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Ab initio study of low-energy electron-methane scattering
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The complex Kohn method is used to study electron-methane scattering with polarized trial functions
at incident energies ranging from 0.2 to 10 eV. A perturbative method, which only requires the con-
struction of Fock operators, is used to generate a set of polarized virtual orbitals. These polarized orbit-
als are then used to construct a compact ab initio scattering function that produces cross sections that
are in excellent agreement with experiments in the region of the Ramsauer-Townsend minimum and at
higher energies, where a broad maximum is present in the integral cross section. This is the first ab initio
study to accurately characterize low-energy electron-methane scattering.

PACS number(s): 34.80.Gs

I. INTRODUCTION

The scattering of low-energy electrons from methane
has been the subject of numerous theoretical studies in re-
cent years [1—9]. These theoretical studies have focused
on two distinct features of the cross section, the
Ramsauer-Townsend (RT) minimum at 0.4 eV and a
broad maximum at 8 eV. These features have been well
characterized by several experimental efforts [10—14].
Electron-methane scattering provides a sensitive test of
theory since a balance of exchange repulsion and polar-
ization interactions is required to describe the Ramsauer
minimum in the total cross section. Previous ab initio
studies have established that static-exchange calculations
alone are incapable of producing a RT minimum [8,9].
Since methane is the target gas in a variety of high-speed
switching devices [15,16], a number of the theoretical
studies were motivated by practical as well as purely
academic considerations. Methane has also been used as
a test bed for single-center scattering methods which em-
ploy model exchange and polarization potentials; more
recently it has been the subject of ab initio calculations.
Of the model potential studies, the most complete is that
of Jain [2], who reports cross sections from 0.1 to 50 eV
and presents an extensive set of differential cross sections.
In these calculations, a parameter-dependent polarization
potential is used to fix the RT minimum at the experi-
mentally observed position and is then employed for in-
cident energies below 1.0 eV. Electron-methane scatter-
ing has also been studied by Gianturco and Scialla [3]
and by Yuan [5,6] using single-center scattering methods
but with parameter-free polarization-correlation poten-
tials of the Padial-Norcross [17] and O' Connell-Lane
variety [18]. Yuan [6] has also compared single-center
exact exchange calculations with the modified semiclassi-
cal exchange method developed by Gianturco and Scialla
[3].

The calculations of Gianturco and Scialla produced a
RT minimum at an energy very close to the experimental

minimum. However, they did not report differential
cross sections (DCS) in their work, and their integral
cross section is not quantitative at low energies. Similar
integral cross sections were obtained by Yuan, who also
employed a single-center scattering method. Yuan com-
puted differential cross sections at energies ranging from
3 to 20 eV. The DCS's reported by Yuan were in qualita-
tive accord with experiment but significant quantitative
differences were evident at 3, 5, and 6 eV.

The only previous ab initio study which attempted to
include polarization effects was that of Lima, Watari, and
McKoy [7], which used the multichannel Schwinger
(MCS) method. The MCS studies were originally con-
ducted at the static-exchange level [8] and later repeated
[7] with the inclusion of closed channels to describe tar-
get polarization. The polarized MCS calculations did
produce a Ramsauer minimum but at too low an energy.
The discrepancy was attributed to the limited number of
terms that were included in the configuration-interaction
expansion they used to describe the closed channels.

In this study we employ the complex Kohn method
[19,20] to study low-energy electron-methane scattering.
Closed channels are included in the calculation to
represent polarization of the target. A set of polarized
virtual orbitals is generated by perturbation theory and is
used to provide a compact representation of the closed
channels included in the Kohn trial function. These
compact trial functions are used to obtain difFerential and
integral cross sections at incident electron energies rang-
ing from 0.2 to 10 eV.

In Sec. II a brief review of the complex Kohn method
is presented in order to develop a clear picture of how po-
larization is incorporated into the calculations. The pro-
cedure used to generate the polarized virtual orbitals will
also be developed at this point. Section III provides a
description of the Gaussian basis sets and wave functions
employed in the current study as well as a discussion of
our results. Section IV summarizes and concludes the
paper.
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II. THEORY

A. Polarization in the complex Kohn method

In the complex Kohn method we use a trial function of
the form

q'r, (r1, r2, . . . , r1V+1)=/Alar( re�"2r . . ~re)
r

XFaro(r~+1) ]

r,
Xdp p( 1 2 ' ' N+1)

where

X Y1 (r)/r+

hack

'gkr(r) . (2)

The functions h (r) and c (r) are cutoff factors, c (r) being
chosen to ensure that g& is regular at the origin and h (r)
chosen to further exclude both the regular and outgoing
wave continuum functions from the region near the ori-
gin. We define these functions as

ar)(2l +1)—
h (r) =(1—e r")'"' (4)

The channel momenta arising in these expressions are
determined by energy conservation:

kr = [2(E E„)]'/ for E &—Er .

