
PHYSICAL REVIEW A VOLUME 44, NUMBER 7 1 OCTOBER 1991

Interferences in adiabatic transition probabilities mediated by Stokes lines
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We consider the transition probability for two-level quantum-mechanical systems in the adiabatic
limit when the Hamiltonian is analytic. We give a general formula for the leading term of the
transition probability when it is governed by N complex eigenvalue crossings. This leading term is
equal to a decreasing exponential times an oscillating function of the adiabaticity parameter. The
oscillating function comes from an interference phenomenon between the contributions from each
complex eigenvalue crossing, and when N = 1, it reduces to the geometric prefactor recently studied.

PACS number(s): 34.10.+x

I. INTRODUCTION

Two-level systems in quantum mechanics have always
played an important role. This is not only because they
provide the simplest nontrivial quantum-mechanical sys-
tems but mostly because many interesting phenomena in
physics can be reduced to the study of such systems. In
particular, the adiabatic limit for time-dependent two-
level systems has been studied for a long time [1—3] and
is still the object of recent investigations on the theoret-
ical, as well as on the experimental sides [4]. The study
of the adiabatic regime for two-level systems is relevant
in atomic and molecular physics and particularly in the
theory of slow atomic collisions, for example. Indeed,
by using the Born-Oppenheimer approximation, the mo-
tion of the electrons in the field created by the slowly
moving nuclei can sometimes be reduced to the study
of a two-level system driven by a slowly varying time-
reversal real Hamiltonian (see, e.g. , the monograph by
Nikitin and Umanskii [5]). In this paper we are con-
cerned with the asymptotic behavior of the transition
probability P(T) in the adiabatic limit characterized by
T —+ oo, where T is the typical time scale of the Hamilto-
nian. It is well known [1,6, 7] that P(T) decreases expo-
nentially fast to zero, with exponential decay rate given
by the so-called Dykhne formula, when the Hamiltonian
is real syrrunetric and depends analytically on time. It
has been shown recently [8—10] under "generic" hypothe-
ses that the Dykhne formula must be completed by a
geometrical prefactor when the Hamiltonian is Hermi-
tian and analytic. A careful analysis of this formula, as
well as a purely geometric interpretation of it is given in
[9]. The geometrical prefactor has been measured suc-
cessfully by Zwanziger, Rucker, and Chingas [11] in a
spin experiment. Nevertheless, as they emphasize in the
conclusion of their paper, realistic systems are not nec-
essarily "generic" in the sense described below. This is
precisely this aspect of the problem that we address here.

Our analysis of these nongeneric cases shows that the
leading term of P(T) is not given anymore by an expo-
nential times a constant geometric prefactor but by an
exponential times an oscillatory function of T [see Eq.
(1.12)]. This oscillatory behavior is the result of some
interference phenomenon between different contributions
to the transition probability. These features are present
in particular in the theory of atomic collisions. The tran-
sition probability for such systems is described by an ap-
proximate formula, motivated by the treatment given in
Landau and Lifschitz [12], which displays this oscillatory
behavior (paragraph 7.3.3 in [5]). In the present paper
we make a thorough investigation of the nongeneric situ-
ations, resuming and generalizing the work of Davis and
Pechukas [13] to the case of complex Hermitian Hamilto-
~.ians. Our main result is formula (1.12) which gives the
leading term of the transition probability when T ~ oo.
To our knowledge, this formula does not appear in the lit-
erature. An example borrowed from the theory of atomic
collisions, studied by Nikitin [14], will illustrate our re-
sults as well as a family of examples which will provide
the different possible behaviors of the transition proba-
bility (see Sec. VIII). In particular, these examples will
show the importance of the global features of the prob-
lem.

Similar rapid oscillations in the exponentially decreas-
ing transition probability also appear in the exactly sol-
uble model of Rosen and Zener [2] although their origin
is different.

Let us state precisely our results: Vfe consider the two-
level system defined by

H(t) = B(t) s

=&s(&)q l, o) +&a(&)q ( o )
+Bs(t)—

~ 0
0&
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with the following properties for the magnetic field.

(i) Analytieity: the functions Br, are analytic in a strip
S = (z = t + is g 8'l lsl ( a) and we also assume the
following technical condition.

(ii) Behavior at infinity: there exist two nonzero lirn-

iting fields B(+) and B(—) such that

t

4rz(t) = [ei(s) —ez(s)]ds

t

/p(s)ds . (1 9)

lim sup lBq(t+ is) —Bq(+)l ltl
+ = 0

OO (~)(~

for some positive o, , k = 1, 2, 3. Moreover we have the
following.

