.26)

Vi =p, n ( —,'Fn) (2.27)

is a fundamerital parameter measuring the relative impor-
tance of core coupling and ramp rate. (The subscript l
will be dropped from Vi when only one iMi is nonzero. )

Upon diagonalization of (2.26) [as in Eq. (2.18)], Eqs.
(2.20) —(2.22) become

which can equally well be regarded as a field parameter.
The diabatic Eqs. (2.11) and (2.15) now read

da
(2.25)

and write the diabatic Hamiltonian (2.15) in diagonalized
form (also at fixed F),

db
i =gH' '(~)b

7 I

(2.28)

Hdiab(F) =cFEFcF (2.18)

where eigenvectors form the columns of an orthogonal
matrix c (c is its transpose), and the energies [E
form a diagonal matrix E . The adiabatic and diabatic
coefficients are thus related by

b=cFa, a=cFb, (2.19)

where b and a are column vectors with elements b (t)
and a (t) Finally, sub. stitution of Eqs. (2.18) and (2.19)
into Eq. (2. 1 1) yields

dcpqH' '(~) =E'o i g c'— (2.29)

g c~'qp ~'q

Hqq, '(r) =Eq'oqq +i Bqqqq E~ E~

with rescaled energies E'=( —', Fn) ' E . The off-

diagonal coupling term in H' ', c'dc /d~=——I', is an
antisymmetric matrix. The derivative can be removed by
applying dH " /dr=p (diagonal) and d (c'c')/dr=0 to
Hdiab

'(F)b'dt (2.20)
Eq 6qq. +i I

qq
(2.30)

d ~
Hadi( F) EI' F~"

dt
(2.21)

BCpq

dt
(2.22)

Unlike the spherical and parabolic states, the adiabatic

In this representation all quantities depend on time
through F =F(t). H' ' is the effective Hamiltonian in the
large parentheses in Eq. (2.3) with k ~q, ak ~b,
Pk

where we have defined a special delta symbol,
, =—1 —5,=1 (0) if qWq' (q =q'). This is the compu-

tationally useful form of H' ', requiring only diagonaliza-
tion of Eq. (2.26). Note that the term it', while sugges-
tive of dissipative processes, does not represent the loss of
Aux but only its transfer among the adiabatic channels.

In the ~ scale the ramp rate is fixed at unity with V an
adjustable "coupling strength. " The energy scale is pro-
vided by the trace in Eq. (2.23), which now equals —n V.
The shift of the q =0 level at ~=0 also equals —n V, since
all the other levels are degenerate at ~=0, E'=0. The
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above reduction is useful in calculations where fixed time
steps are desirable. As V increases, the energy gap and
energy scale AE =n V expand while the field-time scale is
frozen.

~k(r)= ~k(ro)
2

+i Vu u g 8 J d1 e 2 (1 )
k'=i

B. Two-level Landau-Zener effect

The two-level case provides a familiar framework for
the multilevel LZE. This illustration applies to any pair
of crossing diabatic levels [27] (same n, m), corresponding
to hydrogenic energies p~ with arbitrary slopes p, and p2.
Ignoring all other states, the diabatic Hamiltonian (2.26)
now reads Ak(~ )=exp[ —,'(iVu, uz&ir/~s~) ] . (2.37)

(2.36)

where the upper or lower sign is taken for k =1 or 2, re-
spectively. If we assume the initial conditions Ak(ro) =1
alld 3k'( ro ) =0, repeated iteration of Eq. (2.36) produces
an infinite series in powers of (iVu&uz) . For ro~ —~
and ~~ ~ this series equals

Hdiab( & )

p]~—Vu ]
—Vu]u2

Vuiu2 p27 Vu2
(2.31)

Thus, the probability of making a diabatic transition,
1~1 or 2~2 (i.e., +~ + ), across the anticrossing is

where uk =u~& (k =1,2) are the projections for p =pk
onto the l state, and 2u =—u, +u2 ~ n is the total weight
of the two states. (For l =0, u

&
=uz =u =1.) The adia-

batic levels at field-time value ~ are

p'"= fa„(

( Vu, uz)=exp 277
bi —

Pz~
(2.38)

E+ = —Vuz+Pr+[(sr —Vw) +(Vu, uz) ]'

where

P = 2(pl +Pz) s q(Pi —Pz)WO,

(2.32)

(2.33)

To compare with the standard LZE result [2,8, 15], we
note that

~ Vu, uz ~
equals half the energy gap b,E and that

the slopes of the diabatic levels are pk =dEk /d~. Rescal-
ing energies and times to atomic units by the factors
( ', Fn) —' —of Eq. (2.24), we find

ak(r) = Ak(r)exp[ i ( —,'pkr ——Vukr) ] (2.34)

and of the Hamiltonian (2.31) into (2.25) yields

and q =+ denotes upper and lower levels here. The
center of the anticrossing lies at ~= Vw /s and
E= —V(p&uz —pzu & )/(pi —pz), where the level separa-
tion is a minimum and there is an energy gap [28]
b,E =2V~u, uz~. At fields ~r~ ))Vu /~s~ the adiabatic
levels approach the diabatic ones but are asymptotically
shifted from them by —Vuk (k =1,2). Note that the
sum of core-induced shifts from the hydrogenic positions
has the constant value [28] —2Vu, in accordance with
Eq. (2.23) (in the r scale).

An exact solution of Eqs. (2.25) is possible only in the
two-level case [16,29]. Substitution of

p diab e
—27'

7

( —,
' hE)

(2.39)
dE]
dF

dE2

dF

where the slopes are now dE /dF =—', np. Equation (2.39)
is the usual expression for diabatic transitions [15]; the
adiabatic-transition probability (q =+—++) is of course
P'"'=1 —P" . It is especially noteworthy that the ex-
ponent goes as V —(coupling strength) /(ramp rate), ac-
cording to the definition of V in (2.27).

To obtain a crude estimate of P " for the whole
manifold —i.e., for crossing from the lower edge state
(q =0) to the upper edge state (q =n —1) when there are
n levels —we can use the two-level result (2.39) as follows.
We take the gap energy to be AE =p&n a.u. , the
difference in slopes for the edge states (p =+n) to be 3n,
and equal weights u„ that add up to n (so ~u, uz ~

=
—,'n).

Then Eq. (2.38) or (2.39) gives
dA)

i = —Vu, u zexp[+ i (sr —2 Vwr) ] A z,d7-

dA2
i = —Vu, u z exp [ i (sr —2—Vw r ) ]3,

(2.35)

pdlab e
—~V «& (2.40)

for the whole manifold. The exponent's characteristic
dependence on V =pl/F is correct, though the factor
n/4 turns out to be an overestimate for large n. Note
that the actual two-level manifold [27] n =2, m =0 has

in the interaction representation. This pair of equations
reduces to uncoupled second-order difFerential equations
for A

&
(r) and 3z(r). The solutions are parabolic

cylinder functions whose behavior represents tunneling
with a complex energy through a mock potential barrier,
as was shown by Zener [15].

Alternatively, integration of Eqs. (2.25) or (2.35) from
an initial ~o to a final ~ yields the integral equation

pdiab e
—~v padi 1 e 7I v n =2 (2.41)

according to Eq. (2.38).
The larger the coupling V between diabatic levels —or

the slower the ramp rate —the greater will be the transfer
of population between states 1 and 2 governed by Eqs.
(2.35). The time evolution of ~ak(r)~ is depicted in Fig.
2(a) for three disparate values of V and the following pa-
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Hadi( )

E'
—ir E+. (2.42)

with eigenvalues (2.32) and coupling

1..0

(aj
s s

'~ ~ ~
1 ~ i ~ as

'
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t g n

sit i I
' I i I/ I1 I/ I Ir

0.0

~ O. B.

~0 6-

COO 4-

& O. Z-

2 3 4 5—5 —4 —3 —2 —1 0

rameter values: u, =u2=1, p, =+1, p2= 1 ~o= 5,
and initial conditions a, (ro)=1, az(ro)=0. The obvious
Aopping between states persists at ~ & 0 on account of the
constancy of the terms —Vukuk, in H ",Eq. (2.31). At
large but finite ~, the diabatic states approach but do not
quite equal the eigenstates: their energies differ by the
constant shift —Vuk even as ~~~, hence the oscilla-
tions. Their envelopes die down in proportion to ~ ' as
the level spacing (=2r) increases, and their mean ap-
proaches the limits (2.41) for k =1~1 and k =1~2,
shown by arrows in the figure.

The adiabatic populations ~b+(r) ~, plotted in Fig. 2(b),
approach the asymptotic limits more smoothly. The adi-
abatic Hamiltonian (2.30) follows from diagonalization of
the matrix (2.31):

—,'( Vu, u2/s)r =r' = —I..
(r r—) +( Vu, uz/s)

(2.43)

The off-diagonal element has the form of a Lorentzian in
the field-time variable with full width at half maximum
(FWHM) [30]

«= 2
I
Vu i u 2/s I

=~E/Is l, (2.44)

which functions as an effective width of the anticrossing
[31]. Most of the population transfer evident in Fig. 2(b)
is thus confined to the range ~r~ («=2V, while the rap-
id falloff of I -~ at ~&& V ensures a smooth approach—vr V'

After ramping through a manifold, the final-state pop-
ulation distribution for a given initial state q depends on
the single parameter V (if only one pi is nonzero). When
considering full traversal of an avoided crossing, we will
usually present the adiabatic level pop-ulations

~ b~.(r) ~

vs
V, which will be called P ( V) in the limit

For example, Fig. 3 shows the adiabatic
(q~q'=q) and diabatic (q~q'Aq) crossing probabili-
ties P~ ~(V) for the two-level case, Eqs. (2.41). The two
curves P+ + and P are identical, as are the pair
P+ and P +. In the multilevel case this is general-
ly not so. However, for given initial q, Pq z(V) will al-
ways mimic the rising adiabatic-transition curve in Fig. 3,
and there will always be one final state q'Wq whose
P ( V) follows a falling diabatic-transition curve corre-q~q'
sponding to some P z( V). As r~ ~ the distributions
for these two final states attain

PV~O V~O
(2.45a)

in the diabatic, fast-slew limit (F~ ~ or @1~0),and

(2.45b)

1.0

~ O. B

—0.6

~ O. 4
C3

LO CQ0 4-

0.0—5 —4 —3 —2 —1 0 1 2 3 4 5
g. 0.2-

0.0
I

0.5
I

1.0 1.5
FIG. 2. State populations for n =2; m =0; initial

a1( —5)=b ( —5)=1; and V=0. 15 (solid lines), 0.40 (long-
dashed lines), and 0.75 (short-dashed lines). Arrows at right:
limiting LZE probabilities (2.41). Thin (thick) curves: diabatic
(adiabatic) transitions. (a) Diabatic-basis probabilities ~a„.(r)~:
k'= 1 (thin lines), k'=2 (thick lines). (b) Adiabatic-basis proba-
bilities ~bq ir)~: q'=+ (thin lines), q = —(thick lines). Insets:
two-level bowties, as in Fig. 1.

FIG. 3. Limiting transition probabilities vs V for full traver-
sal through a two-level manifold, Eqs. (2.41). Diabatic transi-
tions (k~k'=k or q —+q'Wq), curve D; adiabatic transitions
(k~k'Wk or q~q'=q), curve A. Note limits (2.45a) and
(2.45b) ~
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in the adiabatic, slow-slew limit (E +—0; V) 1 in prac-
tice). All other q'Aq vanish in both limits.

C. Many-state diagonalization and adiabatic
coupling at fixed field

In this subsection we discuss procedures for approxi-
mating H'"'. A full manifold of n —m levels can be treat-
ed analytically in a static field [10] (i.e., at fixed r): the
diabatic Hamiltonian (2.26) can be diagonalized, and the
eigenvalues [E'] and eigenvectors [c' J may then be
used to construct the adiabatic Hamiltonian (2.30). Al-
though this is possible for any number of nonzero pt via
the methods of Ref. [10], we assume here that p& =0 for
all l except p& )0 for one l )m. [The reader should refer
to the exemplary plots in Fig. 1(b) for the bowtie eigen-
values, and to Fig. 5 below for the coupling elements I qq.

for n =10 and l =0; the matrix elements I' ~ shown in
Fig. 5 are representative of both the magnitude and func-
tional form of I"

~ for any n. ] The time dependence of
the state amplitudes cannot, however, be solved analyti-
cally as in the two-level case. Nevertheless, the analytical
structure of H' ' will help elucidate our numerical results
for the transition probability curves P ( V).

The eigenvalues of H " are the n —m solutions E' of

~
(rp —E'1)—Vua

~

=+ (p'r E') Vg u„—, g —(p'~ E')—
p p p' «p)

u
1 —Vy ' +(p'r —E )=o.