The Kohn trial function also contains square-integrable
(L ) one-electron functions, yk, which are distinct from
the I. functions used to build the target wave functions,
and a sum of L (le + 1)-electron configuration state
functions, e„.

The continuum functions g& and f& are orthogonal-
ized to aO of the I. functions employed in the Kohn trial
wave function. This orthogonalization is dictated by
practical considerations involving the evaluation of Ham-
iltonian matrix elements. It also allows us to eliminate an

The first sum in Eq. (1) runs over the energetically open
target states denoted by yr. These target states need not
be restricted to a single configuration but may be
configuration-interaction wave functions. The functions
f& and g&" behave asymptotically as linearly independent
regular and outgoing Ricatti-Bessel functions, respective-
ly,

h (r)j1(kr r) sin(k„r l~/2)—
f, (r)= as r~~,

)
1/2

)
1/2

ih (r)[j&(ki r )+in, (k„r)c (r) ]
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exp[i (k r r —l ~/2) ]
as p~m

)
1/2

entire class of bound-free and free-free matrix elements
by using separable expansions to approximate certain
parts of the interaction potential. The orthogonalization
of the continuum functions f& and g&" to the scattering
functions yk simply represents a unitary transformation
of the total wave function which leaves the T matrix un-
changed. The orthogonalization of the continuum func-
tions to the I functions comprising the target wave
function, however, can represent an unphysical con-
straint in the calculation which must be relaxed by in-
clusion of appropriate configurations in the set [B„].If
not relaxed, this orthogonalization restricts the penetra-
tion of the target by the incident electron. Orthogonality
relaxing configurations which remove these constraints
are generated by taking the direct product of the target
wave function and an occupied orbital. For example, a
two-electron target wave function, O'T =a.&o.2, would give
rise to the orthogonality relaxing configurations o. &o.z and
cr, crz when the doublet contribution to the cross section
is computed.

Polarization of the target by the incident electron is an
important effect at low energies. To incorporate this
effect into the calculation in an ab initio fashion, we must
include closed channels in the Kohn wave function. One
way to accomplish this would be to generalize the trial
wave function to the form

open, closed

+ g d„'B„'(r„.. . , re+, )

with

Xr~Xr' =birr'Er

where the channel functions corresponding to closed
channels are now expanded as

Fr'P' (r)= g ck qr (kr) +pc&" && (r)Y& (r)/r
k I, m

with

i& (r)-exp[ —[2(Ez E„)]'/ ] r as—r ~ ~ .

An alternate approach, which is the one we have adopted
here, is to make use of the fact that all closed-channel
contributions to 'Pr fall off exponentially as any electron
coordinate tends to infinity. The closed-channel contri-
bution to %'z can thus be incorporated into Eq. (1) by the

0

inclusion of appropriate (%+I)-electron configurations
in [B„I,which are the direct product of closed-channel
wave functions and the square-integrable functions yk.
As the set of square-integrable one-electron functions yk
approaches completeness, the two formulations become
equivalent. Thus, in the formulation we have used here,
the (%+1)-electron terms [B„j not only contain the
"penetration terms" needed to remove orthogonality con-
straints from the calculation, but also contain terms need-
ed to describe polarization and correlation effects not ac-
counted for in the first term in Eq. (1).
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If we were to adopt the alternative method of incor-
porating closed channels by retaining the exponentially
decaying functions and moving the closed-channel target
wave functions into P space, the occupied orbitals in
these closed channels could no longer be included in the
sum over square-integrable functions present in the one-
electron scattering function Fr& defined in Eq. (2). In

0

the absence of a separable approximation, such a reparti-
tioning of the scattering problem would not afFect the
outcome of the calculations. Since we do invoke separ-
able approximations, it is advantageous to retain these
square-integrable functions in Fi-„. For this reason, we

0

included the closed-channel wave functions in Q space
and we did not adopt this P-space formulation of the
problem.

The T-matrix elements appearing in Eq. (2) determine
the electron scattering cross sections and are obtained by
requiring that the Kohn functional

tion of exchange integrals involving continuum functions
from & [22]. The direct integrals involving continuum
functions which contribute to & are evaluated by an
adaptive quadrature procedure developed by McCurdy
and Rescigno [9]. The separable optical approximation
results in a real-valued optical potential as the elements
of & which involve continuum functions are zero. The
optical potential can then be evaluated solely with elec-
tronic structure codes. Both of these approximations as-
sert that the L portion of the scattering basis, represent-
ed by the sum over y& in Eq. (2), approaches a complete
set of functions and thus is large enough to account for
these interactions. Thus we have

—= gqual~. &&V klf! Yim &

k

[T '] = T ' 2J %'—,(& 8)q „—
since

(13)

T] 2(Moo M oM M o) (12)

where the matrix elements of M are obtained from the
operator (&,rr E). The subs—cript 0 denotes the func-
tions [g„f!Y! ] and the subscript q denotes the sub-
space spanned by the functions [g„g! Yim [ and [pry'.

