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Dissociative excitation of HeH+ by electron impact
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We report the results of an ab initio variational treatment of electron-impact cross sections for the
process e +HeH+~e +He++H for electron energies between 21 eV, the threshold for excitation of
the dissociative 1 X+ state, and 26 eV, corresponding to the excitation energy of the first 'X+ excited
state. The calculations, which were carried out using a recent modification of the complex Kohn
method, employed accurate correlated target wave functions, as well as ab initio optical potentials to in-

corporate the e6'ect of closed channels. The fixed-nuclei excitation cross sections were found to be dom-
inated by a series of sharp resonance structures. However, when the cross sections are averaged over the
Franck-Condon envelope of the ground vibrational state, these sharp features are no longer seen. We
conclude that the recent experiments that report structure in the HeH+ dissociation cross section cannot
be explained within the context of traditional adiabatic-nuclei theory.

PACS number(s): 34.80.Gs

I. INTRODUCTION

Yousif and Mitchell [l] have recently carried out
merged-beam studies of dissociative recombination of
HeH+ with electrons. In the 21 —26-eV energy range,
dissociation of ground-state HeH+ into He++ H can
only proceed via excitation of the repulsive 1 X+ state.
The experimentally measured cross section for this pro-
cess displayed sharp peaks near the excitation threshold
as well as near the threshold for exciting the next excited
'X+ state at 26 eV. These peaks were superimposed on a
Aat background that appears to be negligibly small on the
scale of the measurements. Yousif and Mitchell postulat-
ed several possible explanations for the observed struc-
tures, the most likely being doubly excited autoionizing
states. These interesting measurements prompted us to
carry out a detailed study of e +HeH+ scattering in the
21 —26-eV energy range, to elucidate the nature of the res-
onance peaks and to quantify the magnitude of the back-
ground dissociation cross section. To accomplish this
task, we used the complex Kohn variational method [2],
recently modified to handle electron collisions with ionic
molecular targets [3]. The variational calculations em-
ployed a many-electron trial wave function built from ac-
curate multiconfiguration target states. We also con-

structed fully ab initio optical potentials to incorporate
electron-target correlation and closed-channel effects
which are critical in determining the resonance structure
in the excitation cross section.

In the following section, we will outline the theoretical
procedures we have used in this study. In Sec. III we de-
scribe the details of our calculations and present results.
We conclude with a brief discussion.

II. THEORY

Detailed descriptions of the complex Kohn variational
method and the way it is implemented to study e
molecule collisions have been given previously [2—5] and
will not be repeated here. We will limit ourselves to a
brief summary of the salient points and concentrate in-
stead on those aspects of the implementation needed
when multiconfiguration target state wave functions are
used as well as technical details which have not been pre-
viously delineated.

A. Complex Kohn variational method

The trial wave function we use is of the standard "close
coupling plus correlation" form [6—8]:

I0
ro(r&, rz, . . . , r&+&)= QA(yr(r»r2, . . . , r&)Fr&0(rv+&))+ gd& e&(r»r2, . . . , r&+&)

r P

where the first sum runs over the energetically open tar-
get states yI-, Fzz is a one-electron channel orbital an-

0

tisymmetrized to yr by the operator A, and e„ is an
(N+ 1)-electron configuration state function built from
square-integrable functions. The index I 0 denotes a par-

I

ticular degenerate solution labeled by the electron in-
cident on the target in state gz . In the complex Kohn

0
method the channel functions Fzz are expanded as

0

linear combinations of short-ranged functions yk, as well
as outgoing continuum functions gI" and regular continu-
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um functions fI", the latter fixed with unit coefficients in
channel I 0:

Frr, (")=X [fi (»)&u, &mm, &rr, +Trodi, m, gi (»))
I, m

X Ylm(r)/»+ hack 'yz(»),

with

f("(»)—

g (»)

sin(pr —2)rln2pr —lm. /2+ o.l")