E7
(2.46)

2
upt

pw —E'
1

V
(2.47)

At r ))Van expansion of (2.47) in powers of ( Vlr) yields

On the first line of Eq. (2.46), p is diagonal, 1 is the unit
matrix, and u is a column vector of the coefficients (2.14)
for a given l; the sums and products range over
p = (n —m —1), . . . —, n —m —1 in steps of 2. (When
I =m =0 the matrix uG is just an n X n matrix filled with
ones —cf. Appendix A. ) The nonhydrogenic energies are
therefore determined implicitly from

n, , =0 as v~0, where it evolves into the pure spherical
level that is shifted to —nV. (in the r scale). Adiabatic
curves that are likewise split from the manifold at ~=0
are designated shifted levels and equal [pl&0] in num-

ber. Once the manifold of [E~] is found it is not neces-
sary to solve Eq. (2.47) for E' o, since Eq. (2.23) implies

Eo= —nV —g Eq
q (%0)

(2.49)

at all ~.
The knot of manifold levels at ~=0 unravels when we

rescale the energy so as to remove the linear-~ behavior:

E'= 2&[A ~—
—,
' (n —m )],

,' [E'/r—+(n —m )],
where

(2.50)

2w 3nF
4ptn

(2.51)

is a rescaled field variable. Substitution of Eqs. (2.50) and
(2.51) into Eq. (2.47) yields

n —m —1

n) =0

uppl

n, +—' —A,~
2

(2.52)

n —1 n —
A, ~=~tan(mA~)+in

—0 n)+ — A,2

(2.53)

Other values of I or m result in similar but more compli-
cated functions of k+; we explicitly consider eigenvalues
only for l =0 with @0%0for the s state [32].

The solution of Eq. (2.52) for the manifold levels fol-
lows from the inversion of (2.53) [10]:

where the dependence of upt on n, in the sum is implied
by Eq. (2.9). In the A, scale, the hydrogenic solutions
E'=ps (V—+0) correspond to Af =ni+ —,'. They mark

the poles of the left-hand side of (2.52) and serve to delim-
it the branches of a tangentlike function of A, +; each
branch represents a manifold level X+. As was shown in
Ref. [10], this function reduces to a simple approximate
form for the symmetric case l =m =0 (which has the dis-
tribution ufo =1 for all p):

E =p~ —Vu t—Vu, ,
2 2 u 2

p (~p) p
(2.48)

1
A,~~=q+ —tan '[(&p — ~o)/m], q =1, . . . , n —1,

(2.54)
which shows how each solution E approaches a particu-
lar hydrogenic energy p~ to within a constant asymptotic
shift —Vu t. The indices q and p are related at ~&& V
through q =n, and Eq. (2.9), and are shifted by one at
w&& —V, as discussed in Sec. II A. The adiabatic curves
q = 1, . . . , n —m —1 in fact lie between the diabatic
curves n, =q —1 and n

&
=q over the entire range—co (r( ~, as is evident in Fig. 1(b). This subgroup of

levels appear to form a distinct Stark manifold —they all
cross at ~=0 in a pseudohydrogenic bowtie —so they will
be referred to as the adiabatic manifold levels. The
lowest curve q =0 veers below both n& =n —m —1 and

n —
qo =ln

q
(2.55)

in the A, scale, while eigenvalues [E'] in the r scale fol-
low from (2.50), and [E ] in a.u. from E =(3Fn)'~ E'.
The branch of the tangent in (2.54) has been chosen to lie
within (

—,'rr, ,'vr) so that A, ~+ approac—hes—the hydrogenic
solutions A,+=n, +—,

' as y =2z/V ~+~, with

q =n, =1, . . . , n —1. Figure 4 shows [A,~J for n =10.
Each eigenvalue (2.54) increases by unity over the range

as the adiabatic level switches from
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10 9

bracket the qth level [i.e., n i =q or q
—1 for qAO; cf. Eq.

(2.54) and Fig. 4]. The normalization condition

g~ ~ c~~~ ~

= 1 determines Nf upon application of the
operator d /dip to Eq. (2.52):

5
N+=+

q

n —m —1

n) =0

Apl

n +—' —A,~1 2 q

2 —1/2

1

0
1/2

d A.~
(2.59)

—6 —4 —2 6

FIG. 4. A.-scale eigenvalues A, q" (solid curves), Eqs. (2.54) and
{2.55), vs y=2~/V for n =10, I =0, @0=0.1. Numbers label
adiabatic manifold levels q =1, . . . , 9, shifted level q =0. Dia-
batic levels (dotted curves), A, =n&+ 2, n& =0, ~ . . , 9. Crosses

mark the center of each q branch, y= o.~.

A f=n ( —,
' n —

q~
'

)
—g k~,

q=1
(2.56)

which has a simple pole at cp=O, as seen [32,33] in Fig. 4.
Note the approach of A,g to the hydrogenic edge-state
values A,(= n —

—,
' (i.e., n, =n —1) as y~ —~ and A,(=—,

'

(i.e. , n, =0) as qi~~. Also note that one recovers, via

Eq. (2.50), the r-scaled asymptotic levels (2.48) from Eqs.
(2.54) —(2.56).

The Schrodinger equation in this "untwisted" scale,
H " (ip)c+=c+A.+, follows from the Hamiltonian (2.26)
and Eq. (2.50):

kq lp 2
to kq Ip +

2
The center of the jump occurs

at ip=o ~: i.e., at ~(0 for q = [ —,'n]+ 1, . . . , n —1 and at
~) 0 for q =1, . . . , [ —,'(n —1)] (and at ~=0 for q = ,'n-
when n is even). Here, the square brackets mean "in-
tegral part of." Retwisting the bowtie back to the energy
scale via (2.50) results in the symmetric fanning out of the
adiabatic manifold with respect to the hydrogenic one
[10] at ~=0 [cf. Fig. 1(b)]. The shifted level is obtained
from the A,-scale version of Eq. (2.49),

n —1

where the plus sign applies to all q at all y—except q =0
at ip) 0, for which the minus sign is to be used. (The sign
convention for c~ is discussed in Appendix B.) For y=O,
insertion of the appropriate limits of A,g and Nf into Eq.
(2.58) yields lim +Oc~+~=+u~&/&n, which is seen to
reproduce precisely the spherical I state prescribed by
Eqs. (2.13) and (2.14). The eigenstates of the adiabatic
manifold [10],however, are diagonal in neither the spher-
ical nor the parabolic basis at y=0.

Construction of the adiabatic Hamiltonian (2.30)
proceeds with the evaluation of the matrix c'pc'. [Here
and below, substitutions such as c+~c accompany the
change of parameters cp —+~, Eq. (2.51).] A simple calcu-
lation yields

g c+pc+, =2N+N+ giq
p

=2yN+N +, (2.60)

dA, ~ dA, ~

q q'

2
qq qq'

where we have used Eq. (2.58) for c~ and c~,; Eq. (2.9)
for p and n „with n~ = ( n, + —,

' )„;c~c+=1; and the eigen-
value condition (2.52). We can return to functions of ~ by
writing @=2r/V in the eigenvalues (2.54) and normaliza-
tion factors (2.59), and by rescaling the energy denomina-
tor of Eq. (2.30) as per (2.50). The antisymmetric adia-
batic coupling matrix I in H' ' becomes simply

' 1/2

[(n, + —,'1)—ip 'uu]c"=c "A." . (2.57)
1/2

dk, dk
q q'

dv' d7

0
c~ =N+

(n +-')—
q 1 z p

(2.58)

where X+ is a normalization factor for the qth vector at
field y. The composition of eigenstates in the diabatic
basis, Eq. (2.17), is obviously dominated by one or the
other of the two diabatic states whose hydrogenic levels

[In this discussion the parabolic channel index p is re-
tained, so that elements such as (n i + —,

'
) form a diagonal

matrix corresponding to values of p given by Eq. (2.9).]
The eigenvectors of Eq. (2.57)—which form the columns
of c+—are obtained by inspection using the eigenvalue
condition (2.52):

qq' (2.61)

where the minus sign applies only when z) 0 and either
q =0 or q'=0 (see Appendix B).

Taken together, Eqs. (2.50) for E' and (2.61) for I ',
completely specify H' '(r)=E'+iI' at a fixed field or
time in terms of the A,-scale eigenvalues [A,'] determined
by Eqs. (2.52) and (2.56) [33]. The expression for I" is
exact —for one nonzero pi and any I or m. [The result
(2.54) applies only to the case I =0, however. ] Note that
in the first form of (2.61), the only dependence on V ap-
pears in the explicit factor 2/V; the remaining function of
the rescaled variable y depends only on the quantum
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numbers n, I, and m through Eq. (2.52).
In the symmetric case (I =0), the coupling among adi-

abatic levels follows from the eigenvalues [A,P given in
Eqs. (2.54) —(2.56). Application of Eq. (2.61) involves

derivatives dA, +/dy of the arctangent in (2.54), which
yields Lorentzian-like factors [m +(y rr—~) ] ' . One
finds that the matrix element coupling any two members
of the adiabatic manifold reduces to

~ =2pt
qq'

(q —q')+ —tan
1 2+5

(q rr,—q )'+(~' 5q,
—

)

[[(y—o ) +(ir —5 )] +(2~5 ) I' ' q, q %0, (2.62)

where y=2r/Vand

(2.63)

Equation (2.62) is written in this form to emphasize two
features. (1) The factor 1/I J'~ is actually the geometric
average of two Lorentzians having equal widths by=2~
but centers displaced in y by 2~5&q. ~. If the splitting is
small and ~5 ~

(m, the radical is adequately approximat-
ed by a single Lorentzian of width 2(~+5 /rr). If
~5&~ ~

)m, on the other hand, a double-lobed structure ap-
pears; however, the definition (2.55) implies that this can-
not occur until at least n )e"+1=24, when the edge
states (q =1, q'=n —1) are sufficiently split. (2) I

~~
in-

cludes an overall factor (q —q'+ ) '. The
arctangent term lies between 0 and —,

' if ~5&&. ~

~ ~ and nev-

er exceeds 1 if ~5~~ ~
)~; it can be ignored compared to

b,q =q' —q. (That is, the factor A,
' —

A, '. has a relatively
small step-unstep variation from the constant value

q
—q', cf. Fig. 4.)

Thus, the matrix element coupling pairs of m =0 man-
ifold levels is localized in field roughly like a Lorentzian
centered at ~= —,

' Vo.
qq

-2n and therefore will be negligible.
The elements of I"are plotted as VI

&
~ vs y=2r/V in

Fig. 5 for n =10, I =m =0, and q') q. This scaling pro-
duces a map of functions of field that is independent of V,
i.e., of pj and I'. The functions shown in Fig. 5 were cal-
culated via numerical diagonalization of H " and direct
construction of H' ' in the manner of Eq. (2.30). All the
positive matrix elements are those coupling the shifted
level to the manifold levels, I 0, these are described
below. The negative ones represent coupling among adia-
batic manifold levels, Eq. (2.62); they are fairly well
represented by Eq. (2.64). The latter fall into groups ac-
cording to their values of ~b,q~: the eight values most
negative at r =0 correspond to

~
b,q ~

= 1, i.e.,
I,2, . . . , I 89. Successive groups of fewer levels corre-
spond to ~b, q =2, 3, . . . , 8, the coupling I ~9 being small-
est in magnitude. As might be expected, the closer two
levels are to one another„ the more strongly they couple.
However, the manifold levels are degenerate at ~=0, so

0.45

1

qq (r ,' Vo
~ ) +—( —,'hr

~
)—(2.64)

with FTHM

b, rqq, rrV(1+5', ,, /~——') . (2.65)

0.15.
f

I

0.00
The interaction strength scales like (b,q), with a max-
imum value given by

1 2/~I" ( maximum )=-
qq Vq —q'

(2.66) 'r tt"tt t' t

and asymptotic form
I ' I

—6 —4 —2 0 4
(2.67)

The quasi-Lorentzian behavior of the adiabatic coupling
elements (2.64) is reminiscent of the exact two-level result
for 1 +, Eq. (2.43)—a Lorentzian [30] with a FWHM
that scales like A~- V. Note that, although Eqs.
(2.62) —(2.67) apply only when

~ 5qq ~
(m, any double-

humped element I '
~ (for ~5,

~
) vr) will be smaller than

the largest I'
~ (those with ~Aq~ =1) by at least a factor

FIG. 5. Adiabatic-level couplings VI
qq

vs cp for same pa-
rameters as Fig. 4, and q' & q. Positive-valued curves: coupling
to shifted level, q =0. Negative-valued curves: coupling within
adiabatic manifold, qAO and q'WO, ~q

—q'~=1, 2, . . . , 8. Ar-
rows p oq Ecf (2.55), approximately mark peaks of I qq.
Scaling shown produces a po- and F-independent coupling ma-
trix I". See the text.
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"close" in this context refers to separation in the A,

scale —not to an energy difference. Although the adia-
batic manifold mimics the hydrogenic bowtie in appear-
ance, the coupling I produces behavior opposite to that
of the diabatic bowtie: in the diabatic limit (V~O), a
rapidly ramped field thoroughly mixes the adiabatic lev-
els, whereas they remain unmixed in the adiabatic limit
(V—+oo).