In these calculations, separable exchange and separable
optical potential approximations were invoked. The se-
parable exchange approximation results in the elimina-

be made stationary. This leads to a set of linear equations
rra rro r,for the variational parameters, T, Cz and d„,

present in the Kohn trial function. In practice, the
second sum in Eq. (1) can be formally eliminated by using
Feshbach partitioning to define an e6'ective Hamiltonian.
Denoting the two parts of q!r in Eq. (1) as P%'„and
Q'I!r, we find that Pq'r satisfies a Schrodinger equation

0 0

with the effective Hamiltonian

(&qq E) '&qp—

+V, ,

Thus the optical potential V, , appearing in this expres-
sion for the e6'ective Hamiltonian &,s. contains contribu-
tions from both polarization and orthogonality relaxing
(%+1)-electron terms. The stationary expression for the
T matrix is found to be [21]

&mk~f! Yim & (14)

as a result of orthogonalizing the continuum functions to
the L functions. Equations (13) and (14) also hold for
the outgoing continuum functions g!. In Eq. (13), [P„]
represents a complete set of one-electron functions and
[yk] are again the L functions which appear in the
Kohn trial function. Thus Q space, which contains the
polarization terms in these calculations, is only coupled
to P space via the square-integrable functions rpk present
in F(r) of Eq. (1).

In order to obtain a compact trial function, the
Hartree-Fock virtual orbitals are subjected to a transfor-
mation which splits the virtual space into a small number
of polarized virtual orbitals and a complementary set of
virtual orbitals. The molecular polarizability computed
from the closed channels defined in terms of these polar-
ized orbitals is equivalent to that obtained by employing
the full set of virtuals to first order in perturbation
theory. The transformation used to define these polar-
ized virtual orbitals is described in the next section. In
our calculations we employ a single configuration,
Hartree-Fock target wave function and represent closed
channels by single excitations into the polarized orbital
space. The configurations employed in the Kohn trial
function would then be generated by the electron distri-
butions found in Table I. All configuration state func-

TABLE I. Electron distributions used to define the target states and the Kohn trial wave functions.

Orbital space

Hartree-Fock target
Closed channels

Valence Polarized Virtual

Trial P space

Trial Q space
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tions of the appropriate spin and spatial symmetry arising
from these electron distributions would be retained.
These distributions include closed-channel configurations
of difFerent spin and spatial symmetry from that of the
target wave function. The importance of these polariza-
tion terms has been previously noted by Schneider and
Collins [23] and by Lima, Watari, and McKoy [7].

Before considering the results of our calculations, we
need to examine the structure of our trial Kohn function
in greater detail. The configurations that were intro-
duced in g space to describe the target polarization and
to relax orthogonality constraints must not introduce X-
e1ectron correlation terms in the Kohn trial function that
were not present in the target wave function. These
spurious terms would result in an unphysical optical po-
tential that was much too attractive. Equation (7) is a
necessary but not su%cient condition to ensure that these
recorrelation terms are absent from the Kohn trial func-
tion. We have avoided this problem by employing the
direct-product configurations mentioned previously and
illustrated in Table I. However, the design of a trial func-
tion which yields a balanced description of 1V- and
(N+1)-electron interactions needed to obtain reliable
cross sections near the Ramsauer-Townsend minimum is
a more formidable undertaking. A polarized-self-
consistent-field (SCF) trial function was used by Schneid-
er and Collins [23] to study the shape resonance in N2
and this function was found to "overpolarize" the target
if the full virtual space was employed in the construction
of the (N+1)-electron configurations. This imbalance
between the ¹lectron and the (N+1)-electron wave
functions arises because the configuration state functions

I

which were introduced to polarize the target can also in-
troduce correlation in the (N+1)-electron wave func-
tion. The analogous correlation terms do not exist in the
X-electron target wave function. This imbalance will per-
sist unless full configuration-interaction (CI) wave func-
tions, in which the same orbita1 space is used to represent
the target and closed channels, are used in the calcula-
tions, One would expect this imbalance to diminish as
one introduces increasing levels of correlation in the tar-
get wave function. This efFect is well known and has been
addressed in the past by employing semiempirical cuto6'
parameters in scattering calculations which employ mod-
el polarization potentials.

In order to investigate this efFect, the virtual orbital
space was partitioned yet again and trial wave functions
generated from the electron distributions shown in Table
II were investigated. These polarized Kohn trial func-
tions can be uniquely defined by a set of three numbers
(a, b, c), which indicate the number of virtual orbitals
contained in each partition. The results of these studies
will be presented in the discussion section of this work.