)
1/2

exp[i(p„—2lrln2pr —la /2+ oI")].
)1/2

(3)

stationary and solving the resulting set of linear equations
[11]. Note that our definition of the T matrix is such that
for single channel scattering from a spherically sym-

i61
metric potential, TimI. m. =6~& 5mm e sin5I. Much of the
computational e6'ort is involved in building matrix ele-
ments of the many-electron Hamiltonian over the various
pieces of the trial wave function. Since the viability of
the entire approach depends critically on the ease with
which these matrix elements can be assembled, we take
advantage of a variety of computational techniques aimed
at simplifying the process. These techniques are delineat-
ed in the following sections.

B.P- and Q-space partitioning

It is convenient to partition the total wave function
into two parts, Pgr and Qgr, corresponding to the two

where pr= „, rir=Z/k„, o.
t =arg[I (1+l+i2ir)],

and kI- is a channel momentum.
The "conventional" choice for the continuum basis

functions is simply to use regular and outgoing-wave
Coulomb functions, the latter suitably regularized at the
origin with some arbitrary cuto6' function. We have no-
ticed [9] that for ionic targets, there can be quite a bit of
sensitivity to the form of the cutoff'used and that conver-
gence and stability is greatly enhanced by choosing the
outgoing continuum function instead as

gi (») = Qi+'V / f VFi (4)

where 9&+' is the partial-wave Coulomb Green's function,
V is any short-range function (we use a simple exponen-
tial), and F& is the regular Coulomb function. It is simple
to show that this function satisfies the asymptotic form
specified in Eq. (3). The physical motivation for this
choice of continuum basis, as well as numerical details
about its construction, are outlined in Ref. [9]. It is in-
teresting to note that this choice makes the method quite
similar to the scattered wave variational method pro-
posed by Sun et al. [10]for reactive scattering.

The coefficients Tlrrto of Eq. (2) are elements of the T
0 0

matrix from which cross sections are constructed. These
IIO

coe%cients, along with the parameters ck, are deter-
mined by making the Kohn functional,

[T ']= T ' 2J Vr(H E—)+r—

sums defined in Eq. (1). Since Qitjr is square integrable, it
is not explicitly needed for the determination of scatter-
ing parameters. As we previously stated, the channel or-
bitals Fi-I- in the Kohn method are expanded as linear

0

combinations of bound and continuum functions. All
these functions can be mutually orthogonalized without
changing the resolting T matrix, a property known as
transfer invariance [11—13]. We also follow the common
practice of requiring the channel orbitals to be orthogo-
nal to all the bound-state orbitals which are used to form
the target wave functions [6]. This latter requirement
may introduce constraints which must be relaxed by the
addition of appropriate (%+1)-electron terms to Qg.
We will have more to say about this below.

Pg is restricted in our formulation to include only
open-channel terms. Therefore, any closed-channel
eAects one may wish to include such as electron-target
correlation or target polarization must be incorporated
into the terms used to expand Qitj. It is important to
note, then, that the configuration state functions [B„]
from which Qitt is built are of two distinct types. One
class of terms is needed to relax any unphysical con-
straints placed on the total wave function by the require-
ment that the channel scattering orbitals be orthogonal to
the target basis orbitals. To add to the confusion, some
authors refer to these as short-range correlation terms.
We will refer to these as "orthogonality relaxing" or
"penetration" terms [14]. These terms are, in general, al-
ways needed except in cases where space or spin con-
siderations eliminate them. If the scattering orbitals were
not constrained to be orthogonal to the target orbitals,
these terms would not be needed, but the formalism
would be considerably more cumbersome. The other
class of terms in [B„j represents the effect of closed
channels and target polarization.

In calculations which include the eA'ect of closed chan-
nels, the set of Q-space configurations can become quite
large. For this reason, and because of the fact that the
configuration state functions IB ] are built solely from
square-integrable orbitals, it is desirable to use bound-
state molecular structure methods to treat the Q-space
portion of the problem and to divorce this part of the cal-
culation from the rest of the variational calculation. This
can be done by using Feshbach partitioning [15].