(iii) Separation of the spectrum: for each t g 1R the
spectrum of H(t) consists of two separated eigenvalues

ei(t) and eq(t) such that e2(t) —ei(t) & b, b & 0.
The eigenvalues on the real axis are

(1 2)

where

p(t) = B,(t) + B (t) + Bz(t)

is strictly positive. By convention we choose in (1.2) the
branch of the square root which is positive on the positive
real axis. The corresponding eigenprojections are

(1.4)

The eigenvalues and eigenprojections on S are defined
by the analytic continuations of (1.2) and (1.4). They
are multivalued and singular at the eigenvalue crossings
which coincide with the zeros of the analytic continuation
p(z) of p(t) in S . Notice that p(z) is single-valued in S~.
We suppose furthermore the following.

(iv) Eigenvalue crossings: the set X of zeros of p(z) in
S~ consists of 2n interior points zi, zi, . . . , z„,z„and each
zero is simple. By convention Imzi & 0, k = 1, . . . , n.

Let g~ be a normalized solution of the Schrodinger
equation (with h = 1)

Biz(z) is a multivalued function in S, with branch points
at the points of X and Arz(zi) is defined by continuity,
when z~ g X. The level lines ImArz(z) = ImArz(zi) =
const constitute the set of the Stokes lines of the prob-
lem. For the whole analysis of this paper, as well as
in our previous papers, it is essential that there exists
a Stokes line (hereafter called infinite Stokes line) going
from —oo to +oo which is entirely contained in the strip
S . Such an hypothesis is not always explicitly stated
but it is always implicitly used at some point. In [9] and
[10], we considered the generic situation where the in-
finite Stokes line passes through exactly one eigenvalue
crossing. This eigenvalue crossing is then the one which
governs the asymptotic behavior of P. This is the rea-
son why it is an important issue to determine this Stokes
line when there are several eigenvalue crossings in the
problem. (See the examples and discussion of this point
in [9].) In this paper we analyze nongeneric situations
satisfying the following hypothesis.

(v) Existence of an infinite Stokes line through N
eigenvalue crossings: there exist N eigenvalue cross-
ings zi, . . . , z~ and a Stokes line t ~ p(t), t g 1R
in S, passing through zi, . . . , z~ i and ziv such that
limi y~ Rep(t) = +oo and limp(t)l ( a for large enough

Although we call the above situation nongeneric, we

expect that it will occur for time-reversal Hamiltonians,
as a consequence of this symmetry. When the infinite
Stokes line passes through one eigenvalue crossing only,
we have the result [9]

e i(z) dz
l [1 + 0 (I/T)1

1

(1.10)

i —@z (t) = TH(t)@z (t)Bt

satisfying the boundary condition

»m lll'r(t)@~(t)ll = 1

or equivalently

»m lip~(t)@~(t)ll = 0.

(1 6)

(1.7)

where g~ is a loop in the complex plane, based at the ori-
gin, encircling the eigenvalue crossing z~ clockwise and

I ei(z)dz is the integral over rlr of the analytic contin-
@1

uation of e~ along qq. The prefactor e ' ' is of geometric
nature and is an analogue of the Berry phase. Indeed,
there exists a particular choice of multivalued analytic
eigenvectors pr(z) and pz(z) of H(z), associated with
ei(z) and e2(z) such that the analytic continuation of
yr(z) along gr, noted Pr(0), is given by

The transition probability P is thus given by the expres-
sion Pr(0) = e *"~2(0) .

1' = »m 111'~(t)@~(t)ll' . (1.8)

In this problem, the Stokes lines play an important role
(as in any WKB analysis). These lines are defined as
follows: Let b, rz(z) be the analytic continuation of the
function

The phase Oq is in general complex and its imaginary part
has been measured by Zwanziger, Rucker, and Chingas
[11] in their spin experiment. The analysis of Sec. VII
shows that when hypotheses (i)—(v) hold, the transition
probability is given by
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P=
nr (

exp (—i&i) exp I
iT— ei(z)dz

)
2

+ 0 exp
I

TIm ei(z)dz Tr~5 ~, (]..12)

where 0& and r1i are defined in analogy with (1.10).
Notice that the transition probability is independent

of the location of the basis of the loops 'Pj's an the real
axis. Indeed, if we replace all integrals from 0 to zj by
integrals from c to z&, c C 1R, the expression for P is un-
affected. There exists an entirely geometric formulation
of the transition probability which reads

1P = exp [—2Tdz(zr & 1R)] ) exp(21m0&. ) + 2) exp[1m(8y + 0&)] cos [Tdz(zy, zi) + Re(g~ —gz)] + 0
I

j—1 k&j

where dz is a distance dependent of p (see [9]). As
dz(zy, zz) ) 0 if k g j, the interference phenomenon
is always present when X ) 2.