It is not so straightforward to calculate I 0~, since A,g is
a rather complex function of the other [A,P [cf. Eqs.
(2.54) —(2.56)]. One could estimate the sum in (2.56), but
even an analytical guess for A,g must then be substituted
into Eq. (2.61) along with the I A, , ] and their derivatives;
the result is inevitably unwieldy [34]. We content our-
selves here with noting the general appearance of the
q =0 family in Fig. 5. Each member I0 ~ is a quasi-
Lorentzian centered at r= —,

' Vo (y=cr ) with FWHM
=2V. At &=0, A,g is finite: in the limit r~O, the

leading term of A,g is ny an—d of its derivative is
d A,

g/dylan

rp . Equations (2.54) and (2.61) then imply

(2.68)

In particular, the level whose coupling to q =0 has the
smallest peak value is q'= ,'n (if n —is even), for which
o'q =0 and I 0„&z=(2/nV)n ' at &=0. Yet even this is
larger than all the intermanifold couplings (2.66) when
n ~10 (though smaller than some Aq~=1, 2, . . . cou-
plings when n & 10). The very largest peak coupling be-
longs to the adiabatic edge states, q'=n —1 and q'= 1, at
r =+ V ln&n —1 (see Fig. 5). Most importantly, the
maximum coupling for I =0 is found to have a scaled
value [35], V10,= VI 0„,=0.3S, that is essentially in
dependent of n. This is almost twice the largest possible
intra-manifold value VI =2/~ for Aq =1.

Ramping through the whole n manifold —at any I'—
does not simply involve a sequence of independent
Landau-Zener events. In light of Eq. (2.39), one would
naively expect a ramped electric field to mix any pair of
adiabatic levels to varying degrees in a kind of LZE. But
the final probability distributions P ~ are ultimately
complicated by the fact that the interactions I, though
individually localized in field, completely overlap one
another (see Fig. 5). In this sense, "scattering" from the
bowtie is an inherently coherent, multilevel process.

One other factor to consider, suggested by the two-
level-mixing picture, is the levels' slope or "velocity"
difference in the denominator of the Landau-Zener ex-
ponent in Eq. (2.39). This difference is smallest between
adjacent manifold levels, which also have Aq =1 and the
largest coupling; hence adiabatic neighbors will undergo
the most mixing by a ramped field. The effect is even
more pronounced for the shifted level, which in addition
to having maximal coupling to the two adiabatic-
manifold edge levels over a broad field range lies nearly
parallel to them. [This corresponds to s =0 in Eq. (2.43).]
These facts will account for the tendency of an m =0
population initially in any one state q at ip((0 to wind
up predominantly in either the same state (q

' =q) or one
of its neighbors [36] (q'=q+1) at r»0, no matter what

the ramp rate. In particular, a q =0, I =0 level begun
at 7 p ((0 will emerge at ~))0 in a mixture composed
mostly of q =0 and the edge level q =n —1 (with some
q =1).

III. THE TIME-EVOLUTION OPERATOR

U(ta, t0)=1 . (3.2)

U(t, t0) also evolves according to the Schrodinger equa-
tion (2.3):

(3.3)

where the time translation generator

&(t)=H(t)+i(jk~y) (3.4)

is a Hermitian matrix. & functions as an effective Hamil-
tonian, its second term coming from the ramp's effect on
the basis states themselves (i.e. , on the column vector g;
g is a row vector). In the three bases introduced in Sec.
II A, & stands for one of the Hamiltonians: H'"" [Eq.
(2.7) and (2.8)], H " [Eq. (2.15), (2.18), or (2.26)], or H' '

[Eqs. (2.21) and (2.22), or (2.29) and (2.30)].
The formal solution of Eq. (3.3) is

U(t, t0)=exp —i I dtVf(t')
0

(3.5)

However, the usual interpretation of the integral as a lim-
iting sum of actions &(t')dt' cannot obtain, since the
Hamiltonian generally does not obey [&(t'),&(t")]=0
when t'Wt". Equation (3.5) holds only if & is strictly
constant in time or if variations in &(t) are so slow that
the evolution is truely adiabatic [and the term with
d@/dt in (3.4) approaches zero]. The evolution must be
represented instead by a sequence of transformations
U(t+b, t, t) over small time steps At taken in the limit
b, t ~0, so that Eq. (3.S) applies but only over
infinitesimal time intervals. This is the Riemann product
representation [17] of U(t, t0):

The history of the Rydberg electron in the Schrodinger
representation is contained in the state amplitudes
Iak. (t)] in Eq. (2.2), for a generic basis of n —m states la-
beled k or O'. These amplitudes form a column vector
a(t) that evolves in time according to the Schrodinger
equation (2.3). Since at t =t0 one may independently
populate any one of the n —m states, a complete descrip-
tion of 0'(t) requires the calculation of n —m state vec-
tors ak(t), each representing the evolution of the system
beginning in a different k state. The propagator or time-
euolution operator U in this representation is just the
square, unitary matrix U consisting of the column vectors
[ak(t)]. This definition implies that a set of amplitudes
a(t) at time t is generated from arbitrary initial condi-
tions a(t0) by

(3.1)

while the initial conditions on U are



DAVID A. HARMIN

U(r tp): lliil U(t~ t~ i) U(t2, r, )U(r„to)
&—+ oo

N= lim + exp i—f ' dt'~(t')
&~ oo j—1

(3.6)

U(r, t, ) =U(t, t, , )U(t, „t,), (3.7)

(4) Evaluation of the anti-Hermitian matrix
[ —i Jdt'&(t')] over a microscopic interval is always ac-
companied by its exponentiation to yield the unitary fac-
tor U(tb, t, ). The latter requires a diagonalization in
analogy to Eq. (2.18), but here it applies to the integral of
&(t), a Hermitian matrix:

tb

M(t, , t. )= f dt'~(t')=XAX",
Q

so that

(3.8)

U(tb, t, ) =exp[ i M(tb, t, )]=Xe ' X— (3.9)

The columns of the unitary matrix X contain the eigen-
vectors of M, and the diagonal matrix A its (real) eigen-
values.

(5) Finally, the probability of beginning in any state k
at t =to~ —m and ending in any state k' at t = ~to~ ~ ~
1s

Pk „= lim ) U, „(~t,~, r, )~' .
t ~—co0

(3.10)

where t& = t. —The interval [to, t] has been subdivided into
intervals of widths At = t —t i that satisfy

g, At =t —to; the subdivisions need not be equal . The
method outlined below actually uses two levels of parti-
tioning. The result (3.6) is exact [17] in the limit b, t —+0
for all the finest-resolution time steps At .

In order to calculate U( ~, —~ ) for a linear-ramp po-
tential in Eq. (2.1), we first truncate the total time domain
to [to, ~to~]. The boundary to ((0 is chosen to be so large
that it lies outside the mixing region discussed in Sec.
IIC (see Fig. 5): i.e., jro~ ))V, ~to~ ))2~@~l3Fn . This is
equivalent to the hydrogenic-limit condition (1.3). Thus,
the time to = —F „/F should correspond to a field F „
where the Stark splitting greatly exceeds the largest
core-induced 1eve1 shift.

The practical implementation of Eq. (3.6) for a given
generator &(t) now boils down to the following tasks.

(1) The entire interval [to, ~ to ~ ] is divided into a fixed
set of X "macroscopic" steps I b, t J tailored to gross vari-
ations in phases like J dt'[Fz(t') E~,(t')]. —

(2) Each macroscopic interval [t i, t ] is further sub-
divided into X' ~ 1 'microscopic" intervals of width

tj 6tj /ling Th ese m u st be sm a11 en ou gh to en su re
convergence of U( t, t, , )—to a specified accuracy—
over the jth macroscopic interval.

(3) Each microscopic interval [t„tb ] (where

t~, ~ t, ( tb =t, +5 t 5 r ) is assigned a unitary-matrix
factor U(tb, t, ), in analogy to the factors in the second
line of (3.6). All X' such matrices are multiplied together
to obta'n U(t, t i) at the "current time" t =t . Each
such (converged) macroscopic propagator is used in turn
to update the time evolution operator to the current time:

The results I'k & depend on the quantum numbers n

and m, the atomic parameters [p& J, and the experimen-
tally controllable parameter F; these define a "given gen-
erator" &(t). Theoretically, we can vary the quantum
defects and the ramp rate arbitrarily, but the number of
independent parameters is actually one less. Since we are
considering Pk „, in the limit ~to~ or ~ro~ ~ ~, any time
scale suffices. The rescaling (2.24) efFectively fixes the
ramp rate at unity, producing the dynamical equations
(2.25) and (2.26) (in the diabatic basis). In general, the
Hamiltonian

n —18 " (r)=pr5 —g Viu iu~ i
1=m

(3.11)

A. Magnus corrections

The time evolution operator for a microscopic interval
is better approximated by Eq. (3.9) as the step size
6't =tI, —t, decreases. However, the approximation can
be improved for any finite interval [t, , tb] by modifying
the matrix M(tI„t, ). The form of M(tb, t, ) given in Eq.
(3.8) is just its lowest-order form. Magnus corrections to
M(t t, i) allow e ™to converge much more rapidly to
the exact U(tb, t, ). Hence wider microscopic step sizes
can be used and many fewer diagonalizations need to be
performed in toto.

Magnus's approach [18,37] resembles a WKB-type ap-
proximation in t. Insertion of the ansatz (3.9) into the
Schrodinger equation (3.3) leads to an equation for

involves one parameter Vt per nonzero quantum defect,
defined in Eq. (2.27). This means that at a given ramp
rate F there is a typical time scale br& -—0 ( V&) for each i
over which the adiabatic q states are dynamically coupled
during the ramp. Consequently, the final-state probabili-
ties P

z (F) will exhibit general patterns extending over
different scales in F (see Sec. V).

Details of the numerical procedure for calculating
U(~to~, to) are discussed in Appendix C, but two impor-
tant refinements of the above tasks deserve mention here.
The computationally most expensive step listed above is
the matrix diagonalization (3.8). The total number of mi
croscopic intervals visited at all stages of the calculation
should therefore be minimized. But a desired level of ac-
curacy over the jth macroscopic interval is attained by
increasing the number A ' of microscopic steps —thereby
decreasing the step size b, 't —until U(t, t~, ) is

sufficiently converged. It is desirable to choose macro-
scopic step sizes and their microscopic subdivisions
dynamically if possible, so convergence to the exact
U(

~ to ~, to ) is optimized; see Appendix C. The other,
more interesting refinement is discussed below in Sec.
III A and in Appendix D, wherein Magnus corrections are
employed to hasten the convergence of U(tb, r, ).

Symmetries of U(t, to) further permit a halving of the
computational effort required to obtain U(~to~, to). Pre-
cise analytical expressions for U(~to~, to) or U( ~, —~ )

are otherwise elusive, though explicit expressions for
P~ ~, ( V) are available in the limits V~O and V~ oo;
these results are presented in Sec. III B.
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M(t, t, ) [37]:

CM

exp(CM) —1
(3.12)

The operator CM effects commutation of a matrix with
—i M: CMZ = i [—M, Z], CMZ = —[M, [M,Z] ], etc. ,

where Z is any square matrix the same size as M. Expan-
sion of the operator series inside the brackets and integra-
tion over [t„t]yields

M(t, t, ) = f dt'(1 —
—,'CM+ —,', CM ——„',CM+ )%'(t')

a

= f dt'&(t')+i ,' f —dt'(M(t', t. ),&(t')]
a a

—
—,', f dt'[M(t', t. ), [M(t', t. ),&(t')]]

(3.13)

+M"'(t, t, )+ (3.14)

Substitution of this series into Eq. (3.13) and collection of
terms according to their number of commutators gives
each M'"'(t, t, ) (n ~ 1) as an n-fold integral of products of
n unequal-time matrices &( t ' ). The ( n + 1 )th-order
Magnus term essentially measures d"&Idt" via n

unequal-time commutators —subsequent terms diminish
according to the smoothness of &(t).