Defining M as H —E, we can derive in the usual way
[11]a modified Hamiltonian that determines Pg:

H,~=Hpp +MpgMgg Mgp

(6)=Hpp+ V,„,
where M&& is the inverse of the Hamiltonian matrix
spanned by the functions [B„].This allows us to drop
the variational coefficients d„o in Eq. (1) from further
consideration. Note that it is not actually necessary to
invert M&& to construct the effective Hamiltonian. If Q
space is very large, it is preferable to solve the set of
linear equations

MggX =Mgp

and then construct M&&X to produce the desired optical



4330 A. E. OREL, T. N. RESCIGNO, AND B. H. LENGSFIELD III

potential, V, , Modern electronic structure codes that
make use of direct configuration-interaction (CI) methods
can solve the linear equation problem posed by Eq. (7)
very eSciently in an iterative fashion, even for very large
Hamiltonians M&&, since the operation of multiplying

M&& times a trial vector X can be performed without the
need for explicitly forming and storing the Hamiltonian
matrix [16].

The variational calculation requires matrix elements of
H ff which can be classified as either free-free, bound-free,
or bound-bound, depending upon whether two, one, or
zero continuum orbitals appear in the expression. The
bound-bound terms constitute the largest class of matrix
elements and can be evaluated using bound-state elec-
tronic structure methodology.

The effective Hamiltonian defined in Eq. (6) is an
(N+1)-electron operator in a product space of functions
defined by the first term in Eq. (1) and labeled by open
target channels. Operationally, we must reduce this
many-electron operator to a matrix of one-electron
operators defined over the functions used to expand F&&

by integrating out the X coordinates of the target. The
electronic structure problem, then, consists of two dis-
tinct tasks. %'e have first an ¹electron problem in which
a set of target wave functions is determined by a CI ex-
pansion in which a set of molecular orbitals, which we
call target orbitals, are used. We then have an (N+1)-
electron problem in which a complementary set of
"scattering" orbitals, distinct from and orthogonal to the
target orbitals, are combined in direct products with the
target wave functions —these are the P-space
configurations. The (N+ 1)-electron problem also in-
volves Q-space configurations which are not in general la-
beled by target channels. The Q-space configurations of
the "orthogonality relaxing" type are built entirely from
target orbitals, while the correlation/polarization
configurations can involve both target and scattering or-
bitals.

The procedure we employ for carrying out the contrac-
tion of the Hamiltonian with respect to the P-space target
wave functions warrants explanation in some detail. It is
essential to ensure consistency between the ¹electron
and (N+ 1)-electron problems with respect to phase con-
ventions, ordering of configurations, etc. This may be
dificult with molecular structure codes which make pro-
vision for automatic generation of configuration since
these conventions may not be transparent. To avoid any
possible ambiguity, we determine the target CI
coefficients from a pseudo-(N+1)-electron CI calcula-
tion, which is performed in the following manner [17].
Let I @;], i = 1, . . . , n denote the ¹lectron
configurations used to expand the target eigenstates. %'e
first set up an n Xn Hamiltonian in the (N+1)-electron
space where each configuration is a direct product of a N;
and a single square-integrable function, y„which
represents the scattering electron. However, before carry-
ing out this CI calculation, all one- and two-electron in-
tegrals involving y, are set to zero. Because there is no
interaction between cp, and the remaining X electrons,
the diagonalization of this Hamiltonian will produce the

H 11
ll H 11 H12 . . . H lp

1 n 11 ln

11H„l
H21

11

HP'
nl

ltH lg

11 12
Hnn Hn1

H21 H22
ln 11

H„'P

HP
ln

HP' HP' HPP
nn n 1 nn

lf 2f . . . plHng H 1Q Hng

1H„g
2H lg

PH„g

where

a„"'=
& e, @,~a~a, q, &

and

a~, =(e,~, ~a~e, ) . (10)