II. PRELIMINARIES

Let us consider the normalized solution QT(t) of (1.5)
satisfying the boundary condition (1.6). It is convenient
to expand this solution on a normalized basis of instan-
taneous eigenvectors of H(t). There are several ways to
choose them. We define the eigenvectors by requiring
that lim sup IIU(t + is) —U(+)II = 0 .

t~+OO
)

(2 6)

connected domain whose borders are the real axis and the
infinite Stokes line of condition (v). It can be shown along
the lines of [9] that there is no eigenvalue crossing inside
O. Thus, from now on, we shall restrict all analytic func-
tions to 0, in which they are single valued. The image
of 0 by Arz is the strip ImAr2(zr) & Im( & 0 and this
map is ane-to-one. In particular the infinite Stokes line is
mapped onto the horizontal line Im( = ImArq(zr) & 0.
As a consequence of condition (ii) there exist two opera-
tors U(+) and U(—) such that

H(t)yr(t) = er(t)pr(t), k = 1,2 (2 1) These limiting operators do not depend on s. Let

pa(t) pg(t)) = Q, —k = 1, 2

Ar(z) = e~(z')dz', k = 1, 2 (2.7)

where ( I ) is the usual scalar product ing . The vectors
defined by (2.2) coincide with those defined by means of
the solution of the equation (see, e.g. , Kato [15], Chap.
II.4)

A;, (z) = A;(z) —A, (z), i g j, (2 8)

where in (2.7) the integral is over any path in 0 starting
at 0 and ending at z. We expand the analytic continua-
tion of g~(t) in 0 as follows:—U(t) = I~(t)U(t), U(0) = I

where

(2.3)

&T(z) = ).ci(z)e ' ""'V»(z). (2 9)

1~(t) = Pi(t)Pi(t) + P2(t)P2(t)
. B(t) x B'(t)

~(t)
(2.4)

By inserting (2.9) in (2.5) we obtain a differential equa-
tion for the coeKcients cj which reads

and B x B' denotes the vector product af B and B'. We
have pr. (t) = U(t)pr. (0). The solution @T(t) of (1.5) has
an analytic extension on S, @z (z), which is a single-
valued function satisfying the diA'erential equation

where

(2.10)

'~&(z) = TH(z)~&(z) . (2.5)

Here, and throughout the paper, a prime denotes d/dz, z
complex. The operator A' has a single-valued meromor-
phic extension in S with poles at the points of X. Thus
U and the eigenvectors yp have multivalued analytic ex-
tensions in S~, with singularities at the points af X. In
arder to deal with single-valued functions, we construct a
simply connected domain 0, with no eigenvalue crossing
in its interior, in the following way: Let 0 be the simply

a„,(z) = —(W, (0)IU(z)-'&,'(z))
= —

(V ~(0)IU(z) 'J&(z)U(z)~ (o)). (2.11)

lim lc, (t+ is) —c, (+oo)l = 0, j = 1, 2.
t t(~oo

In particular, the boundary condition (1.6) reads

(2.12)

Again, it follows from condition (ii) that the coef5cients
cz(t+ is) have well-defined s-independent limits cz(koo)
as l ~+00:
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lim lci(t)l= lci( —~)l =1

I'2(t) I
= lc2( —oo)

I
= 0

(2.13)

, . ' ~(")
as;(z) = — exp (—1)'i dz' p(z)

v p(z') )
x [(-I)'~i (z) + v'p(z) ~~(z)], (3 1)

and the transition probability P is equal to

& = lc~(+~)l' (2.14)

We refer the reader to [9] for more details on this analysis.
Let us outline briefly the strategy we shall follow for

the case N = 2. We shall use formula (2.12) in order to
compute P. This formula allows the differential equation
(2.10) to be solved along a path which follows the infinite
Stokes line except in the neighborhoods of the crossing
points, which are singular points for the differential equa-
tion.

We control the solution of Eq. (2.10) from —oo to a
point zi in a T-dependent neighborhood of zi (see Fig.
1) along the infinite Stokes line. We use the fact that
along this line ImLq2 is constant so that we control the
solution by performing an integration by parts in the
equivalent integral equation.

We then determine the singularity of the coeKcients
aI,&

in the T-dependent neighborhood of zq. This is done
by analytically continuing an explicit expression for them
from the real axis to this neighborhood.

Retaining the dominant terms of the differential equa-
tion near zq, we define a comparison equation which can
be solved explicitly.

We use this equation to go from z& to z&+ in the T-
dependent neighborhood of zq and by a standard strech-
ing and matching procedure, we get an estimate of the
solution of (2.10) at zi+.