It is well known that a large number of partial waves
are needed to converge the elastic electron scattering
cross section of a polarizable target. However, the higher
partial-wave contributions need not be explicitly comput-
ed in the Kohn calculations as they can be obtained from
a partial-wave Born approximation with a spherically
averaged efFective Hamiltoman [24]. Expressions for the
phase shifts gl"" and scattering amplitudes in this ap-
proximation were developed by Thompson [25] and
O' Malley, Spruch, and Rosenberg [26].

wed k80IQ— l&0,(2l +3)(21+1)(2/ —1) '

r

} 2

f(e)=—g (2l+1)e 'sinrI&P&(cos8)+ g( l2+1)e ' sinai""P&(cos8)
I=o I =3

1 2 8 2 P, (cos8)=—g (21+1)e 'sinrl&P&(cos8)+vradk ———sin ——g
l =0

(16)

TABLE II. Electron distributions used to generate the Kohn trial function and target states with a
repartitioned virtual space. The distributions are uniquely defined by the notation (a, b, c), which refers
to the number of orbitals in each partition of the virtual space.

Orbital space

Hartree-Fock target
Closed channels

Valence
orbitals

a
Polarized
orbitals

b
Virtual
orbitals

Virtual
orbitals

Trial P space

Trial Q space
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where ad is the polarizability of the target. The
~~6'erential and integral cross sections are given as

4~ n o.dkoI= g (2l+1) sin g&+
l=0 2450

(18)

It is important to bear in mind that these expressions are
also used to extrapolate experimental di6'erential cross
sections to scattering angles near 0' and 180 [14]. In our
work, we only employ these formulas to account for
partial-wave contributions with / )2.

B. Polarized orbitals

'Il
E- E (20)

where 0'o is the Hartree-Fock wave function, p is a com-
ponent of the dipole operator, 4, is a configuration state
function (CSF) generated by singly exciting the valence

The notion of a polarized orbital in scattering calcula-
tions is usually associated with the polarized orbital
method of Callaway et al. [27,28] and Temkin and I.am-
kin [29,30]. In this method, an adiabatic approximation
is used to treat the interaction of the incident electron
with the target. The response of a Hartree-Fock orbital
to an external Geld is represented, to first order in pertur-
bation theory, as the sum of a Hartree-Fock orbital and a
polarized orbital,

0'o+0'r .

An iterative procedure is then employed to obtain the po-
larized orbital at a variety of electron-target separations.
These orbitals are then used to define static and polariza-
tion potentials employed in the scattering calculations.
Polarized orbitals have also been used by Schneider and
Collins [23] as efficient means of incorporating target po-
larization in their linear-algebraic studies of Xz reso-
nances. In the Schneider-Collins treatment, a single
Hartree-Fock calculation was performed with an electric
field present. These Hartree-Fock orbitals were then or-
thogonalized to the zero-field orbitals to yield the polar-
ized orbitals.

In this work we employ perturbation theory to define a
set of polarized orbitals. %'e chose a formalism where
each valence orbital is independently perturbed by an
external dipole field. This allows us to employ only one-
electron, Pock-like operators in our expressions. There
will be three polarized orbitals, one generated by each
component of the dipole operator, for each occupied
valence orbital. The virtual orbitals are 6rst rotated by a
V& &

Fock operator, where the hole is placed in the or-
bital that is being polarized, to generate a set of improved
virtual orbitals (IVO's). A basis of singly excited
configuration state functions could then be generated by
exciting the orbital we wish to polarize. In this basis, the
Hamiltonian is diagonal and the erst-order wave function
is obtained from

orbital that is to be polarized, E; is the energy of this
singly excited CSF, and Eo is the Hartree-Fock energy.
Since we polarize only one occupied orbital at a time, this
expression for a first-order wave function reduces to an
expression for a perturbed orbital,

v; Is .iso

l CI. EP

where c., is the ith eigenvalue of the singlet IVO or V&

Fock operator,

P,vo=h +2JC —Kc+Jo+Ko

and co is the closed-shell Hartree-Fock eigenvalue of the
orbital that is being polarized. In Eq. (22), h is the sum of
one-electron kinetic energy and electron nuclear attrac-
tion operators, Jc and Kc are the Coulomb and exchange
operators for the core (doubly occupied) orbitals, and Jo
and Ko are the Coulomb and exchange operators for the
orbital being polarized. This procedure is repeated for
each occupied orbital and then the resulting polarized
virtual orbitals are orthogonalized. A compact represen-
tation of the closed channels used to account for target
polarization in the Kohn trial functions are generated by
singly exciting the valence, occupied orbitals into the
space of polarized virtual orbitals.