The vectors used to transform the Hamiltonian matrix
can be arranged into a rectangular matrix U of dimension
n Xp+q by m Xp+q,

1 2 . .
1 1

~ ~
0 ~
~ ~

1 2 . .
n n

' Cl
0

'
Cn

0 0

0
C1C 1

~ ~
~ I

1 2
CnCn

~ ~ 0 C 1

~ ~ 0 Cn

0

0

where 1 denotes the unit matrix of dimension q Xq. Fi-
nally, the effective Hamiltonian needed in the variational
calculations is obtained from U'H U. The prototyping
scheme just outlined removes any possible inconsistencies
between the N and (N+ 1)-electron problems and
preserves the phase conventions used in the original
determination of the target states.

C. Optical potential construction

We have stated that the Q-space configurations, from
which the optical potential is built, are of two distinct
types. The first class consists of "orthogonality relaxing"
or "penetration" terms built entirely from target orbitals
and relaxes any constraints imposed by requiring the
scattering functions to be orthogonal to the target orbit-

desired ¹ lectron target states.
Let I c'„], i = 1, . . . , n denote the CI expansion

coe%cients of these target eigenstates. P space is con-
structed from the m (m ~ n) eigenvectors of this Hamil-
tonian associated with energetically open channels.
Moreover, this set of target vectors can serve as proto-
types for building a new set of vectors for use in the full
(N+1)-electron problem in which a Hamiltonian is built
from repeated products of the target configurations I 4&, ]
and all the scattering orbitals in succession, [p, I,j= 1, . . . ,p. Any orthogonality relaxing Q-space
configurations, which are denoted by 8, are appended to
the end of this list. The full Hamiltonian before transfor-
mation has the structure



DISSOCIATIVE EXCITATION OF HeH+ BY ELECTRON IMPACT 4331

als. We now turn our attention to the second class of Q-
space configurations which are used to include the e6'ects
of closed channels.

Recall that the P-space vectors were constructed as
direct products of scattering orbitals and a fixed number
m of eigenstates of an n Xn Hamiltonian matrix. The
complement of P space consists of the direct product of
the scattering orbitals and the remaining (n —m ) target
eigenstates, which are presumed to be energetically
closed. Thus the complement of P space can be used to
generate Q-space configurations which describe the effect
of closed channels. Which closed channels are included
will of course depend upon the number and type of
configurations included in t4&]. In the remainder of this
paper we will refer to these Q-space configurations as CI
relaxation terms.

In order to provide a complete discussion of this topic,
we note that additional closed channels can also be incor-
porated in the scattering problem by adding terms in Q
space which are the direct product of a scattering func-
tion and a linear combination of a disjoint set of
configurations. These configurations were not included
in the CI expansion used to determine the target wave
functions and are introduced, for example, in low-energy
scattering problems to incorporate polarization e6'ects in
the trial wave functions. These disjoint linear cornbina-
tions of configurations must be noninteracting with the
target wave functions,

&

4"IHIP''"s"

& for all I (12)

and this constraint restricts the introduction of this class
of closed-channel terms to problems where all of the open
channels possess di6'erent spin or spatial symmetry prop-
erties. This class of polarization terms has been used in
recent studies of low-energy electron-methane [18] and
electron-silane scattering [19].

In this study, only penetration terms and CI relaxation
terms are included in Q space. The algorithm that is used
to include the CI relaxation terms in Q space does not re-
quire the determination of all of the eigenvectors of the
target Hamiltonian. Rather, we employ projection
operators to account for these terms and can thereby
avoid the explicit construction of HQQ. In building the
optical potential discussed in the preceding section of this
work, HQQ is used to solve a set of linear equations,

HQQXQp =HQp (13}

vs,"=Hpgxgp .