We iterate the whole procedure.

where p(z), ni(z), and n2(z) are analytic around z*,
ni(z') g 0, and are given by

Bs(z)[Bi(z)B&(z)—B2(z)Bi(z)]
~(z) = B2(,) + B2(,)

(3 2)

ni(z) = Bs(z)p'(z)
4V'Bi (z) +»'(z)

Bs(z)p(z)
2V'»'(z) + B2(z)

(3.3)

i[Bi(z)B2(z) —B2(z)Bi(z)]
ng(z) =

2v'»'( ) + Bl( )
(3.4)

ai, (z) = —exp [(—1)'iC (z") + O((z —z*)' )]

(The integration and analytic continuations are along y. )
Remarks
(1) If Bs(z") = 0, then Bi(z') or Bq(z") is nonzero

because z' is a simple zero of' p. In such a case the
lemma holds with a suitable permutation of the indices
(see the Appendix).

(2) Notice that a~&(z") is independent of the choice of
p but this is not true for o, q, o;~ and the exponent in
(3.1).

By denoting the exponent in (3.1) by C(z) we can
write, in the vicinity of z',

III. STUDY' OF THE SINCUX ARITIES

In this section we first determine the singularities of
Eq. (2.10). Let z' be one of the eigenvalue crossings lo-
cated on the infinite Stokes line. In order to study these
singularities we need an explicit form for the eigenvectors
pi(z) defined by (2.2). We show in the Appendix the fol-
lowing lemma by an explicit analytic continuation. The
proof is rather technical.

Lemma 8.j. Let z' be a simple zero of p(z) such that
Bs(z") g 0. Let y be a path from some fixed point of 1R
to z, in the neighborhood of z* such that Bi~(u)+ Bz~(u) g
0 Vu g p. Then

a~, (z) = exp[( —1)'i~(z') + o((z —z*)"')]

x (—1)',', + O((z —z") i )p'( *)
i, ( —")'

(3.6)

(3.5)

where we have used hypothesis (iv) to write p(z)
p'(z*)(z —z*)+O((z —z*) ). By similar computations we
obtain the following approximation for a& in the sameky
neighborhood,

Z1 Z2

FIG. 1. The integration path for N = 2.

Let t ~ p(t) be a parametrization of the infinite Stokes
line. We control the solutions of (2.10) along a segment
Sq & t & sq of the Stokes line, which does not contain any
singularity of Eqs. (2.10), so that si and s2 are either such
that p(si) = z+—:p(t+. ) and y(sz) = z.+, = p(t +,) (see
Fig. 1) or si ——oo and y(sq) = z, =—p(t, ) or sq —+oo
and y(si) = z~ = p(trav). We follow [9] and write j(t) for
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(djdt)y(t), f(t) for f(p(t)), and so on. Equations (2.10)
are equivalent to the integral equations

We perform an integration by parts and write the result
in terms of the new variables,

ci(t) = ci(si) +

c2(t) = c2(si)+

d ~(s) ( )" "( )"( )

ds ~(s)a»(s)c* "(s)ci(s)
(3.7)

Cy S = Cy S

c2(s) = exp[—TlmAi2(s)]c~(s);

(3 8)

Sg C t ( s2 . we get

ci(t) = ci(si) + . , exp[iT Re&12(s)]a12(s)c2(s)
2 g2 S

ds j(s) exp[iT ReAi2(s)], I (s)c2(s) ——.

Sl

aig(s)a2i(s)
&' ()

(3.9)

cg(t) = c2(si) — . , exp[—iT Re&12(s)]a21(s)cl(s)xTA', 2 s Sl

ds j(s) exp[ iT Re—Aiq(s)] I, I (s)ci(s) + —.
r'a2i )' 1

SI
ds y(s) c2(s), s, & t & sp .

~ Qy2 S Q2y S

4', 2 s

If p(ti) = zi denotes the eigenvalue crossing zi, it fol-
lows from (3.5) and (3.6) that we can find a constant
independent of j and s such that, for all j and s,

const x [lci(»)I + lc2(si)I]ci t —ci si T
x(1~a ~ )

for s~ & t & s2 and k = 1, 2.

(3 14)

& const x lp(s) —y(t, )lb.', 2 s

& const x Iy(s) —p(t ) I

t' a;,."
, (s) I

& const x ly(s) —p(t, )l

(3.10)

IV. COMPARISON EQUATION

The ck's satisfy

ci(z) = a»(z)" "'"(z)

c2(z) = a»(z)e ' ""i(z) .