In practice, it was convenient to obtain these orbitals
by diagonalizing the following operator in the space of
IVO functions, y,. :

&v; Iv. leo & & voiv. iv, &

(E; —eo)(e~ —
EO)

which is derived by optimizing the square of the first-

order interaction subject to orthogonality constraints. I', .

is a rank-one operator whose single eigenvector with a
nonzero eigenvalue is the polarized orbital in question.

By using standard diagonalization techniques, all of the
orbitals in a degenerate shell could be treated at one time
and the resulting polarized orbitals could be constrained
to transform as irreducible representations of both the Td

and Cz, point groups. This operator is analogous to the
operator used by Amos and Hall [31] to define corre-
sponding orbitals in unrestricted Hartree-Fock (UHF)
theory and to the operator employed by Foster and Boys
[32] to generate oscillator orbitals. The operator used by
Foster and Boys differs from that defined in Eq. (23) by
the absence of the terms in the denominator.

We have tested this procedure by comparing the polar-
izability computed in the polarized orbital space to that
obtained by using the full virtual space and we found the
results agreed to better than 2%. Oscillator orbitals were
also investigated in these calculations and were found to
yield much poorer results. The results of these tests are
reported in the next section where the calculations are
described in detail.

The complementary set of virtual orbitals ought to be
uniquely de6ned as it is often desirable to employ a subset
of these orbitals in the polarized-Kohn trial function.
These orbitals were uniquely defined by diagonalizing a
V& &

Fock operator in this orbital space.
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This procedure can be readily generalized to polarize
open-shell Hartree-Pock or multiconfiguration self-
consistent-field (MCSCF) target wave functions by using
coupled perturbed Hartree-Fock [33] or
multiconfiguration coupled-perturbed Hartree-Fock
[34,35] theory to generate the polarized orbitals. These
techniques are routinely used in electronic structure
theory [36] to extract the dipole moment from a correlat-

ed wave function or to differentiate Born-Oppenheimer
energy expressions with respect to the position of the
atoms. These techniques allow us to define a hierarchy of
polarized target wave functions that can be employed in
scattering calculations using a series of MCSCF wave
functions to describe the target. This technique can also
be used to design a compact contracted basis set which
yields an optimum value of a molecular property.

74.69
11.23
2.546

Hydrogen
[6s lp/3s lp] core basis

Type S
0.025 374
0.189 684
0.852 933

Type S
0.006 228
0.047 676
0.231 439
0.789 108

4232.61
634.882
146.097
42.497 4

Type P
18.155 70 0.039 1960
3.986 40 0.244 144
1.142 90 0.816 775

TABLE III. Gaussian basis sets.

Carbon
[12s6p/Ss4p] core basis

0.7130

0.2249

0.75

1.0

1.0

Type P
1.0

14.189 20
1.966

5.147 7
0.496 20

0.153 30

0.05

0.02

0.01

0.791 751
0.321 87

1.0
1.0

1.0

1.0

1.0

1.0

0.359 40

0.11460

0.05

1.0

1.0

1.0

Basis 2
Core [C:2d]

Basis B
Core [C:lp3d]

Basis C
Core [H:1s,C:ls 2p 5d]

Basis D
Core [H:ls lp, C: ls2p5d]

Hydrogen
None

0.318 1.0

Carbon
Type D

1.097 1.0 0.02

0.75

0.09

None

Type P
1.0

Type D
1.0

1.0

0.08

0.004

0.02

0.007

Type S
1.0

Type S
1.0

Type P
1.0

1.0

0.08

0.32

0.004

0.02

0.007

Type S
1.0

Type P
1.0

Type S
1.0

Type P
1.0

1.0
0.035 1.0

1.097

0.318

0.09

0.035

0.01

Type D

1.0

1.0

1.0

1.0

1.0

1.097

0.318

0.09

0.035

0.01

Type D

1.0

1.0

1.0

1.0

15.32

15.47

17.49

17.70

Polarizability (ao)

Polarized orbitals

Full virtual space
17.74

17.98 18.22
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FIG. 1. Partial cross sections in A
& symmetry obtained with

basis sets 8 (circles), C (squares), and D (triangles).

FIG. 3. Low-energy cross sections obtained from the
(12,39,29) trial function.