This equation is solved in the configuration state function
basis rather than in the basis of CI eigenfunctions [20].
Thus

'1 —lc„& &c, lo H, ',.' H,",
'

1 —Ic, & &c, lo'
a« ——

o
kl k

Hi~ Hiq
=PQ Hkt H PQ

iq qq

csF
=PQHQQ PQ .

:—Xp

HQQ Xp R
Q

pg&g=l&g& —Ic, &&c„l&g &

(16a)

(16b)

(16c)

A direct-CI procedure can be used to perform the multi-
plication of HQQ" times the projected trial function. This
is a standard procedure in most modern electronic struc-
ture packages [16] and allows us to employ large Hamil-
tonian matrices in the scattering calculations.

This discussion has focused on the mechanical details
of how the matrix equations of the complex Kohn varia-
tional method are set up. The foregoing discussion
makes it clear that the formulation admits the use of
multiconfiguration target wave functions and large-scale
optical potentials and that modern electronic structure
techniques can be used to carry out most of the manipu-
lations required quite efBciently. We wish to emphasize,
however, that the partitioning of P-space and Q-space
terms and the appropriateness of certain configurations is
ultimately dictated by physical consideration of the un-
derlying approximations. In this study, we have restrict-
ed the calculations to collision energies where only two
channels are energetically open. As we shall see, the in-
clusion of CI relaxation terms in the optical potential is
critical in determining the resonance features in the exci-
tation cross sections over this range of energies. Howev-
er, because of the discrete nature of the optical potential
(it is constructed from the inverse of a finite matrix), we
would expect to encounter numerous pseudoresonances if
the calculations were arbitrarily extended to higher ener-
gies. These pseudoresonances are not associated with the
numerical method being used, but rather, are a result of
the inconsistencies caused by the neglect of open chan-
nels. For meaningful calculations at intermediate ener-
gies, special care is required if multiconfiguration target
states and/or optical potential terms are to be used.
These considerations are beyond the scope of the present
study and will be addressed elsewhere [22].

D. Separable expansions

The electronic structure codes provide an efticient
mechanism for evaluating matrix elements of the two
component parts of Hpp and V, , over the space of
bound orbitals used in the expansion of the channel
scattering functions. For evaluation of the bound-free

The linear equations, Eq. (13), are solved iteratively by
successively multiplying Hgg by a set of trial vectors (X',
i = 1, . . . , r ) and solving a small set of linear equations in
the trial space until convergence is achieved. This type of
algorithm has been discussed in a number of papers [21]
and a detailed description will not be given here. We
only note that neither the projection operator PQ nor the
Q-space Hamiltonian Hgg need be explicitly constructed
[20]. The multiplication of a trial vector X' by Hgg is
conducted in a series of vectorizable steps:

pgx'=(1 —
I c„&& C„I )IX'&

=lx'& —lc, &&c, lx'&
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and free-free matrix elements, we rely on numerical quad-
rature techniques. The adaptive three-dimensional (3D)
quadrature scheme we employ has been previously de-
scribed in detail [4] and will not be repeated here. What
we want to emphasize here is that this type of an ap-
proach is only used for direct-type continuum matrix ele-
ments of Hpp which, as we have previously shown, can be
reduced to a single 3D quadrature of various one-electron
transition potentials. Exchange-type matrix elements of
Hpp and matrix elements of V, , involving continuum or-
bitals are considerably more difFicult. The fact is that we
never have to compute them. By invoking separable ap-
proxirnations to the operators in question, this neglect
can be made rigorous [12]. In this section we outline the
arguments needed to justify this simplification.