(4.1)

Let e & 0. We suppose that lp(s) —y(tz)I & e for all s
and we define llcill = sup„«, „lci(t) I. We have

To study this equation close to a crossing point z~, we
introduce the new variable

z —= T[&»(z) —&»(z2)] = —T dz'V p(z') . (4.2)

lc (t) I
& lc (s )I+

~~~s~ x (II ill+ II 211) (, +, s/2)
T

(3.11)
and

This change of variable is locally well defined everywhere
in a neighborhood in 0 of the crossing point. Note that
z depends on T and j and that on the infinite Stokes line
z is real and z = 0 when z = z&. In terms of this new
variable, Eq. (4.1) reads

I-„(,)l & I-, (, )I+ ons«(llcill+ llc211)(1+, sg2)
T

(3.12)

Let T be large enough so that const x (1 + ~ s~2) /T & i .
Summing the inequalities above and taking the supre-
mum over t we get

llcill+ llc~ll & 2[lci(si) I + lc2(») I] . (3.13)

Coming back to (3.9) we obtain under the same condition

d
ci(z(z)) =-

GS

Qy2 Z Z

T/p(z(z))
x exp(i[z + TEi2(z~. )]}c2(z(z)),

(4 3)

TV'p(z(z))
x exp( —i[z + TAig(z, )]}ci(z(z)) .
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We retain in this expression the dominant terms when
Iz —zi I

is small and express the result in terms of the
new variable x, which behaves as

Ac", (z) =—i~(z, ) exp [i4(zz) + iTAi2(zz)]

el s
x cg(z),

z = —T-23 '(»)(z —z~)"'[I+ &(z —zi)l (4 4) (4 8)

Thus, reversing the formula,

Hence, by using (3.5),

(4.5)

cs (z) = + ' exp [—iC (z~) —iTAig(z~)]
d ~ ie(z )

—SX'

x c, (z) .

In order to absorb the exponentials in the constant coef-
ficients, we consider the equivalent equation

exp(( —1)'i[z + TAis(z, .)]}
n~i(z(z))

TV p(z(z))

p((—1)' [C( )+» (')+ I)

2ni(z~) 1 1 ( T)
with

( 0

zE z~ e

6
—:A(z)c (z)

dz
c (z) =

ie zz e'

-A( )
0

(4 9)

where

2ai(») Bs(z, )

64B,'(, )+ B,'(;)
Bs(zi)

( )
'

6d-B!(;)

(4.6)

(4 7)

Cy Z = Cy Z )

c", (z)—:exp [ie(z, ) + iT&„(z,)] c", (z) .

Similarly, we introduce

C] Z = C] Z Z )

cg(z) = exp [i4(zi) + iTb, i2(z~)] c2(z(z))
= c2(z(z)) exp [iC (zz ) + iT ReAiq(zz )]

(4.10)

(4.11)

satisfying an equation which is equivalent to (4.3),
The factor e(zi) = +I depends on the analytic continu-
ation of Bi2(zz) + B22(zz) along the path y of lemma 3.1.
See the remarks following the lemma.

Vr'e define the comparison equation by

d
c(z) = [A(z) + B(z,T)] c(z),

where B(z,T) is defined by

(4.12)

A(z) + B(z, T)

TV'C( ( ))

( ( )); (.,);.)
Tgp(z(z) )

0
(4.13)

It follows from the foregoing that

const x ei™!
IIB(» T)II &

T(lzl/T)2/3

(4.14)

in Fig. 1. In terms of the variable x, this means accu-
racies of order I/lz+I if z(z+)—:z+. Thus we already
see that the scaling limit will be such that Izl ~ oo and
lzl/T O.

We postpone the determination of the adequate scaling
limit to a subsequent section and turn to the resolution
of the comparison equation.

lIma l

IIA(z)ll & if —(( 1 .
6lzl T

The bounds obtained in the preceding section on the
integration of ci along the arcs of Stokes line between
successive eigenvalue crossings give accuracies of order
1/(TO~2) = O(1/Tlz+ —zz ls~ ), where z+ are defined as

V. SOLUTION OF THE COMPARISON
EQUATION

We first go from the two coupled first-order differential
equations (4.9) to a second-order difFerential equation for
c+i(z) = c+i(z) . This coefficient satisfies
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/'1 .l, d~f"(z)+
I

——i
I f'(z) ——,f(z) = o,z (5.1) x(z)

where

('i 6(z, ) 1

6 36
(5.2)

By introducing the auxiliary function v(z) such that