Explicit expressions for MI "I(t, t, ) for an arbitrary gen-
erator &(t) can be found in Appendix D and in Refs.
[18,19]. Of special concern for the bowtie problem are
Hamiltonians of the form

&(t)=P+F(t)Q (3.15)

with time independent m-atrices P and Q. Both H'~" and
H " have this structure, as does the Hamiltonian in any
other basis obtained from the l or p bases by a time-
independent transformation. [H' ', however, does not
simplify in this way since c in Eqs. (2.17)—(2.19) depends
on F(t).] With this structure, the multiple integrals of
MI"'(t, t, ) reduce to multiple integrals over a presumably
known function F(t) The multipl. e commutators of P
and Q depend on neither t nor F; they can be computed
once for given n, m, and [p, ], and stored prior to all

ramps through the manifold. Explicit expressions for
M'"'(t, t, ) of order n =1—3 in terms of integrals of F(t')
are also given in Appendix D.

The choice of a linear ramp F(t)=Ft in Eqs.
(3.13)—(3.15) implies

M(t, , t. )= (P+QF t)bt+i[P, Q] —,', F(bt)'

—[[P,Q],Q]—„',F'(At)'+ O((b. t)') (3.16)

up to third order, where At = tb —t, is the step size and

where we have used the boundary condition M(t„t, ) =0
to match Eq. (3.2). This integral equation can be solved
by recursive substitution of M(t, t, ) back into the in-

tegrals, which calls for a perturbation-series expansion
for M(t, t. ):

M(t, t. )= M"'(t, t. )+M"'(t, t. )

t= —,(t, +tb) is the midinterval time. Notice that the
term linear in b, t is just M" '(tb, t, ) =A(t )b, t, i.e., the un-
corrected integral of Eq. (3.8). All higher-order terms

~ n 71p +2'
M'"'(tb, t, ) scale like (F) a(At) a with n =np+n&,
where np and n& are the numbers of factors of P and Q,
respectively, in a term's commutator(s) (see Appendix D).
The scaling with powers of At implies that higher

1b
Magnus corrections to f,'dt "H(t') converge more rapid-

ly as At decreases.
Equation (3.16) is the working formula in our calcula-

tions in the spherical and parabolic bases [38]. In the
former case P is diagonal [cf. Eq. (2.7)] whereas in the
latter Q is diagonal [cf. Eq. (3.11)]. The adiabatic basis
requires instead multiple numerical integrations of &(t');
hence calculations of M ~ (tb, t, ) tend to be tedious and
slow to converge. In any case, once M(tb, t, ) is obtained
for a microscopic interval [t„tb] it is diagonalized and
used to construct U(tb, t, ) as in Eqs. (3.8) and (3.9).

B. Symmetries and limiting cases of U( f' to )

Symmetries of the time evolution operator can be ex-
ploited in computations to reduce the number of indepen-
dent elements of U. Specific relations among elements
Uk k(tz, t, ) may depend on the particular generator &(t),
basis states (k', k), or times t& and tz in question. We as-
sume th ta.&(t) conforms to the stricture

U(t, , t, )=[U(t„t, )] '=[U(t„t, )] (3.18a)

where the interval [t, , tz] is arbitrary here. The unitarity
of U follows of course from the hermiticity of & in the
Schrodinger equation (3.3): U U=const=1, so ortho-
normality of the state vectors persists [cf. Eq. (2.4)]. The
time parity operation t~ —t (and to —+ —to) applied to
Eq. (3.3), (3.5), or the sequence of infinitesimal transfor-
mations (3.6) yields

U( —t, , —t, )=((U(tz, t& ) »* . (3.18b)

A third operation combines the above two, whereby time
advances in the negative-time domain:

(3.18c)

Note that the validity of Eqs. (3.18b) and (3.18c) depends
on the constraint (3.17) on &(+t), and can be verified
with the help of Eqs. (3.8) and (3.9).

The relation (3.18c) renders calculation of U(~to~, to)

(3.17)

where & is the transpose of &. The special delimiters
(( )) have a dual purpose: they indicate multiplication of
each row-column pairs of the enclosed matrix by an arbi-
trary phase factor, as well as possible permutation of the
state labels [k] (i.e., the rows and columns of the matrix)
upon t~ —t. All of our Hamiltonians for the linear
field —H' ", H "",and H' ' —obey Eq. (3.17) (see Appen-
dix B).

We note three time-based symmetry operations on
U(tz, t& ). Time reversal, according to Eqs. (3.2) and (3.7),
implies
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unnecessary in one half of the time domain, since

U( —t(), t() ) =U( —t(), 0)U(0, t() )

=U( —t„o)(&U( —t„o))) '
= « v(o, t, ) )) 'v(o, t, ) . (3.19)

M(t, to). The high-F, low-V result will generalize the
two-level result of Sec. II B.

Consider first the diabatic limit, where the parabolic
basis is appropriate. In the ~ scale the Schrodinger equa-
tion (3.3) for the general diabatic Hamiltonian (3.11) be-
comes

(Recall that we take to & 0.) Thus, a full traversal
through the manifold can be completely described by a
Riemann product of factors U(t, t i) [such as Eq. (3.6)]
for macroscopic intervals restricted to either t ~0 or
t & 0. Equation (3.19) further implies that U(

~ to ~, to ) and
indeed U( ~, —~ ) are symmetric unitary matrices—
aside from some possible minus signs and a permutation
of either rows or columns. When orthonormality is taken
into account, the number of independent probabilities
Pk k, , Eq. (3.10), is therefore —,)(n —m)(n —m —1).

The permutation of indices consistent with (3.19) is the
one that produces the same energy ovdering of levels at
t )0 and t (0. In the p basis, the reshufBing p~ —p
coupled with t+ —t preserves the levels' order; e.g., for
n =6 and m =0, the levels (2.10) that are
labeled p = {5,3, 1, —1, —3, —5] at t &0 map to
p'={—5, —3, —1, 1,3, 5], respectively, at t )0 [see Fig.
l(b)]. Thus, the symmetry of U ~ ( ~, —&n ) generally im-

plies

(3.20)

Since the diabatic and adiabatic states coincide as
t ~+~, the probabilities P ~ also represent P
when the proper identification between p and q bases is
made at t «0 and t ))0 (see Sec. II A and Fig. 1). The
correspondences between q and q' depend on the number
of quantum defects and their signs. The mapping for the
six-level, single-p& example takes q' = {0, 1,2„3,4, 5 I at
t )0 into q ={0,5, 4, 3, 2, 1I at t &0. Then we have, e.g. ,

0~5 1 0& 5~0 P0~1& 0~4 2~0& 5~2 P4~1&
and P1 1 =P5 5, whereas P0 0 P5 1 P4 2 P3
P2 4, and P, 5 are all unique. The general rules for re-
lating pairs of elements P ~ are easily inferred from the
labeling of adiabatic levels standarized in Sec. II A. All
the above relations are independent of I'.

P pproximate analytical forms for U, ( co, —oo ) can be
obtained in the diabatic (zero core coupling) limit and,
less precisely, for U ~ (~, —~) in the adiabatic (zero
ramp rate) limit. The procedure is to start with an in-
tegral Schrodinger equation for U(t, to ) and expand it in a
Dyson series, in the spirit of Eqs. (3.12) and (3.13) for

dU(r, r())
i = [(pr—v) —V]U(r, ro), (3.21)

Following Eq. (2.34), we transform U(r, ro) to the in-
teraction representation:

U(r, ro) =exp[ i ( ,' pr —vr—)]A(—r, ro)

=[ A(r, r)] A(r, r()), (3.23)

which removes the diagonal elements of H " . The ap-
pearance of the diagonal matrix of phases A(r, r) is a
consequence of the boundary condition (3.2) [39]. Substi-
tuting U('r ro) into Eq. (3.21) and integrating over [ro, r]
leads to

A(r ro) A(ro ro)

+i f dr, exp[+i ( —,'pr) —vr, )]
To

X V exp[ i ( —,'pr—,
—vr, )]

X A(r), r()) . (3.24)

This is the analog of Eq. (2.36) for many levels and any
number of quantum defects. Substituting the time-
evolution matrix A(r, ro) back into the integral in Eq.
(3.24) and iterating indefinitely yields an infinite-series
solution for A(r, ro) generated by A(ro, ro). Left-
multiplying Eq. (3.24) by [ A(r, r)] gives U(r, ro), Eq.
(3.23). Each element U, (r, ro) is thus proportional to a
phase factor [A ~ (r, r)] 3 (ro, ro) which is irrelevant to
the final probability P . Setting the upper integration
limit to r= ~ro~ and taking the limit ro~ —~ yields

where we have split the core-coupling matrix in the p
basis into diagonal (v) and off-diagonal (V) pieces:

n —1

vs~op p+ Vp~
= g u (V(up(

t=m
n —1

(
3 P )

) /2 —3 ~ U(nm) U(nm)n n ~~ I P(
1=m

(3.22)

((U(~, —oo)))= 1+if dr)e ' ' Ve

+ t (pP/2 —V71) —
~ (p71/2 —

V~& ) i + ~ (pd2/2 —V~2) —
~ (pe&/2 —V72)

~ ~ ~ (3.25)

with no permutations implied. The integrals in Eq. (3.25)
are evaluated in Appendix B. Terms of third and higher
order cannot, in general, be evaluated analytically.

The simplest case considered in Sec. II has one nonzero

quantum defect for l =m =0. All diagonal elements U

and nondiagonal elements V, in Eqs. (2.26) and (2.27)
then equal V0, so all factors e —' cancel out. Equation
(3.25) for l =0 explicitly reduces, to within a phase, to
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(see Appendix B)

&2rri
P p(V)=1 ~—V g +O(vr V ) . (3.30)

2

s (&p)

+O(( v'~ V)')

V (p' —s)(s —p)

(3.26)

The term of order (V vrV) involves a double summation
that vanishes upon interchange of its dummy indices; this
shows that the third-order term is correctly missing from
Eq. (3.27). In fact, the entire series is even in V for dia-
batic transitions:

where

s & min(p, p')

+ ( ~V), (X,—X2+X3)
p p

+O((&~V) ), p'5p,

l(s —p)(s —p')
I

I(s —p)(s —p')
I

(3.28)

(3.29a)

(3.29b)
min(p, p') & s & max(p, p')

I(s —p)(s —p')
I

s )max(p, p')
(3.29c)

and any of these sums vanishes by convention if it has a
null range. The diabatic transition probabilities can be
obtained from P

~
=1—g~. I& ~P~ ~. and Eq. (3.28):

for any values of p and p'. (The summation variable s
ranges over all allowed values of p or p' with b,s =2.) In
particular, the elements with p'=p represent diabatic
transitions:

U ( ~, —~ )=1—~V g +O(vr V ) . (3 27)
l

, , „ Is —pl

The probabilities (3.10) for nondiabatic transitions
(p'Wp) are therefore

P~ ~(V) mV
2

p p

P~ ~(
—V)=P

p ~( V)=P~ p( V) . (3.31)

The first equality follows because the joint operations
[p,I] —+[ —pi] and r~ —r leave Eq. (3.21) unchanged
while (3.20) identifies r~ —r with P„~P

Fast enough ramp rates or weak atomic cores always
result in transition probabilities of order ~V
=2rrpo/(3Fn ) as V~0, except for the diabatic transi-
tions, which have P = 1 —0 (~V ). [The correspond-
ing limits for the q basis are given in Eq. (2.45a).] A ta-
bleau of the series coe%cients in Eqs. (3.28) —(3.30) for
n =8 and I =0, good up to third order as V—+0, ap-
pears in Table I. Notice that transitions between states
are more likely for neighboring levels, and especially that
the cubic term hints at higher-V behavior by enhancing
adiabatic transitions [e.g. , n, =7~n', =0 (q =O~q'=0)
and n, =6~nI =7 (q =7~q'=7)] at the expense of
others. Note also that for n =2 only values p,p'=+1
would occur: Eqs. (3.28) —(3.30) imply P =~V
+0 (m V ) if p'Ap, because the sums X; all vanish, andP„=1 —m. V +O(vr V ). These are, of course, the
leading terms from the exact two-level result (2.41) for
the LZE.

The most general expression good to second order
essentially involves the replacement of V above with
squared elements of the matrix V [Eq. (3.22)]. From the
first integral in Eq. (3.25) we have

TABLE I. Low-order series-expansion coefficients of the transition probabilities Pp p ( Vo) or Pq q ( Vo) Eqs. (3.28)—(3.30), for
n =8, nz =0, and po& 0. Row numbers at left, initial n &(q); columns, final n

&
(q'); note that p =2n

&

—7 and p'=2n ]
—7. Shown are

coefficients of mVO and {in brackets) (&m Vo) .