A separable representation of an operator can be
achieved by projection onto a finite basis:

(17)
a, P

With reference to the effective Hamiltonian defined in Eq.
(6), this type of representation is invoked for the ex-
change components of Hpp, as we11 as V, , The basis we
use for this separable representation is the set of target
orbitals, along with the square-integrable functions used
to expand the channel orbitals Ez-z . Because the contin-

0

uum functions f& and g& used in the calculation are or-
thogonal to this entire set of basis functions by construc-
tion, then all matrix elements of Hpp and V &, involving
continuum functions will vanish and the entire effect of
exchange and electron-target correlation will be carried
in the bound-bound matrix elements. Whether or not
this is a good approximation depends upon how many
functions we include in the underlying L basis and how
close it comes to being complete for the purpose of
representing the operators in question. In this context,
one must bear in mind that orbitals used in the deter-
mination of target wave functions must necessarily be ex-
cluded from the set of I. functions used to expand the
channel scattering functions. There is no formal
difhculty here, since these target orbitals, as we have
stated, appear in appropriate (N+1)-electron "penetra-

tion" terms in g space. However, because the optical po-
tential is only represented in separable form, the transfer-
ence of terms from P space to Q space does involve an ap-
proximation. For this reason, we try to keep the target
orbital space as compact as possible. The use of natural
orbitals is ideal in this regard [23]. It is, nonetheless,
dificult to quantify the magnitude of the errors attribut-
ed to the separable representation of V, , Ultimately,
this quantification must be done empirically and it is
therefore very important to carry out calculations with
several dificult choices of basis sets in the course of a
particular study.

III. CAI.CULATIQNS

A. Fixed-nuclei cross sections

There are three electronic states of HeH+ that are
relevant to the present study, the ground X 'X+ state and
the first two excited states of X+ and 'X+ symmetry, re-
spectively. The ground state, which is bound by -2 eV,
has an equilibrium separation of 0.77 A [24] and dissoci-
ates to He+H+, while the excited states are both repul-
sive and dissociate to He++H. The three states are
nominally described by the single configurations:
(lo ),X'X+, (lo2o), 1 X, and (lo20), 2'X+. Exten-
sive calculations with multiconfiguration wave functions
have been carried out on this system by Green et al. [25]
and were used as a guide in checking the accuracy of the
target wave functions we employed in our study.

The target wave functions we used were obtained from
CI calculations carried out in a basis of Gaussian func-
tions given in Table I. An initial set of computations was
carried out at the ground-state equilibrium geometry.
We first performed full CI calculations and extracted nat-
ural orbitals from the average of the one-particle density
matrices for the three lowest states. These natural orbit-
als enable us to provide a more compact representation of
the target wave functions [23]. The final "target basis"
we chose consisted of the six natural orbitals with the
largest occupation numbers —corresponding to the lo.
and 2o. orbitals that describe the dominant configurations
for the states in question, along with one additional a and

TABLE I. Exponents of Cartesian Gaussian basis used in target and scattering calculations.

Center

Target basis

Exponents

Hydrogen

Hydrogen
Helium

Helium
Bond center
Bond center

s type

p type
s type

p type
s type
p type

48.4479 7.28346, 1.651 39, 0.462447, 0. 145 885,
0.07
1.0, 0.2 0.03125
414.466, 62.2492, 14.2212, 4.03878, 1.29719,
0.447 530, 0. 160274
1.0, 0.2, 0.05
0.083, 0.027, 0.0093
0. 19, 0.0655, 0.0226 0.00779

Hydrogen
Helium
Bond center

p type
p type
s type

Supplemental scattering basis
70.0, 21.0, 7.0
210.0, 70.0, 21.0, 7.0
0.10, 0.05
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FIG. 1. Theoretical X 'X+ —+1 X+ excitation cross section in
overall X+ symmetry calculated at the equilibrium HeH+ in-
ternuclear separation.

two o. compact natural orbitals needed for correlation.
The final target wave functions used in the scattering cal-
culations were obtained from a full CI calculation in this
smaller basis of natural orbitals. The excitation energies
we obtained in this truncated basis were 21.423 and
26.216 eV and compare very favorably with the results
obtained in the full virtual orbital basis (21.441 and
26. 117 eV).