FIG. 2. The image of a neighborhood in 0 of z~ by z(z).
f(z) = exp(iz+ d lnz)v(z)

we are led to

C. 2d+ I), i d+1v"(z) +
~

i +
~

v'(z) + v(z) = 0
z

(5.3)

(5.4) where

which reduces to the Kummer's equation for m,

y~"(y) + (b —y)~'(y) —~~(y) = o (5.5)

~i(a, b, y) = y-'
~

1 —a(a —b+1)—+O(y- )
1

y

(5.8)

where y = iz, —iD(y) = v(iy), a = d + 1 = 7, and
b = 2d+ 1 = 3. This last equation has been extensively
studied and its solutions are well known (see, for example,
[16], p. 268).

Two linearly independent solutions of (5.5) are given
by ivi(a, b, y) = M(a, b, y) and iv2(a, b, y) = yi ~M(a, —
h+ 1, 2 —b, y) where

I'(b) ) r(a+ n) y"
M a, b, y

1
iv2 (a, b, y) = y ~e" 1+ (b —a)(1 —a) —+ O(y ) ~

y

when [y) ~ oo with —3ir/2 & arg y & x/2.
Thanks to these solutions we can write

c, (z) = e' z / [pivi(6, s, —iz) + qiv2(6, s, —iz)],
(5.9)

where p and q are constants and

is single valued and is called the Kummer's or confIuent
hypergeometric function. The asymptotic behaviors of
m~ and m2 for large arguments are given by

-A
C2

ze ' d „ ie(z)
1 * ) y

Using the relations ([16], p. 264)

(5.10)

~, (a, b, y) = e-'- ivi (a, b, y)
I'(b)

I'(b)
I (a)

wq(o, , b, y) = e ' &' +'& iv(ia, b, )y
I'(2 —b)
I'(1 —a)

r(2 —b)
+r( b 1)ia2 (&)b&y) )

(5.7)

Q
iv(ia, ,b)y= —ivi(a+ 1, b+ l, y),

dy

( )

a —b+1+
)

ivy(u~ b I~ y) ~y2 —b

we obtain from (5.10) the explicit expression

iv2(a, b,—y) = —[y M(a —b+ 1, 2 —b, y)]
G d 1—b

dy dy
1 —b

u)2 a, b, y

(5.11)

-A( ) p[ 7/ (7 4 )+ i i/6 (7 4
)

7 7/6 (ls 7

7
+/[ ~ 7/6 (7 4 ~

)
i i/6 (7 4 ~ )+ 6 i/6 (7 i ~

)]7 (5.12)

On the arc of the Stokes line linking z/ i and zz, the variable z defined by (4.2) is real and positive. Indeed,
ReAi2(z) ~ oo when Rez —+ —oo, ~lmz~ & a [see (2.8) and condition (ii)] and ReAi2 is strictly monotone along the
infinite Stokes line of condition (vi), as A&2 g 0 there. Thus on the arc of Stokes Hne between z& and zi+i, z is real
negative, and the passage from z positive to z negative is such that 0 & z ~ e' z if z(z) is constrained to stay in 0
(see Fig. 2). The asymptotic behaviors of c+i and cg for z large and positive are computed with the help of (5.7) and
(5.8) since arg( —iz) = —vr/2 . It is straightforward to obtain from these formulas and the property I'(z+ 1) = zI'(z)
the following expansions:
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(5.13)

c~(z) = (' '+0( -)) '-))
~

"'),0( —
))6V . &1'(-.") «(-'. )

as z ~ oo. We also need c+(ze' ) as z ~ oo but the asymptotic formulas (5.8) are not valid in this case since
arg( iz—e' ) = x/2 if z ) 0. Hence we use the following symmetry relation ([16],p. 267):

M(a, b, y) = e"M(b —a, b, —y)

from which we deduce

u)q(a, b, e' y) = e "tot(b —a, b, y), u)2(a, b, e' y) = e' & &e "u)2(b —a, b, y) .

Now we can write

c", (ze' ) = e' z' [pu)t(~s, s, —iz)+ e '
qu)g(~s, ~s, —iz)],

(5.14)

(5.15)

(5.16)

c (ze™)= e' O'
I

—[—iz tv](-, —,—iz)+ -z / tot( , —,—iz-)+ i-z toy(-, —,—iz)]
y

+e ' —[—tz ' toy(s) s, —tz) —sz ' u)2(s) s) —tz) —~z ' to2( —s, s) —zz)]
—i~]3& . 7!6 1 1/6 1 4 5 1!6 5 1

with z ) 0 and we can apply formulas (5.8) to compute the asymptotic behaviors. By a direct computation we obtain

c~t{ze' ) = e' /" p 7s +O(z ') + q ~

s5 + O(z ')1'(s) t &1(s)
1(-.') «(-.')

(5.17)

c2 (ze' ) = SC
—~7m/12

as x~QG.
Lemma $.1. Let c (z) be a vector solution of (4.9)

whose asymptotic behavior is given by

I

where

0')
Y(zj) =

I e(z, ) 1

c~(z)=
~ b