(q')

0(1)

1(2)

2(3)

3(4)

4(5)

5(6)

6(7)

7(0)

0(0)

—2.593
[o]
1.000

[—1.389]
0.500

[—0.281]
0.333

[+0.071]
0.250

[+0.248]
0.200

[+0.361]
0.167

[+0.449]
0.143

[+0.542]

1.000
[+1.389]
—3.450

[o1
1.000

[—1.780]
0.500

[—0.485]
0.333

[—0.056]
0.250

[+0.167]
0.200

[+0.316]
0.167

[+0.449]

2(2)

0.500
[+0.281]

1.000
[+1.780]
—3.783

[0]
1.000

[—1.940]
0.500

[—0.560]
0.333

[—0.089]
0.250

[+0.167]
0.200

[+0.361]

3(3)

0.333
[—0.071]

0.500
[+0.485]

1.000
[+ 1.940]
—3.917

[o1
1.000

[—1.986]
0.500

[—0.560]
0.333

[—0.056]
0.250

[+0.248]

4(4)

0.250
[—0.248]

0.333
[+0.056]

0.500
[+0.560]

1.000
[+1.986]—3.917

[o]
1.000

[—1.940]
0.500

[—0.485]
0.333

[+0.071]

5(5)

0.200
[—0.361]

0.250
[—0.167]

0.333
[+0.089]

0.500
[+0.560]

1.000
[+1.940]
—3.783

[o]
1.000

[—1.780]
0.500

[—0.281]

6(6)

0.167
[—0.449]

0.200
[—0.316]

0.250
[—0.167]

0.333
[+0.056]

0.500
[+0.485]

1.000
[+ 1.780]
—3.450

[0]
1.000

[—1.389]

7(7)

0.143
[—0.542]

0.167
[—0.449]

0.200
[—0.361]

0.250
[—0.248]

0.333
[—0.071]

0.500
[+0.281]

1.000
[+1.389]
—2.593

[0]
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TABLE II. Lowest-order series-expansion coeicients of the transition probabilities P~ ~ (F ) or Pq q (F), Eq. (3.32), for n =8,
m =0, and p& & 0. Row and column numbers same as Table I. Shown are coe%cients of m. V&.

0( 1)
1(2)
2(3)
3(4)
4(5)
5(6)
6(7)
7(0)

O(0)

—4.783
2.778
0.500
0.037
0.028

0.200
0.463
0.778

2.778
—4.209

0.5 10
0.028
0.019
0.128
0.283
0.463

2(2)

0.500
0.5 10

—1 .430
0.020
0.010
0.06 1

0.128
0.200

3(3)

0.037
0.028
0.020

—0.145
0.002
0.010
0.019
0.028

4(4)

0.028
0.019
0.010
0.002

—0.145
0.020
0.028
0.037

5(5)

0.200
0.128
0.06 1

0.010
0.020

—1 .430
0.5 10
0.500

6(6)

0.463
0.283
0.128
0.019
0.028

0.5 10
—4.209

2.778

7(7)

0.778
0.463
0.200
0.028
0.037
0.500
2.778

—4.783

' 2
P(Qp IQp(

14a
3Fn '

~(F)=
pIp' —pl

2g Pliisliipl
14m

3Fn s (~p) Is
—p I

(3.32)

(Appendix B), which applies to any manifold with any
quantum defects as F~ (x) ~ Table II shows the
coefficients of m. V& =2vrpi/(3Fn ) for n =8, m =0, and

pI nonzero only for l = 1 instead of I =0. In contrast to
the t' =0 case of Table I, there is larger coupling between
edge states (~p~ ~n) here and an absence of coupling to
midmanifold states (~p~ =0) (see Appendix A). This
shows up as an enhancement (diminishment) of popula-

tion transfer to and from states of higher (lower) ~p~, as
compared to the uniform-coupling l =0 case. States of
higher m and small I —m would display the opposite
trend —favoring transfer among midmanifold states and
disfavoring outer states.

In the adiabatic limit, F~0, we use the Hamiltonian
H' ' [Eq. (2.29) or (2.30)] for & in a r-scaled Schrodinger
equation (3.3). The diagonal matrix E(r) of eigenvalues
E is removed via the substitution

U(r, ro) =exp i f dr'E(r'—) B(r,ro), (3.33)
0

where the lower integration limit ~ =0 is arbitrary but
accords with (3.23) [39]. In analogy to Eqs. (3.23)—(3.25),
we can obtain series for B(r, ro) and U( ~, —~ ) in
powers (and integrals) of the oQ'-diagonal coupling matrix
i I (r). The lowest two terms have elements

U, ( ~, —oo ) =5,~+ f dr, I ~ q(r, )exp +i f dr'[E (r') —E (r')]
oo 0

(3.34)

to within a phase factor. The explicit dependence of (3.34) on V emerges from introducing the y scale (2.51), the A, scale
(2.50), and the V-independently scaled couplings —,

' Vl
~ in Eq. (2.61), which depend only on the eigenvalues IA. (y)]:

U, , ( ~, —~ )=5,,,+ f dq @VI-,,(q )]exp +i ~ V'f dy'q'[&q ((p') &q(y')]— (3.35)

Thus, in the limit V~ ~, Pq q approaches 6q q
not as a

power of V ' but rather through a term that vanishes on
account of the rapidly oscillating phase factor [40].

IV. NUMERICAL RESULTS—ONE
QUANTUM DEFECT

We first present results for the MLZE induced by just
one nonzero quantum defect, p& )0. Calculations of
U(r, ro) and U( ~ro~, ro) for manifolds with n ranging from
2 to 96 were carried out on the University of Kentucky's
IBM 3090 using the code TIMEpAsS. Time evolution ma-
trices U and M for microscopic intervals, as prescribed in
Sec. III, were normally constructed in the p basis, al-
though their accumulations U(r, ro) and U(~ro~, rp) were

normally output in the q basis via transformations (2.19).
Each "pass" through an n manifold —i.e., each ramp
from r=ro to ro~ at a fixed value of F or V= V&-
typically required a total of 500—1000 microscopic steps
(1000—2000 matrix diagonalizations) for adequate con-
vergence of U( ~ro~, ro) to U( oo, —~ ). (Issues of conver-
gence and optimization are addressed in Appendix C.)

Since the adiabatic levels are significantly coupled only at
3 V (Fig. 5), the initial rescaled time was usually tak-

en in the range ~o = —10 to —20, depending on n and V.
Most of the following results are presented as families

of probability curves P ~ vs V with common initial adi-
abatic states q [based on the definition (3.10)]. Recall that
V measures joint variations in the combination of pa-
rameters ~p, &~ n /F. We consider the simple 1 =m =0
case in Secs. IV A —IV C. Note that the accuracy of the
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calculations and results displayed here is always much
better than the graphical resolution of the figures.

A. Time dependence of U(7 7p)
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FIG. 6. Time evolution for n =6, m =0 manifold beginning
at 'Tp —3 in state (a) q =0 with V=0.3, and (b) q =5 with
V=0.5. Population of adiabatic state q' is indicated by the
number q'. Insets: n =6 bowties [cf. Fig. 1(b)]; thick line is ini-
tial adiabatic level q.

The time development of the adiabatic-level popula-
tions tends to follow the simple n =2 patterns of Fig.
2(b). Figures 6(a) and 6(b) show representative multilevel
versions of the probabilities

~
U ~ (r, ro) ~

vs r, in this case
for n =6, m =0, and co= —3. In Fig. 6(a), a relatively
fast ramp rate is represented by V=0.3; in Fig. 6(b), a
slower ramp rate [41] is effected by V=0. 5. The initial
states are, respectively, (a) q =0 and (b) q =5, and the
population of every state q' at time ~ is marked with that
state's number. The appropriate labeling of adiabatic lev-
els q or q'=0, . . . , 5 for n —m =6 is shown in Fig. 1(b),
which is reproduced as an inset in each figure.

The population in Fig. 6(a) is initially in the diabatic
edge state p =+5 (n, =5) at r=ro, which is actually the
shifted adiabatic level q =0. One expects that a rapid
enough field ramp would favor the diabatic transition
p =+5~p'=+5, i.e., q =O~q'=5. This is indeed the
case: most of the q =0 population (52.4%) is ultimately

transferred to q'=5, whereas the adiabatic transition
(q =O~q'=0) occurs with only 17.3% probability.
There also arises a modicum (8.3%) of q'=4 (and a hint
of q' =3 and 2) in the vicinity of r =0, on the heels of the
q'=5 buildup, while a comparable amount of q'=1
(9.0%) comes in at r )0.

Recall that the shifted level q =0 is most strongly cou-
pled to the adiabatic-manifold edge levels q'=5 and 1,
the former at r(0 and the latter at r) 0 (see Sec. II C,
Fig. 5). Following the first half of the pass, much of the
initial population has already gone to q'=5, leaving little
to transfer to q'=1 on the way out. The ancillary growth
of q'=4~3~2 is a consequence of successive nearest-
neighbor couplings within the adiabatic manifold. It is
reasonable to suppose that these extra levels could be
enhanced by making a slower pass (higher V), but in fact
no choice of V accomplishes this.

In Fig. 6(b) the initial state is the lower adiabatic edge
state q =5 (i.e., p =+3 or n, =4) at r=ro The a. diabatic
transition q = 5 —+q'= 5 now leads to the upper adiabatic
edge state at ~))0, while the diabatic transition
p =+3—+p'=+3 (q=5~q'=4) steps one level away
from the edge of the manifold. Figure 6(b) shows that, as
in 6(a), the coupling between states q'=0 and 5 dom-
inates at negative ~. Also present is the nearest-neighbor
interaction between q =5 and q'=4 —which persists into
the positive-~ domain and leads to the rise of q'=4. At
this slower ramp rate the adiabatic level (q'=5) tops out
at 64.4%, while its diabatic neighbor (q'=4) comes out
with 20.9%—more than the other neighbor (q'=0, with
11.3%). The remaining manifold levels (q'=1, 2, 3) do
not gain significantly.

Many other examples could be given but the essential
features of

~ U~ ~(r, ro) ~, and hence ofP, emerge from
Fig. 6.

(1) All coupling and population transfer among adia-
batic levels are approximately confined within the
domain ~r~ 5 2 V, as anticipated in Sec. II.

(2) The adiabatic-level populations nearly converge to
their limiting values P,( V) by about a= 5 V, with mild
and quickly decaying oscillations about those values. A
representation of the populations in the diabatic basis, on
the other hand, would reveal a multilevel version of the
state-flopping oscillations seen in Fig. 2(a), which we re-
frain from showing here. Such oscillations tend to be
complicated, of large amplitude, and slow to converge to
the same set of values P .( V).

(3) For any initial q (n, ) and any coupling or ramp pa-
rameter V, the dominant final-state population belongs ei-
ther to q'=q or n', =n, (i.e., p'=p) and accounts for at
least 35% of the total (if n )2). That is, the most prob
able transition is always either the adiabatic one (P ) or
the diabatic one (Pz z).

(4) The probability of transitions to any of the other
n —2 levels from a given q is likely to attain 10—15%
only for the other (nondiabatic) nearest neighbor [36j to
q. Any of the remaining n —3 levels reaches at most a
few percent.

The above statements hold for all n and m (if we take
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l =m for p&&0). The first two hold as well for two or
more quantum defects if we use in V the largest ~p& ~; and
even the last two statements apply within various ranges
of V(see Sec. V).

B. Patterns in Pq &
for I =m =0

Each initial state q leads to a family of Ji nal state -prob
ability curves Pz z ( V) that depend only on V. There are
altogether n such curves for m =0 but only ,'n (—n —1)
of them are independent (cf. Sec. III 8). The pattern of
each family of curves varies only mildly as one picks
different starting q's within the adiabatic manifold; the
edge states, q = 1 and q = n —m —1, exhibit the most ob-
vious deviations. However, the special state q =0 pro-
duces distributions Po (V) that are quite dissimilar to
the others, particularly in the slow-ramp, high-V limit.
Furthermore, curves describing the edge-state popula-
tions quickly reach limiting forms as n grows (beyond
n =6, say), if Vis properly rescaled (Sec. IV C).

The six sets of probability curves for n =6, m =0 are
plotted in Figs. 7(a) —7(fl for q = [0,5,4, 3,2, 1], respec-
tively. (This ordering corresponds to lowest-to-highest
energy levels at r (0.) The functions P ( V) are again
marked by q'. Insets illustrate the various passes through
the bowtie.

The most obvious feature of every plot is the pair of
curves representing diabatic and adiabatic transitions
from each q [36]. The two curves Po s and Po 0 for
q =0 [Fig. 7(a)] closely resemble the Gaussian n =2
curves in Fig. 3 because of their drastic convergence to
zero and one at large V. The apparently purely exponen-
tial behavior in the limit of very slow ramp rates is
unique to transitions from the shifted level. The
diabatic-transition curves for q&0 drop off much more
slowly as the initial state is taken closer to the center of
the manifold [except Pl 0, which is identical to Pp 3' cf.
the discussion below Eq. (3.20)]. Similarly, the probabili-
ty of making an adiabatic transition through the middle
of the manifold still rises to unity, but sluggishly com-
pared to transitions along the adiabatic edge states.