The target basis was augmented with additional Gauss-
ian functions to provide Aexibility in describing the
scattering wave function. This set is also given in Table
I. To test the adequacy of this basis, we also carried out
calculations at several energies with larger basis sets than
those used here and found the results to change by less
than 10%. The I'X+~1 X+ transition is spin forbid-
den and the corresponding excitation cross section con-
verges rapidly in l. Since calculations were performed at
energies where only the ground and X+ states were
open, it was only necessary to include continuum basis
functions up to I =6 for satisfactory convergence.

To relax any orthogonality constraints on the trial
wave function imposed by orthogonalizing the continuum
functions fi and gi to the orbitals used to expand the
target states, we included in Q space all possible (N+1)-
electron configurations, consistent with the total
space/spin symmetry, in which only natural orbitals are
occupied. The optical potential also included CI relaxa-
tion terms as described in Sec. II C. In this case, the op-
tical potential included all relaxation terms which could
be constructed as the direct product of an excited target
eigenstate y; (i&1,2) and a scattering orbital although,
as we have pointed out, the projection operator scheme
we employ obviates the need for explicit construction of
the excited target eigenstates. In computing total excita-
tion cross sections, we included contributions from X+
and II total symmetry.

Figures 1 and 2 depict the X+ and II contributions to
the X '2+~1 X+ excitation cross sections, respectively,
calculated at the equilibrium internuclear separation of

1.0

F 0.8

a 0

0.4
O
(D

V3
V30

0
oi

2 'I 0 22 0 23.0 24 0 25.0 26.0
Energy (eV)

FICz. 2. As in Fig. 1, for II symmetry.

B. Effect of nuclear motion

The excited 1 X+ and 2 'X+ states of HeH+ are both
steeply repulsive near 0.77 A and consequently the verti-
cal excitation energies from the ground state are sensitive
to small displacements of the internuclear separation
from the equilibrium value. One might expect the HeH+
resonance states to track their parent ion states to first
order and the resonance energies to correspondingly shift
as the internuclear distance is changed. This will result
in a characteristic broadening of the resonance peaks in
the observed cross sections which can be quantified as fol-
lows.

On the assumption that the rotational levels of the tar-

0
0.77 A. Both the X+ and II cross-section components
are dominated by a series of sharp resonances superim-
posed on a relatively Hat background. The magnitude of
the total background excitation cross section is approxi-
mately 10 ' cm . By analyzing the structure of the trial
wave function in the vicinity of the various resonances,
we were able to determine that all the peaks, with the ex-
ception of the X+ peak at 24 eV, are Feshbach reso-
nances [26] associated with the energetically closed 2 'X+
state of HeH+; i.e., the resonances are of the form

(lo.2o )'no. , X+, (lrT2o )'n~, II .

The X+ resonance at 24 eV is broader than the other
resonances and has a high-energy tail which overlaps the
next X+ resonance, as well as the second II resonance.
Analysis of the trial wave function showed this to be a
core-excited shape resonance [26] of the form
(lo.2o ) no, X+.

Figure 3 shows the total fixed-nuclei cross section; the
experimental results of Yousif and Mitchell [1],taken un-
der low extraction conditions, are shown in the Fig. 3 in-
set. These results taken along would appear to support
the qualitative picture of a relatively Oat excitation cross
section with a number of sharp resonance peaks superim-
posed. However, we shall see that a consideration of the
nuclear dynamics will modify these results.
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FIG. 3. Total X 'X+ —+1 X+ excitation cross section calculated at R =0.77 A. The inset shows measured dissociative excitation
cross sections for HeH+ (Ref. [1])under low-extraction conditions where no hot bands are present.