+O(z ') as z~oo. and ~(z~) = Giy = +1.
Proof The hypoth. esis and (5.13) lead to the relation

Then

t'al
c (ze' )=Y(zi)~

b
~+O(z ) as z~oo

+Ox =R'z (5.18)

W(z) = W+ + O{z '),

.../t. 1'{s)
1'(-:)

,;./„1'(s)
1'(-:)

(5.19)

ie —)7))'/&2 1 (4)
1"(s)

~ -i7~/12 ,;./s1(s)
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From (5.17) we can write

W(ze' ) = W + O(z '),

,;./„F(s)
F(s)

im/12 3&F( 2)

F(s)

(5.20)

Thus

&e-7 /sz

F(s)
ie ' ~/" I(-')

F(s) &

W(ze' ) ~ ~

= W(ze' )W '(z) + g(z ')/'p;. , a

= w-(w')-' (') + o( -')

and we compute W (W+) = Y'(zz).

(5.21)

(5.22)

VI. ASYMPTOTIC MATCHING

In this section we estimate the diA'erence between the solution of (4.12) and the solution of the comparison equation
(4.9). This estimation will define the scaling limit for the asymptotic matching of these solutions.

Let U~(z, zo) and U(z, zo) be the associated propagators such that

U~(z, zp) = A(z)U~(z, zo), U~(zo, zp) = I,
(6 1)

U'(z, zo) = [A(*) + B(z, T)]V(zo, zo), U(zo, zo) = I .

We can evaluate their diA'erence by means of the diAerential equation

d
dz [V(»zo) —V~(»»)] = A(z) [V(z zo) —U~(z»)l+ B(z T)V(z zo)

and U(zp, zp) —V~(zo, zo): 0. Hence, by the method of variation of constants,

(6.2)

U(z, zp) —V~(z, zo) = V~(z, zo) ds U„'(s, zp)B(s, T)U(s, zo)

ds V~(z, s)B(s, T)U(s, zp) . (6.3)

Now we consider the path consisting in the three following parts: a rectilinear path from zp to 1, zp ) 1; a semicircular
path from 1 to —1, in the upper half-plane; a rectilinear path from —1 to —zo. We want to evaluate U( —zp, zo)—
V~(—zo, zo) integrated along the path described above. We can write

U( zo) zo) —U~—(—zo) zo) = V(—zo, —1)U( —1, 1)U(l, zp) —U~( —zo, —1)U~(—1, 1)U~(1) zo)
= [V(—zo, —1) —V~(—zp, —1)] V~(—1, 1)U~(1, zo)

+U( —zo, —1) [U(—1, 1) —U~( —1, 1)] U~(l, zo)
+U( —zo, —1)U( —1, 1) [U(1, zp) —U~(l, zp)] (6 4)

and bound each term separately. Let us consider (6.3) for zo and z on the same arc of Stokes line (zzo ) 0). In this
case z, zo, and the integration variable s are all real, so that, by (4.14)

IIB(s T) II &,/, and IIA(s) II
&

By standard estimates on (6.3) we get

/' z t/s zo s/s$ Z Qp
((U(»zo) —VA(z&zo)(( & e '"~ / 'l~/ x const x

~

— + —
~

for — and —(( 1.

q T T p T T
for any z and zo 6 1R such that zzo ) 0. Similarly along the circular path z(0) = exp(ie), 8 p [0, 7r] we have

(6.5)

(6.6)
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(e")II & — lla(e" T)ll ( (6.7)

and therefore

IIU(e*, 1) —U~(e" 1)ll & T„, ~T

1/3 Xp 1/3
IIU( —z(), z()) —U~( z()—, z())ll & const x zo

Z 1/3
+const X

T

1
T1/3

+ const X zp

for a constant independent of T. Gathering together these estimates we get

1

Ti/3

(6.8)

impwhen —(( 1 and T )) 1 .T
(6.9)

Since we shall take zo )) 1, we can write

1/3 &P
IIU( zo, zo) —U&( —zo zo)II & const x z

(6.1o)

I

that

I'] (1"(zi) = c(zi) = 0!+O (6.15)

and we are interested in c (e' zi) which is an approxi-
mation of c(e' zi). We can apply lemma 5.1 to obtain

when

Zp—((1 and xp, Tp+1.T (6.11)

1
c(—~) =

I 0! . (6.12)

From the bounds (3.9) we have

1 1
c(ti) —

! 0! & const x + —
!T zi —zi s~2 Ti

(6.13)

with si = —oo, p(s2) = zi ——p(ti ). In terms of the real
positive z and of c [see (4.11)] this last estimate reads,
with zi ——T[A12(p(ti )) —A12(Y(zi))],

We are now in a position allowing the right scaling limit
to be determined. Let us consider the arc of the Stokes
line leading from —oo to z1, the first eigenvalue crossing