All the nondiabatic and nonadiabatic transitions gen-
erally add up to less than —,

' of the total final-state popula-
tion. The largest recipient amongst these is usually the
"other" nearest neighbor [36]—especially at intermedi-
ate and slow ramp rates, e.g., V&0.4. The behavior of
the shifted level is once more exceptional, as Po &

and
P5 0 (which are equal) die off rapidly at V) 0.4. For ini-
tial states q =1—4 (i.e., those well removed from q =0),
on the other hand, the buildup of other-neighbor popula-
tions persists out to much slower ramp rates, even
V) 1.5. Figures 7(c) and 7(d) indicate that this eff'ect, for
q ~q'=q +1, peaks for transitions between midmanifold
states.

These high- Vresults are reasonable in light of the adia-
batic coupling terms I, in Eq. (2.61) (see Fig. S), which
universally scale like 1/V. Each of the initial states
q =2, 3, and 4 has both its nearest neighbors q'=q+l
embedded in the adiabatic manifold, and couples to both
of them throughout most of its passage through the

bowtie. When I' is slow enough, they are in fact popu-
lated equally: at V=1.5 in Fig. 7, one observes (c)

4 5 4 3 (d) P3 4 3 2 and (e) P2 3 P2 l and
even (a) Po, =Po 5. The cases (b) q =S and (fl q =1
are somewhat odd because during each half of the pass
one of them becomes the topmost level, which has only
one neighbor to couple to. Hence P5 o dies away feebly
compared to P5 4 at V 0.6, as does P, o compared to

2
In the fast-ramp limit, the probabilities P .( V) ac-

cord with the analytical results derived in Eqs.
(3.28) —(3.30), although this is not discernible in Fig. 7. In
particular, all probabilities deviate from their V=O Ualues
by terms of order IrV . When indexed as P, the
greatest population transfer to other diabatic levels
(p~p'Ap) occurs for p'=p+1, the next largest for
p'=p+2, etc. (cf. Table I). This diabatic-level behavior
for V~O complements the adiabatic-level behavior for
I' ~0 discussed above.

The tenacity with which the (a) diabatic or (b) adiabat-
ic levels remain populated when subject to some coupling
or ramp V is illustrated in Figs 8(a). and 8(b) for a larger
manifold, n =24. Here we plot (a) P vs p and (b)
P vs q as circles; those symbols connected by straight
lines refer to one of the constant values of V in the range
0.1 —1.0, or the extra-slow value 1.5 (thick lines). Thus,
under the fastest ramp rate ( V=0. 1) the probability of
making a diabatic transition is fairly uniform (at 85%)
across most of the manifold, with a slight preference for
diabaticity evident towards the manifold edges. Under
the same ramp rate, the probability of making an adiabat-
ic transition is quite fiat (at 4%) across the entire adiabat
ic submanifold (q =1—23) but negligible for the shifted
level (q =0) [42].

Under the slowest ramp rate ( V = 1.5), diabatic transi-
tions are enhanced towards the manifold's center, while
adiabatic transitions are likelier towards the manifold's
edges. Note how the lone shifted level, the worst at mak-
ing fast adiabatic transitions, becomes the best at slow
ones. Intermediate values ( V=0.2 —0.6) represent the
crossover region between effectively fast and slow ramp
rates (cf. Fig. 7). The disparity across the manifold for
transition probabilities at a fixed V is greatest in this
range: e.g. , at V=0.5 and 0.6, the preference for adia-
batic transitions at the edges over that at the center sur-
passes 28% (at q =1 and 23) and 42% (at q =0). This is
attributable to the fewer number of levels in the neigh-
borhood of the adiabatic manifold's edge. That is, there
ale Inole paths q~ql ~q2 ' ' ~q Wq by whlcll a ceII
tral adiabatic level q can arrive at another level q' via the
coupling s I, so P

q
is lowest in the center and

highest at the edges.

C. Variations with n —the MLZE

The question arises as to whether the functions
Pq ( V), in the limit n ~ oo, retain the general proper-
ties inferred above. It is impractical to consider results
for all q for large-n manifolds. Within the adiabatic man-
ifold, members q =1, [—,'n], and n —1 will suffice to
represent variations from one edge across the middle to
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the opposite edge.
The case q =O merits special attention. The probabili-

ties for diabatic and adiabatic transitions from q =O are
plotted in Fig. 9(a) for n =2(heavy solid lines), n =3, and
successive doublings [43] n =6, 12, 24, 48, and 96. The
rise of all the adiabatic curves Po 0( V) with increasing V
mimics the n =2 curve, as does their rapid convergence
to unity. There is, furthermore, a shift of the higher-n
curves towards lower V, accompanied by some suppres-
sion of the probabilities at the low-V end [44]. The dia-
batic curves Po „,(V) also imitate the n =2 pattern,
with a similar shift to lower V. In fact, Fig. 9(a) is con-

(4.1)

where the new n-dependent factor in the exponent is [45]

sistent with the possibility that the latter all have precise-
ly the same shape, namely, that of a Gaussian in V.
There is strong numerical evidence that this is indeed
true, but a rigorous proof is not yet available.

Consider the following.
Conjecture: In an isolated n manifold with I =0,

po&0, and pt =0 for l) 0, the outer diabatic transition

q =0—+q'=n —1(i.e. , p =n —1~p'=n —1) occurs with
probability

P„"(V)=exp( P„vr—V ),
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( )—1

1= inn +0.5772—2'
This analytic expression is suggested by the V~O form
of P~ ~( V) for p =n —1, Eq. (3.30), where I3„ is just the
coefficient of irV . In Fig. 9(b) we present a comparison
between (1) the numerical calculations of Po,„,used to
generate Fig. 9(a) and (2) the exact formula for P„",
again for n =2, 3, 6, . . . , 96. The symbols mark numeri-
cal results; the solid lines are independent plots of Eq.
(4. 1) using the definition (4.2). The agreement is exact to
within the error [ =0 (0.01%)]of the calculations shown
in Fig. 9, and has been verified in other runs at higher
accuracy —to better than 1 part in 10 . We claim that
the above conjecture holds exactly.

Outer diabatic transitions connect the extreme bottom
of a manifold to the extreme top, or vice versa [42]:
p =+(n —l)~p'= +( n—1). Equation (4. 1) thus resem-
bles the familiar two-level result (2.41), to which it
reduces upon setting $2=1. [Note that the rough esti-
mate (2.40) for n &2, which was based on the two-level
LZE, amounts to the guess n/4 instead of P„=inn. ] We

1.0

(a)

(4.3)

1.0 —=

O. B—

0 6

OGQ04

0

dlabtherefore regard the statement P " =e " as the
multilevel generalization of P ""=e ~~ to all n ~ 2, and
as a generalization of the LZE to the MLZE (though in a
restricted sense, insofar as it refers to a specific transition
and coupling scheme).

Equations (4.1) and (4.2) suggest a sequence of two-
level diabatic Landau-Zener transitions that occur with
probabilities Pk =exp( —ir V /k) (k = 1, . . . , n —1). The
results of Ref. [16] further suggest that the IPk] could
then be used to generate a full set of probabilities
tP ( V) J for all p and p' analytically. However, no set
of probabilities so generated agrees with our numerical
results for the bowtie [except for p =p'=+(n —1)]; see
Sec. VI.

The explicit dependence of I'„""on real ramp rates fol-
lows from Eq (4..1) and the definition (2.27) of V:

2irP„[p,,)' '

P„"(F ) =exp 3''

0.0
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FICx. 8. (a) Diabatic-transition probabilities P~ ~ vs p (o)
for Axed values (from top to bottom) V=0. 1,0.2,0.3, . . . , 1.0
(thin lines), and V = 1.S (thick line). (b) Adiabatic-transition
probabilities Pq vs q (o ), same values of V (from bottom to
top).

FIG. 9. (a) Probabilities Po ~ ( V) for adiabatic
(q =0—+q'=0) and diabatic (q =O~q'=n —1) transitions
from the shifted level q =0, sets of curves 3 and D. Manifolds
m=Oandn=2( ), n=3( ——), n=6( ———), n=12
(—-), n =24 ( —- —-), n =48 ( ———), n =96 ( ). (b)
P„"(V) for outer diabatic transitions: smooth curves, analyti-
cal, Eqs. (4.1) and (4.2); symbols, numerical, for n =2 (stars),
n =3(e), n =6(6), n =12( ), n =24(o), n =48(+), n =96
(C'). Note that V depends on n, Eq. (2.27).
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(p, p + i, . . . ). Whereas F might be such that
V, V + &, . . . , have intermediate values of order one, so
that some transitions are adiabatic and some diabatic, all
higher / would in contrast have vanishingly small values
of VI. Therefore, the high-/ anticrossings at F=0 are
effectively of zero size: i.e., no coupling of levels through
high-/ channels occurs within the tiny regions
~F~ ~2~pi~ I3n (unless F is extremely small). We can
then set p& =0 for all but the few lowest / ~ m, the num-
ber depending on F.

To illustrate the effect of introducing a second nonzero

pl, we have plotted in Fig. 12 some transition probabili-
ties for n =12, I =0, po=0. 30, and p&= —,'po. There are
now shifted levels for both /=0 and 1, so q =0 and 1

represent the two lowest levels of the manifold's bowtie at
all F (see inset to Fig. 12). We have chosen the initial
state q =1, since a fast ramp will "shoot through" the
small anticrossing at F=0, but a slow enough ramp will
allow the q =1 population to move adiabatically through
the small-F region and remain in q = 1.

Consider first the fast-ramp limit. The probabilities

P, ~ vs Vo should resemble the curves of Figs. 7(b) and
11(b) if we can neglect p, Adiabatic, diabatic, and
other-neighbor transitions then correspond to
q = l~q'= ll, q'=10, and q'=0, respectively [cf. inset
to Fig. 11(b)], where we have followed the conventions of
Sec. II A for labeling adiabatic levels when there are two
quantum defects. Final populations for these states,
shown in Fig. 12, indeed follow the expected patterns in
the high-F range 0 + Vo ~ 0.5.

A scale appropriate to p, &0 is V, instead of Vo =5V„
equivalently, the scale Vo can be extended five times as
far as is usually necessary to see the adiabatic transition
dominate (this was done in Fig. 12). Very slow ramps in
the Vo scale ( Vo &) 1) would not significantly change the

q =0 population, so we now imagine the bowtie without
the q =0 level but with a truly shifted q =1 level. This
case, too, should behave like a manifold with only one
nonzero p&, resembling Figs. 7(a) and 11(a) for transitions
from the shifted level. Now adiabatic, diabatic, and
other-neighbor transitions correspond to q =1~q'=1,
q'=11, and q'=2, respectively. In the region Vo & 1.5 of

|.0 1.0
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FIG. 11. Transition probability'Pq q vs rescaled V, Eq. (4.6), for I =0 and same n as Fig. 9(a) (where the lines are defined): ini-

tial state (a) q =0, (b) q =n —1 (n )2), (c) q = —'n (n )3), (d) q =1. The set of curves A show final q' for adiabatic transitions for

each n; curves D, diabatic transitions; curves X, other-neighbor transitions (see Ref. 36). V scale chosen so that V= V for n =6. In-

sets: generic bowties showing relevant q s; thick line, initial q.
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FIG. 12. Transition probability I'
q

vs V0 for n =12,
m =0, two quantum defects pa=0. 30 and p& =0.06, and initial

q =1. Curves shown for final q'=0 (—-), 1 ( — ), 2 ( —-—), 10
), and 11 ( ———), whose levels appear in inset's bowtie.

Note similarity of region V0 &0.5 to Fig. 7(b), and V0 & 1.5 to
Fig. 7(a); see text.

Fig. 12, these curves P
&

~ once more agree with the pre-
vious single-p& results, at least qualitatively.

Different ranges of ~p& ~

thus map onto different ranges
of V or F. Within each such range, higher (lower) values
of p& ~

are represented by "sub-bowties" whose probabili-
ties P ~ have effectively attained their limiting fast-
ramp (slow-ramp) behavior. All probabilities must of
course vary continuously over all ranges of I'" or any V&,

as do those shown in Fig. 12; e.g. , note q'=11, which
switches roles from adiabatic- to diabatic-transition
curve. Interference effects will lead to yet more compli-
cated functions P~ ~.(V&) when some quantum defects
are of the same magnitude and especially when they are
of opposite sign. A study of manifolds with several quan-
tum defects will be presented elsewhere.

lar result is expected to hold for any set of quantum de-
fects. This MLZE should be observable in transitions
within moderately high-n Rydberg manifolds at accessi-
ble slew rates [6,20].