III. RESULTS AND DISCUSSION
5.000—

In this section we present integral and differential cross
sections obtained in our complex Kohn calculations at in-
cident electron energies ranging from 0.1 to 10 eV. The
results of polarized-SCF calculations will be discussed in
light of the earlier theoretical work of Lima, Watari, and
McKoy [7], and Jain [1],as well as the recent experimen-
tal work of Sohn et al. [14], Lohmann and Buckmann
[13],and Ferch, Cxranitza, and Raith [11]. In order to en-
sure that converged cross sections were obtained in the
polarized-SCF calculations, a series of Gaussian basis sets
were employed to describe the target wave function and
the L portion of the Kohn scattering function [Eq. (2)].
These basis sets are given in Table III. Basis sets 3 —D
are defined by augmenting a core hydrogen-carbon
Gaussian basis. At the bottom of this table, the sym-
metric polarizability ao obtained with these basis sets is
reported. The polarizability was computed as a sum over
states from SCF plus singles CI wave functions, the same
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C
1.000—
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D
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Energy (eV)

FIG. 4. Comparison of experimental and theoretical integral
cross sections below 1.0 eV.
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O
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L
0)
L.
Q)

CO

.3—o
0.100---

0.010 =-

0.001—

ao
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120 150
I
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FIG. 2. Low-energy cross sections obtained from the
(12,61,7) trial function.

FIG. 5. Differential cross section at 0.5 eV obtained from the
(12,39,29) trial function. O —o, present results. A —A, exper-
iments of Sohn et al. [14].
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FIG. 6. Differential cross section at 0.7 eV obtained from the
(12,39,29) trial function. o —O, present results. A —Ih„exper-
iments of Sohn et al. [14].

FIG. 8. Differential cross section at 3.0 eV obtained from the
(12,39,29) trial function. O —O, present results. A —4, exper-
iments of Sohn et al. [14].

wave functions that were used to represent closed chan-
nels in the scattering trial functions. Polarizability calcu-
lations were conducted using the full virtual space and
also using only the polarized virtual orbitals. We found
that the polarized virtual orbitals in CH4 were insensitive
to the spin coupling employed in the IVO Fock operator
[see Eq. (22)j and triplet IVO's were employed in the al-
gorithm used to generate the polarized virtual orbitals.
The results obtained from these two sets of calculations
agree to better than 2%%uo and basis sets 8 and C agree well
with the experimental value of 17.5a0. In Fig. 1, the A &

partial cross sections obtained with the basis sets 8 —D
are plotted. As seen in this figure, the location of the
Ramsauer minimum moves to higher scattering energies
with increasing polarizability. In all of these calcula-
tions, polarized virtual orbitals were employed in Kohn
trial functions of type (12,n, —19,7) where n„ is the
number of virtual orbitals in each basis. This type of
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FIG. 9. Differential cross section at 5.0 eV obtained from the
(12,39,29) trial function. o —o, present results. A, experi-
ments of Sohn et al. [14].
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FIG. 10. Differential cross section at 7.5 eV obtained from
the (12,39,29) trial function. o —o, present results. 4, experi-
ments of Sohn et al. [14].
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FIG. 11. Di8'erential cross section at 0.5 eV obtained from
the (12,61,7) trial function. 0 —0, present results. A —A, ex-

periments of Sohn et al. [14].

FIG. 12. Di6'erential cross section at 0.7 eV obtained from
the (12,61,7) trial function. 0 —0 present results, A —A, ex-
periments of Sohn et al. [14].

scattering function was discussed in the preceding section
and depicted in Table II. In the basis sets employed in
this work, seven orbitals were found to possess IVO ei-
genvalues greater than 6.9 hartrees and were excluded
from the Q-space portion of the Kohn trial function. Or-
bitals with eigenvalues of this magnitude have a negligi-
ble effect on the calculated optical potential.

An additional calculation was also performed using
basis D to investigate the sensitivity of these results to the
separable exchange and separable optical potential ap-
proximations employed. This calculation was also under-
taken to support the notion that the position of the Ram-
sauer minimum in our calculations is a function of the
target polarizability. As seen in Table III, basis C and
basis D differ only by the addition of a p function on hy-
drogen. In this additional calculation, the polarized vir-
tual orbitals were de6ned in basis C and then the addi-
tional p function was included in the square-integrable
portion of the scattering basis. Thus the target polariza-
bility is equal to that of basis C and the separable approx-
imations are treated at the same level as in the basis D
calculations. The results of this calculation and the pre-
vious basis-set studies are given in Table IV. We found

1.000
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U
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FIG. 13. Di6'erential cross section at 1.0 eV obtained from
the (12,61,7) trial function. 0 —0, present results. A —k„ex-
periments of Sohn et al. [14].

Energy (eV)
Basis

TABLE IV. Low-energy A
&

partial cross sections. Cross-
section units are 10 ' cm,

C0
O

V)

O

0.200
0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.700
0.800

1.246
0.143
0.020
0.003
0.042
0.117

0.650
0.084
0.022
0.004
0.001
0.002
0.004
0.010

0.212

0.045

0.014

0.001
0.009
0.085

0.646
0.083

0.003

0.001

0.008
0.045
0.158
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o—o—~~~
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0

I I

120 150 1Q

Angle (deg)

FIG. 14. Differential cross section at 3.0 eV obtained from
the (12,61,7) trial function. 0 —0, present results. &—k.„ex-
periments of Sohn et al. [14].
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partial-wave contributions from the polarized-Born approxima-
tion. 4, experiments of Sohn et al. [14].

that the results of this study, labeled basis E in Table IV,
produce a Ramsauer minimum very near to that obtained
from basis C which indicates that the shift in the
minimum is not an artifact of the separable approxima-
tions but is a response to a change in target polarizability.