get can be taken to be essentially degenerate, the rota-
tionally averaged excitation cross section, summed over
final states and averaged over initial states, takes the form

cr k
= f l fy (R)f(Eo,'R, Q)yk (R)dR

~
dQ

k 1

where y and yk are the initial and final (continuous)
0 V

target vibrational wave functions, f is the body-fixed
scattering amplitude, and Q denotes the spherical polar
angles of the molecular axis relative to the laboratory
fixed axes. If we use the classical 5-function approxima-
tion to replace the final continuum vibrational function
by ~dV/dR

~

' 5lR —Ro) where Ro is the classical
turning point on the upper-state potential curve V, then
the total excitation cross section is simply given as

~(E,)=, y f ~~. (R)T„, (R)l'dR
kO I I' I

o EOR y R dR,

that is, as the convolution of the "Axed-nuclei cross sec-
tion" with the square of the initial vibrational wave func-
tion.

The ground-state vibrational frequency of HeH+ is
3328 cm ' [24], corresponding to zero point vibrational
motion of approximately Ro+0. 1 A. Theoretical calcula-
tions indicated that the excited X+ and 'X+ target state
energies change by more than 5 eV over this range of in-
ternuclear separation. To test the sensitivity of the cross
section to changes in the He —H distance, we repeated
the calculations in X+ symmetry at Ro+0.05 A. We
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FICr. 4. Total excitation cross section, averaged over the vi-

brational motion of ground state.

found the resonance positions to shift by roughly the
same amount as the X 'X —2 'X+ excitation energy, as
expected, but the resonance widths, as well as the back-
ground cross-section values, to change very little. There-
fore for the purpose of evaluating Eq. (19) we simply used
the total cross-section values calculated at Ro, shifted to
reflect the R dependence of the excitation thresholds.
The vibrational wave function was approximated by a
harmonic oscillator function. Figure 4 shows the vibra-
tional averaged total cross section. As one would expect,
the resonance peaks do not survive the vibrational
averaging and what is obtained is the smooth background
value. It is unlikely that the use of more accurate initial-
and/or Anal-state vibrational wave functions would sub-
stantially change this result.
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IV. DISCUSSION

We used the complex Kohn variational method to
compute cross sections for the dissociative excitation of
HeH+. These calculations employed multiconfiguration
correlated target wave functions, and used an ab initio
optical potential to include the eII'ects of closed channels.
The fixed-nuclei cross sections were found to be dominat-
ed by a series of sharp resonances, in apparent agreement
with recent experimental findings. However, because the
resonance states were found to parallel their steeply
repulsive ionic parent states, the final cross sections we
obtained, averaged over the vibrational motion of the ini-
tial state, were structureless.

Yousif and Mitchell speculated that the sharp struc-
tures they observed might correspond to doubly excited
resonant neutral states and stated that similar structures
have been seen in measurements on N~ [27] and H~
[28]. However, we have shown here that the presence of
such structures in the fixed-nuclei cross sections will not
manifest itself in the observable cross section unless these
states are relatively independent of internuclear separa-
tion in the Franck-Condon region. Our calculations indi-
cated that this is not the case. We even performed more
extensive calculations on the HeH* neutral states in
which the core orbitals were allowed to relax, but we
found no resonance states that did not simply parallel the
excited target ion state.

The finite basis we have employed in our calculations is
only capable of describing the lowest members in an
infinite Rydberg series of resonances converging on an
excited singlet state of HeH+. For the higher members
of this series, the Born-Oppenheimer separation of elec-
tronic and nuclear motion must necessarily break down.
We therefore conclude that the structures seen by
Mitchell and Yousif might arise from nonadiabatic e6'ects
associated with these highly excited resonance states.

A notable feature of these calculations was the use of
natural orbitals to achieve a compact representation of
the target wave function. In this case, it was possible to
use a full CI description of the target states, thus avoid-
ing the usual issues of balance between the N- and
(N+1)-electron problems and recorrelation that often
occur in scattering calculations. The approach we have
used here would be especially useful in polyatomic sys-
tems like H3+, where more states are involved in the exci-
tation process and the description of the scattering from
these states has to be carried out in a balanced fashion.
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