Several unresolved issues raised by this model persist,
as does the need to extend it. (1) The joint effect of
several comparable quantum defects on the probabilities
Pq q ( Vi) needs to be investigated to identify the kinds of
patterns hinted at in Fig. 12, especially oscillations stem-
ming from interference between I channels. (2) A better
understanding of the n~~ limit should shed light on
the grainy nature of transitions among levels near the
middle of the manifold. At first glance the high density
of states suggests a continuum bounded from both below
and above —but edge and midmanifold states seem to
function differently in this regard. (3) Nonlinear field be-
havior [6,20,21] can be expected to produce non-LZE-like
patterns P (defined over suitable time intervals), since
the factor dF/dt then leads to variable eigenchannel mix-
ing in Eq. (2.22). Alternatively, as the Fourier transform
of the field becomes more nearly monochromatic, a
description of state mixing based on the absorption and
emission of photons becomes more appropriate. (The
purely linear field inconveniently requires photons of all
energies. ) (4) The next stage of applications to experi-
ments on ramped fields [6] and selective-field ionization
[3,4] should involve coherent level mixing between two or
more manifolds, at F ~ 1/3n [Eq. (1.4)].

An outstanding theoretical challenge is the construc-
tion of a rigorous proof of the conjecture of Sec. IVC
concerning outer diabatic transitions —that an analytical
form of P„" (V) can be found. The elegant method of
Demkov [16] suggests that a contour-integral representa-
tion of the amplitudes U ( oo, —~ ) be considered.
However, the Hamiltonians treated in Ref. [16] involve
only one diabatic level which varies linearly with time. In
the bowtie problem, all diabatic levels are proportional to
t with different slopes; this case cannot simply be mapped
onto the other. An attempt to generalize Demkov's ap-
proach is currently under way.

VI. CONCLUDING REMARKS

We have considered a model of level mixing within a
single Rydberg manifold subject to a linearly rarnped
electric field. The energy levels, composition of the
eigenstates, and field-induced coupling among the eigen-
states can be described analytically in the simplest case of
a purely l =0 electron-core interaction (@0%0). Studies
of the time evolution operator for this model reveal gen-
eral patterns in the state-to-state transition probabilities.
Most notably, a ramp across the manifold at any rate I'
induces principally adiabatic (q~q) or diabatic (p~p)
transitions from an initial level; i.e., the final population
is always dominated by only two or three particular
states, whether the traversal was slow or fast. The intro-
duction of additional quantum defects produces iterations
of single-p-like patterns over slower scales of I', allowing
one to ignore all but the first few pl in practice. Outer di-
abatic transitions mimic the two-level LZE, P " =e
where y =P„~p0~ /(3Fn ) for the I =m =0 case; a simi-
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where

ji =j2 =
—,'(n —1),

j„=-,'(m+p), J„=-,'(m —p),
(A2)

APPENDIX A: TRANSFORMATION
BETWEEN p AND I BASKS

The orthonormal transformation U'&™between para-
bolic and spherical bases, introduced in Eq. (2.13), is most
simply expressed as a Wigner coefficient [46] representing
the coupling of two mock angular momenta j &

and j2:

(Al)
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TABLE III. Squared transformation coeKcients u~& for 0 ~ m I ~ 3. Prefactor in parentheses is the

sign of u„& when the positive root of u, &
is taken; p = n

&

—n2. Note the orthonormality condition (2.14').

(+ )up'I

( )3p /(n 1)
(
—) —,'(n' —p')/(n' —

& )

(+)—'(3p —n + 1)~/[1 n —1)(n —4) ]
(+)—"(n' —p')p'/[(n' —l)(n —4)]
(+)—", [(n +1)'—p'][(n —1)'—p']/[(n' —l)(n' —4)]

(
—

) 4 (Sp —3n'+7) p'/[(n —1)(n —4)(n —9)]
(
—

) —,~(n' —p )(5p' —n +4) /[(n —1)(n' —4)(n 9)]—
(
—

)
'0' [(n +1) —p'][(n —1) p']p—'/[(n' —1)(n' —4)(n —9)]

( —)
—"
, [{n+2) —p ](n —p')[(n —2)' —p ]/[(n' —l)(n' —4)(n' —9)]

and p =n& —n2. Explicit forms of U'&" ' as a function of
p and E can be derived for fixed I and m [47]. Expres-
sions for the renormalized u

&
of Eq. (2.14) are presented

in Table III for I ~3. Note that, in the limit n~~,
(
—1)' u~&/+2 reduces to a normalized associated

Legendre polynomial [26], Pi (p/n).

q'=0
q=0 0

1 2 3 8 9

+ + + 0 ~ ~ + +
0 ~ ~ ~

at all y (or r or F). Following Eqs. (2.59)—(2.61), this fur-
ther implies that the signs of I ~ are given for n = 10 by

APPENDIX 8: SOME ANALYTICAL DETAILS
sgnI

+ 0 4 ~ ~

+ + 0 (82)

Sign conventions + + + 0

n) =0
q=0
+

2 3 ' ' 9

+ + + . +
~ ~ ~ +
~ ~ ~ +

(81)

+
+

Whenever a matrix is diagonalized [as in Eqs. (2.18)
and (3.8)], each normalized eigenvector carries an arbi-
trary phase factor. It is necessary to standarize and keep
track of such factors lest inconsistencies from one time
step to the next allow extra minus signs to appear in the
Riemann product (3.6) in a discontinuous way. Temporal
continuity of the state vector (2.2) in any basis amounts
to ordering the energy eigenvalues and following them
adiabatically; an unambiguous ordering at any time t is
achieved here in the q basis (Sec. II A).

In the single quantum-defect case of Sec. II C, the rela-
tive signs of all the elements c~ [Eq. (2.58)] with q )0 are
determined by the behavior of A, ~ —(n, + —,

'
)~ (see Fig. 4):

this factor does not change sign with t, so neither does
the normalization factor N+ [Eq. (2.59)]. However, for
q =0, A,g and hence the denominator of (2.58) do switch
sign when t does; Ng must then change sign at t =0 to
keep c~o continuous. We are free to choose c /u I )0
for the first row of c~ (i.e., for n, =0) at t (0. The sign
structure of c+ for the n =10 example, aside from the fac-
tor u~I, then has the form

+ + + 0 ~ 0 + 0
I

at all ~, which is consistent with Fig. 5. When several
quantum defects are involved, prediction of the eigenval-
ues A,+ and the signs of I ~ is not nearly so straightfor-
ward.

Constraint on &( t)

The generators for a linear field are highly symmetric
under the time parity operation (3.17). In the three bases
considered here, the Hamiltonians behave as follows.

The spherical-basis state labels do not permute when
t~ t because the—eigenenergies Ei, Eq. (2.5), do not
vary with field. Under F~—F the tridiagonal system
(2.7) and (2.8) simply becomes

Hsph( t) ( 1)!+I'Hph(ts) (83a)

Under F~ F the parabolic—-basis energies E~(F) [Eq.
(2.10)], undergo p~ —p, a reversal of their order. Some
of the transformation coefficients uz& (those with odd
1 —m, Table III) then suffer sign changes (+1) in the
nonhydrogenic terms of Eqs. (2.15) and (3.11), so

H,'„"'(—t) =(+1),(+1),H'"„', (t) . (83b)

The construction of H' ', Eq. (2.22), depends on the di-
agonalization of H ",whereby each eigenvector labeled
q can pick up a phase (+1)~, as discussed above. A set of
eigenenergies [E ] at F(t) has precisely the same values
at F( —t) except the adiabatic state labels [q] are per
muted (see Secs. IIA and IIIB). Otherwise, t~ tis-
equivalent to F~—F, which implies
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H' '( —t}~[H' '(t)]', or

H~d, '( —t)=(+I) (+I),&&H,'(t) &&* (83c)

Evaluation of integrals

The high-F expansion of U( ~, —ao ) given in Eq. (3.25)
applies to an arbitrary set of quantum defects. However,
its usefulness is limited because only the first- and
second-order terms are readily evaluated. For p basis in-
dices j and k (slopes pj =p', pk =p), the results to within
an overall phase are

Ujk( ~, —~ )= 6,k+i V,kg, kI,'k'

—X Vp V.k&J'&.kIJ''k'+
S

1/2
( ) 2&l
jk jk

pj pk

I/, k =N.,@,k — erfc(zo),
2&l

2' V'(p —p )(p —p )

where

(84)

(85a)

(Bsb)

N k =exp —i (86)

is a phase factor; Vik is defined in Eq. (3.22); Sik
—= 1 —5jk',

the argument of the complementary error function [48] is

(P& Pz )(Uss
—

Ukk ) (Pz Pk )( jj ~sz )
ZQ

V 2t'(p) p, )(p. pk )(p, pk )
(87)

APPENDIX C: NUMERICAL DETAILS
AND CONVERGENCE

The procedure for calculating U(r, vo) is outlined in
the beginning of Sec. III; its actual implementation in
TIMEPASS is described in this appendix. The rescaled
time ~ and Hamiltonians H~~" (r) and H''(r) are used
here. In the absence of the use of F, slow (or fast) ramp
rates are synonymous with high (or low) V, respectively,
where Vequals Vt for that I having the largest ~pt ~.

and phases are chosen so that, e.g. , V p,
—

pk=+t'+ ~p
—

pk ~

when p —
pk (0. These expressions

also apply when j =k (p'=P), in which case C&J, @,k =1;
z0=0 and erfc(0)= 1; and the radical in (85b) equals

tip,
—p, I.

In the single-pI, I =0 case all elements of the coupling
matrix (3.22} equal V= Vo. All phase factors 4& equal
unity and the above expressions reduce to Eq. (3.26) or
(3.27). In forming

~ U~.~( ~, —~ ) ~
from (3.26) to obtain

Eqs. (3.28) and (3.29), one extracts the real parts of sums

p'(p, and times i' X„i X2, and i' X3 for p') p. The
general first-order result (3.32) follows from Eqs. (84) and
(85a), which yield

~ Uk(~, —~ )I'=2~( Vik)'/IP, —
Pk I

for jWk.

Time domain

The entire range [ro, ~ ro~ ] is specified by choosing some
~p/V&(0. The adiabatic states are coupled predom-
inantly at ~r~ (3V, whereas the convergence of U( ~vo~, ro)
to U(~, —~) occurs in the domain ~r~) 5V. In the
"tails" of the time evolution, as

~
r

~
~ ~, the interchannel

phase approaches

1 dr'[E (r') E.—(r')]- —,'(p —p')r

Since typical coherence lengths in ~ correspond to phase
accumulations of m —the longest occurring between adja-
cent levels (~p —p'~ =2)—macroscopic time intervals at
large ~r should scale like h~S~/2~r~ (for any V). How-
ever, the adiabatic coupling I, diminishes like r [cf.
Eqs. (2.67) and (3.35)]. Thus, U(ro, —/r/) or U(r, /ro/)
converges at [r[ ))

/ ro/ reasonably well but requires
smaller and smaller time steps and greater computational
effort. Since the tails tend to contribute much less than
1% to the final U ~ ( oo, —oo ), it suffices simply to use a
large, fixed value for ~Q; the usual choice was ~p= —10 to
—12 for n )24 or moderate accuracy (1 part in 10 ), and
ip ~ —20 for low n or much higher accuracy. If especial-
ly high accuracy is desired (e.g. , 1 part in 10 ), one could
choose an even bigger ~1O~, dynamically explore ~~~ ) ~ro~

until U ~ (r+hr, ~) sufficiently approaches the unit ma-
trix, or derive an analytical series in powers of I/r for
U(, r)=«U( —r, — )» at r Iro~.

Subdividing the time scale

The domain [ro, ~ro ] is divided into equal macroscopic
time steps hr =r.—r. i (j = I, . . . , X). The size of the
macroscopic intervals is typically fixed at A~= —,

' or 1.
Although one has the flexibility to shrink A~ at larger
~r ~, or to choose otherwise arbitrary I~ ], it was found
that this did not greatly enhance the efficiency of the total
calculation for linear ramps.

Direct calculation of U(r, r, ) via Eqs. (3.16) and
(D5) does not usually give a sufficiently accurate result
for the jth interval, however. Further subdivision of
[r „r ] into N' smaller intervals of equal width
b.~'= 5~/X' improves the accuracy of U over each such
microscopic domain, and hence the accuracy of the
Riemann product

N.