Other Kohn trial functions of the type
(12+m, n, —19—m, 7), which increases the number of
virtual orbitals used to define closed channels in the opti-
cal potential, were also studied. These terms might also
bias the (%+1)-electron terms in the trial wave function
by introducing correlation terms not present in the SCF
description of the X-electron target. This, in fact, is what
was observed as the Ramsauer minimum shifted to
significantly higher energies than found in the calcula-
tions which used only the polarized virtual orbitals to de-
scribe target polarizability.

These observations led us to employ compact,

polarized-SCF trial functions in the scattering calcula-
tions where only polarized virtual orbitals were used to
describe target polarizability and where the basis set was
chosen to match the polarizability obtained either from
experiment or, in general, from a large electronic struc-
ture calculation. This simple prescription allows us to
achieve a reasonable balance between the N- and
(%+1)-electron wave functions without resorting to a
more elaborate CI description of the target. The polari-
zability obtained with basis D is too large. Basis 8 was
found to yield a polarizability which was comparable to
that found with basis C, but it was found that the d-wave
contributions to the cross sections were not converged
and thus the larger basis, basis C, was employed in our
final calculations. The Kohn trial function we employed
would then be denoted as (12,61,7). We also report the
results of calculations obtained from a (12,39,29) trial
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FIG. 16. Di6'erential cross sections at 0.5 eV with l &2
partial-wave contributions from the polarized-Born approxima-
tion. A, experiments of Sohn et al. [14].

FIG. 18. Total cross section. 0 —0, present results. A, ex-
periments of Lohmann and Buckmann [13].
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TABLE V. Di8'erential cross sections obtained with (12,61,7) trial functions. Cross-section units are
10 ' cm.

Angle (deg)

2.000
13.118
30.110
47.202
64.317
72.000
81.438
98.562

115.683
132.798
149.890
166.882
178.000

0.5 eV

0.417
0.377
0.235
0.084
0.007
0.001
0.010
0.041
0.051
0.035
0.015
0.006
0.004

0.7 eV

0.314
0.282
0.170
O.OS4

0.002
0.003
0.018
0.055
0.073
0.063
0.042
0.028
0.025

1.0 eV

0.103
0.087
0.035
0.003
0.028
O.OSS

0.094
0.153
0.172
0.155
0.125
0.102
0.097

3.0 eV

0.219
0.197
0.210
0.463
0.838
0.941
0.951
0.650
0.226
0.069
0.263
0.555
0.645

5.0 eV

2.622
2.269
1.312
1.031
1.579
1.796
1.820
1.125
0.284
0.465
1.811
3.284
3.714

7.S eV

7.812
6.856
3.897
1.765
1.534
1.679
1.710
1.027
0.249
0.941
3.340
5.850
6.579

function, where this scattering wave function was defined
by truncating the virtual space at IVO eigenvalues less
than 1.00, in order to assess the sensitivity of our results
to orbital truncation. In these calculations, we included
partial waves up to I =5. The calculations were per-
formed in C2, symmetry. The integral cross sections and
s-wave partial cross sections obtained in these calcula-
tions are given in Figs. 2 and 3. The Ramsauer minimum
shifts to lower energies with the truncated virtual space
but the integral cross section was not significantly
affected. In Fig. 4, integral cross sections below 1.0 eV
are compared with the experimental work of Sohn et al.
[14] and Ferch, Granitza, and Raith [ll], the ab initio
Schwinger calculations of Lima, Watari, and McKoy [7],
and to the semiempirical calculations of Jain [1]. The
crossed-beam work of Sohn et al. reports vibrationally
elastic cross sections and produces a shoulder near the
first vibrational threshold which is not present in the vi-
brationally inelastic work of Ferch, Granitza, and Raith.
The agreement between the experimental results of Sohn

et al. and the present theoretical results is very good in
light of the simple, uncorrelated, target wave functions
employed in our studies.

Differential cross sections at energies ranging from O.S
to 7.5 eV are presented in Figs. 5 —14 and in Tables V and
VI. The agreement between the experimental results of
Sohn et al. and both sets of theoretical results is quite
good. The trial function with the truncated virtual space
is better at energies below 1.0 eV but the results at 0.5 eV
must be regarded as fortuitous as experiment yields a
Ramsauer minimum at 0.45 eV and the smaller trial func-
tion produces a minimum at 0.25 eV. At incident ener-
gies of 3.0 eV and above, the agreement between experi-
ment and theory is excellent at scattering angles above
20. The discrepancy at small scattering angles is due to
the slow convergence of the partial-wave expansion. As
discussed in the preceding section, the effect of higher
partial waves can be included in a partial-wave Born ap-
proximation. A spherical (atomic) model is used to inves-
tigate these effects by averaging the d-wave eigenphases

TABLE VI. DifFerential cross sections obtained with (12,39,29) trial functions. Cross-section units
are10 ' cm.