U(rj, rj, )= II U(~, , +khan', r, , +(k —1)b,r,')
k=1

(Cl)

over the whole macroscopic interval. In each macroscop-
ic interval, the number of microscopic subdivisions is in-
creased until a desired accuracy is reached. TIMEPASS
tries the sequence [49] X'= [1,2, 3,4, 6, 8, 12, 16,24,
32,48,64, 100,150,200,300,500], the rationale being optim-
ization: only a few microscopic intervals might suf5ce, so
trial values of N' should not increase too fast, yet oc-
casionally very small subdivisions are needed, e.g. , if the
current basis is inappropriate to a particular time
domain. (Note that the choice b,r- 1 is large enough to
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permit a nontrivial number of successively finer subdi-
visions to test convergence yet small enough so that the
Magnus corrections can begin to converge [50].) Our
somewhat simplistic test for convergence forms the prod-
uct of U(~,~, ) resulting from the previous trial N' and
U~ for the present value of N', and compares this product
with the unit matrix: "convergence" is achieved when
the magnitude of the largest off-diagonal element falls
below a prespecified accuracy.

It is desirable to minimize the total number of diago-
nalizations performed by minimizing the total number of
trial microscopic steps. Computation is reduced by be-
ginning the microscopic-number sequence for the
(j+1)th macroscopic interval with the N' that is two
choices smaller than the final value of X' used for the jth
interval, rather than with N'+i =1. This allows for a
final N'. + i & N' while avoiding what are probably wasted
trials with too few subdivisions. For calculations of the
full time evolution matrix U( ~i.o~, i-o), a global savings of
50% comes from the use of Eq. (3.19), which effectively
halves the total time domain owing to the symmetries of
A(i-) discussed in Sec. III 8. [The phases that appear
upon r+-+ —r are easily obtained via Eq. (83a) after tem-
porarily switching to the spherical basis. ]

Choice of basis

The three bases introduced in Sec. II A approximately
diagonalize &(r) under different conditions: the spheri-
cal basis when ~r~ && V, the parabolic one when ~r~ &) V
or V«1 (fast ramp), and the local basis when V))1
(slow ramp). Any basis employed under conditions un-
favorable for the jth macroscopic step might require a
very large number N' of microscopic subdivisions, enjoy
less efficient matrix diagonalizations (and a higher cost in
real computation time), or converge only slowly.

The usefulness of the I basis was found to be limited in
practice, at least for full traversal of the manifold: al-
though it requires about as many total diagonalizations
as the parabolic basis and has the advantage of having a
tridiagonal Hamiltonian, each diag onalization takes
longer because the spherical representation of
U(r+hr, ~) itself is not even close to diagonal except
when ~i

~

=0. Unlike the p basis, ((U( ~, —~ ) )) in the 1

basis does not approach diagonality for any range of V.
The adiabatic q basis works best out in the wings at

~i.
~
&&3V, but involves more tedious calculations: every

microscopic step in every trial run requires an extra diag-
onalization (to obtain H' ' ), which automatically doubles
the computation time of each factor in Eq. (C1). More-
over, the use of the Magnus-corrected matrix M given by
the multiple integrals in Eqs. (Dl) must be done numeri-
cally, which requires yet further subdivisions of the mi-
croscopic subintervals to approximate the integrals.

The parabolic basis avoids most of these problems: it
converges decently for the most interesting ranges of
both ~ and V (i.e., values not too large), when Magnus
corrections up to order (b, t) are incorporated;
((U( ~, —~ ) )) further becomes diagonal in both limits
V~0 and V—+ ao . The calculations are therefore
simplified by using only this basis when seeking

U(~ro~, ~o). The next layer of improvement would pro-
vide a test for goodness-of-basis in each macroscopic in-
terval; at large enough times (e.g. , ~i ~

& 5 V) the switch to
the adiabatic basis would need to be made, and at smaller
times to the diabatic basis.

A simple goodness-of-basis parameter for the jth inter-
val is

GJ. = g I UI, .k(rj. r) —i)l .
k', jc =0

(C2)

If ((U(r&, w& i))) =I (i.e., if U is diagonal under some
permutation of indices), then the basis is good and G
equals its minimum possible value, n —m. In a very "un-
diagonal" basis, on the other hand, every element of U
would have the same magnitude, yielding the maximum
value, G, =(n —m) (e.g. , the unitary matrix
Uk k =(n —m) ' exp[2irik'kl(n —m)] is maximally
poor in this sense}.

Table IV illustrates the use of the three bases for the
n = 10, rn =0 manifold. Results are given for six
representative time intervals during both a fast ramp
( V=0.02) and a slow ramp ( V= 1.00), with A~= —,'; all

Magnus corrections discussed in Appendix D are includ-
ed (except only the first correction is included, numerical-
ly, for the adiabatic basis). The columns list final values
for N'. and 6 subject to a stringent accuracy of 10 as
defined above; G. ranges between 10 and 31.6. (Note that
the trends of X' and G are not entirely monotonic; on a
finer scale, they would be seen to dip to very low values
on occasion. ) Also listed are the total number of micro-
scopic intervals needed, g N'. , and the total number of
intervals actually tried, according to the above sequence
N'=[1, 2, . . . , N'}, for an entire sweep from x=0—15
with h~= —,'. In addition to the trends evident in Table
IV for the different bases, one should note the following
rules of thumb when considering the entire time domain:
(1) the inclusion of Magnus corrections in both spherical
and parabolic bases reduces the number of diagonaliza-
tions by factors of at least 3 —4 and 4—6 for slow and fast
ramps, respectively; (2) about twice as many total micro-
scopic steps are needed for slow ramps as for fast ramps;
(3) the overhead of extra trial microscopic steps —beyond
the [N'] finally needed for convergence —is always about
120—125 %%uo.

Sign conventions

Our sign conventions are standarized by requiring the
first element of every q eigenvector to be positive, if not
zero (cf. Appendix 8). In general, however, one must as-
sume that the first element might go through a zero at
some r (except when there is only one pi%0, l =m, as in
Sec. II C and Appendix 8). If all elements but the first of
an eigenvector are found to change sign after the next mi-
croscopic time step, the sign of the whole vector must be
flipped. For the sake of consistency, this convention
should also be used for the (constant) hydrogenic-basis
transformation U~i" ' (Appendix A). One must also avoid
diagonalization at precisely ~=0, owing to state ambigui-
ties for the degenerate eigenvalues.
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TABLE IV. Number of microscopic steps X,' and goodness-of-basis parameter 6, for U(~, , ~, , )

represented in three different bases, taken from half-traversals at both fast and slow ramps through the
n = 10, m =0 manifold between v.o=0 and ~= 15. Intervals j =1, 6, 11, 16, 21, and 30 are shown out of
X =30 macroscopic divisions ( h~ = —'). The asterisk indicates lack of convergence (to 10 ') for

N,' 500. The last line under each basis lists g,', N,
' and (in parentheses) the total number of trial mi-

croscopic steps for the whole ramp. See text.

Basis

Spherical [0.0,0.5]
[2.5,3.0]
[5.0,5.5]
[7.5,8.0]
[10.0,10.5]
[14.5, 15.0]
[0,15]

24
24
32
32
32
48

960 (2168)

V=0.02 (fast r-amp)

»rj ] N,
'

18.1
25.6
26.2
26.7
27.7
28.0

[0.0,0.5]
[2.5,3.0]
[5.0,5.5]
[7.5,8.0]
[10.0,10.5]
[14.5, 15.0]
[0,15]

48
48
64
64
64

100
1888 (4260)

V=1.00 (slow ramp)

[r. ..~, ] N,
'

17.7
28.5
26.3
27.2
28.2
28.3

Parabolic

Adiabatic

[0.0,0.5]
[2.5,3.0]
[5.0,5.5]
[7.5,8.0]
[10.0,10.5]
[14.5, 15.0]
[0,15]
[0.0,0.5]
[2.5,3.0]
[5.0,5.5]
[7.5,8.0]
[10.0, 10.5]
[14.5, 15.0]
[0,15]

6
16
32
32
48
48

970 (2183)

64
16
16
16

8
1774 (3794)

10.85
10.22
10.10
10.07
10.06
10.04

22.3
10.0107
10.0011
10.0004
10.0002
10.0001

[0.0,0.5]
[2.5,3.0]
[5.0,5.5]
[7.5,8.0]
[10.0,10.5]
[14.5, 15.0]
[0,15]
[0.0,0.5]
[2.5,3.0]
[5.0,5.5]
[7.5,8.0]
[10.0, 10.5]
[14.5, 15.0]
[0,15]

16
32
64
64
64

100
1796 (4060)

200
150
32
32
32
32

2526 (5502)

20.3
18.8
14.5
13.4
12.8
11.9

13.2
10.447
10.050
10.019
10.010
10.003

APPENDIX D: MAGNUS CORRECTIONS

The use of the Magnus expansion for the time evolu-
tion matrix (Sec. III A) is discussed in Refs.
[17—19,37,50]. In particular, Refs. [18,19] provide expli-
cit terms for any generator &(t), and Refs. [37,50] dis-
cuss convergence properties of the exponential represen-
tation of U. %'e consider here only results pertinent to
the bowtie problem.

Solution of the Schrodinger equation (3.12) for
M(tb, t, ) leads to the integral representation (3.13), where
U(t, t, )=exp[ —iM(t, t, )], and [t„t] is any small [50]
time interval. Use of the series (3.14) and a term-by-term
comparison of integrals of the same "order" then allows
one to write each M'"'(t, t, ) as a multiple integral of n

factors &(t; ) (i =1, . . . , n); the nth-order term is an n

fold integral over n —1 unequal-time commutators of the
[A'(t, ) I. The results up to n =3 are

M'"(t, t. )=f dt, &(t, ),
a

M'"(t, t. )= i-,' f dt, f —dt, [&(t, ),&(t, )],
l'2

M"'(t, t, )= „' f dt—, f— dt, f dt, [&(t, ), [&(t,),&(t, )]]——,', f dt, f dt', f dt,"[[&(t,),&(t,')],gj(t,")] .
a Q a a a a

(D 1a)

(D lb)

(D lc)

evaluation of the above integrals yields

It will prove necessary also to keep one of several n =4 integrals, which will be evaluated below.
The special form &(t)=P+F(t)Q, Eq. (3.15), further reduces the above expressions to integrals over a given field

function F(t), times commutators of the constant matrices P and Q. If the moments of F(t) are denoted

J„(t)=f dt'(t' t, )"F(t'), — (D2)
a

M"'(t, t, ) =Pb t +QJo(t) =(P+QF t )At,
M' '(t, t, )=i [P,Q][—,'btJo(t) J)(t)]=i [P,Q] —,', F(—bt)

(D3a)

(D3b)
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M(3'(r, r. )= [[P,Q],P][ ,', (—br)'J,(r) —,'2—tJ,(t)+ ,'J—,(t)]
—[[P,Q], Q] —,'J, (r)J, (r) —

,', A—t[J,(r)]'+ —,
' f dr'[J, (t')]'

(D3c)

where At =r —t, and r =
—,'(t, +r ). The final equality given for each M("'(r, r, ) applies specifically to F(t) =Ft and ap-

pears in Eq. (3.16). Note that the coefficient of [[P,Q],P] in M' '(t, t, ) vanishes in this case.
For linear fields, an alternative ansatz to the series (3.14) is a direct expansion of M(t, t, ) in terms of all linearly in-

dependent commutators of P and Q:

M(t, t, ) =(P+QF t )At + [P,Q] ap&(t)+ [[P,Q], P]ap& z(t)+ [[P,Q], Q]a&& &(r)+ [[[P,Q],P],P]ap& z P(t)+

(D4)

which circumvents the general results (D 1)—(D3). Substitution of (D4) into Eq. (3.13) yields the coefficients
ai,&

~F(b,t), a~&i, =0, and ap& &
ccF (At), as obtained above. Note that each factor Q in a multiple commutator is

accompanied by a factor F, from the term FtQ in the Hamiltonian in Eqs. (Dl). Furthermore, if there are ni, factors P
and n& factors Q in the commut at or s„M"('(t, t, ) has n =np+n& time integrals, including a product of time factors of

n& np +2)i
total dimension [r ~]. M'"'(t, t, ) will thus have terms that scale like (b.t) ~, with several possible powers
nI, +2n& ~ n + 1 contributing to the nth-order term when n )3. In particular, n =4 contains a nonzero coefficient

ap& p i, (t) that scales like (ht) . Inclusion of M' '(t, t, ) ~ (b, t) requires that this n =4 term also be kept if uniform con-
vergence of M(t, t, ) is to obtain as 6 r ~0. Only the third integral in Eq. (3.13) contributes to a&& p I, (t); substitution of
(D4) leads to

M"'(r, r ) = — dr ' P( t ' r)+-a 12 &
a

l+[P Q] F(r' r) + —. P+ +
12

=il [[P,Q],P],P]—„',F(~t) + . (D5)

where the ellipses represent other terms. A further refinement, necessary at large tI is to replace each P in the triple
commutator with &(t)=P+QF t. The term (D5) should be added to those of Eq. (3.16) when doing calculations with
"third-order" Magnus corrections for the bowtie.
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