Angle (deg)

2.000
13.118
30.110
39.000
47.202
56.000
64.317
72.000
81.438
98 ~ 562

115.683
132.798
149.890
166.882
178.000

0.236
0.209
0.114
0.062
0.025
0.004
0.003
0.015
0.042
0.092
0.109
0.091
0.061
0.041
0.037

0.168
0.147
0.074
0.036
0.012
0.001
0.008
0.025
0.056
0.110
0.133
0.119
0.092
0.071
0.066

1.0 eV

0.041
0.032
0.009
0.006
0.015
0.038
0.072
0.109
0.157
0.221
0.236
0.210
0.171
0.143
0.136

3.0 eV

0.253
0.247
0.305
0.421
0.581
0.776
0.937
1.024
1.016
0.694
0.260
0.091
0.268
O.S45
0.631

2.306
2.025
1.282
1.083
1.115
1.334
1.593
1.755
1.729
1.039
0.274
0.461
1.689
3.015
3.401

7.5 eV

7.146
6.293
3.660
2.457
1.773
1.507
1.547
1.643
1.615
0.911
0.214
0.937
3.215
5.546
6.218
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TABLE VII. Integral cross sections from 3 to 10 eV. Cross-section units are 10 ' cm .

Energy (eV)

3
5

6
7
8
9

10

Kohn (1 „=5)
6.264

15.940
20.575
23.252
24.293
24.248
23.615

Ref. [13]

9.057
18~ 81
22.40
24.56
25.31
25.17
24.68

Experiment
Ref. [14]

7.37
18.71

Ref. [11]

9.25
19.0
22.4
24.2
24.7
24.4
24.0

occurring in t2 and e symmetries. A p wave transforms
as t2 in the Td point group so the p-wave eigenphases are
degenerate. The spherical eigenphases are then used in
Eqs. (17) and (18) to obtain total and differential cross
sections. It is important to bear in mind that the efFects
of partial waves with I ) 2 are not converged in the Kohn
calculations since I )2 Gaussian basis functions were not
included in our calculations. It is computationally very
expensive to include enough Gaussian functions to ensure
that the Kohn T-matrix elements have converged to the
Born results. However, we found the errors introduced
by truncating the Gaussian functions at I =2 to be small
in the region of the RT minimum, as demonstrated by the
results described below. We first ascertained the ability
of this spherical model to reproduce the Kohn results. In
Fig. 15, the complex Kohn results at 3.0 eV are compared
with the spherical model truncated at I =2. As seen in
this figure, the averaging introduced in the spherical
model does not significantly affect the differential cross
section. This model was then used at 0.5 and 3.0 eV to
include the effect of higher partial waves in the computa-
tion of differential cross sections. The results of these cal-
culations are given in Figs. 16 and 17. The effect of in-
cluding higher partial waves in the calculations is seen to
bring the theoretical cross section into substantial agree-
ment with the experimental results at small scattering an-
gles. The results at 0.5 eV are also improved at large an-
gles where higher partial waves eliminate a dip in the
differential cross section. At the energies studied in this
work, the effect of including higher partial waves in the
integral cross sections was less pronounced, usually
amounting to an increase of a few percent from the
I „=5Kohn results.

Integral cross sections were also computed in the re-

gion of the broad d-wave resonance. Integral cross sec-
tions at incident energies ranging from 3 to 10 eV are
given in Fig. 18 and compared to the experiments of
Lohmann and Buckmann [13]. A series of experimental
results are also presented in Table VII for comparison
with our complex Kohn results. The present calculations
are in very good accord with the experimental results at
energies above 5.0 eV.

IV. CONCLUSION

In this paper we developed a perturbative method of
obtaining polarized virtual orbitals. The polarized orbit-
als were then employed in electron scattering studies of
methane at incident energies ranging from 0.2 to 10 eV.
Our principal interest was to develop a method capable of
yielding reliable cross sections in the region of the
Ramsauer-Townsend minimum. A Kohn trial function,
based on a polarized-SCF target wave function, was
developed and shown to yield electron scattering cross
sections that were in excellent agreement with experi-
ments over the full range of incident energies studied.

The difficulty associated with developing a trial scatter-
ing function which balances short- and long-range in-
teractions was discussed in some length. The perturba-
tive construction of polarized virtual orbitals from a
MCSCF trial function was also considered in this work.
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