of condition (v). According to (2.13) we choose initial
conditions for c(t),

I'] [' 1 ]

(e z1)=&(») 0 ! +O
IE»i

I
+ O!

Now, using the bound (6.10), we have that

1/3c(e"e, ) = c (e"zi) ~ 0{z, (
—

) )
=&(zi)

I I
+ o!—

Ikoi
1/3 +1

At this point we impose the conditions

z1 1 1/3 &1—((1, —((1, and xT x1 1

so that we can write

(6.16)

(6.17)

(6.18)

1 1 1 1
c(zi) —

! & const x —+ — & const x-
qo z1 T Zl

1 1c(e' zi) = Y'(zi)! +O(0 +1
(6.19)

1 1 z1
when —,—and —(( 1 (6.14)

zl ' T T

since cz(z) = O(cz(z)) for j = 1,2. Then, from zi to
e' zi, we use U~(e' zi, zi) instead of U(e' zi, zi) to
continue the solution. That is we consider c (z) such

I

Coming back to the variable t and to ez (t), this last equa-
tion reads

t'
c(t+, ) = x(zi)

I 0 ! +0! !, (6.2o)
L, T'lzi+ —»I'~2) '

zi —T[t-~12(V(ti )) —&12(7(zl))] and

X zi) = 1 0']

(—e(zq)exp[ —e'4(z~) — eeTAR& (y(czar))] 1) (6.21)

Note that IIX(zi)ll = O(1) so that cz(t+1) = O(l). We are now exactly in the same situation as we were in at the
beginning of the computation. This shows that provided conditions (6.18) are satisfied, we can iterate this procedure
as many times as there are eigenvalue crossings on the Stokes line, by choosing z~ = T[A12(y(t )) —A12(y(zz))] = zi
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Vj = 1, . . . , N in the analysis close to z&.
Let us give the scaling explicitly: We set zy —T" with z ) 0 to be determined. Thus

1 g/3 zg ~/3 1

T T(1—2r. )/s

Condition (6.18) implies

1 —2K . 1= K) 1.e.) K =—
3 ' ' 5 '

and actually have with this x,

S/5 zg 1
zq ——T ' ~ooand —=

~C/5
—+Oas T~oo

as required throughout the above analysis. We have proven the following lemma.
Lemma 6.1. Let ci(t) and c2(t) be defined by (3.8) and (6.12). Then

(6.22)

(6.23)

(6.24)

where

a
I
—X(z~)X(znr i) -. X(zi) I(

/'1l

—) c(z&) exp[ i4(z&—) —iT ReAi2( /(zi))]
i=1

VII. TRANSITION PROBABILITY

The preceding lemma is actually the main result of this paper since all the results concerning the transition
probability in the adiabatic limit are direct consequences of this lemma. Let us first see how we can recover the case
treated in [9]. We assume that conditions (i)—(v) hold with X = l. By lemma 6.1 and (2.12),

1
lim cq(t) = exp[T ImAiz(zi)] e(zi) —exp[—i4(zi) —iT ReAi2(zi)] + 0

1= —~(zi) exp[ —i4(zi) —iTAi2(zi)] 1+0
!Tl/5) )

From [9] we have [see Eq. (1.10)]

(7.1)

cg (oo) = exp !
—i8i —iT

e, (z)dz =
g1

[ei(z) —e2(z)]dz = Ai2(zi),

where the second integral is over any path in 0 leading from 0 to zp, we obtain by comparison
—isq

( )
—i4(s~) (7.3)

Remark. The method used in this paper is less accurate than the one designed in [7]. We have an explicit formula
for e ' ' [under the hypothesis Bs(zi) g 0] which reads

3(z) [Bi(z)B2 (z) —B2(z)Bi(z)]
2V'/( )[B'( )+ B'( )]

(7.4)

where e '"' = —e(zi) and pi is a loop based at the origin which is homotopic to r/i and encloses neither singularities
nor zeros of (Bi —iB2)/(Bi + iB2). Moreover, (7.3) is valid for any eigenvalue crossing z/ since both quantities are
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defined independently of the difkrential equations and asymptotic relations studied here. This gives to the expression
—e(zi)e ' I"l a geometric status since e '8& is geometric in nature. For a proof of this formula, see the Appendix of
[9]. (Notice that in the last line x/2 should be replaced by —kyar. )

Theorem 7.1. I et H(z) = Bi(z)si + B2(z)s2+ Bs(z)33 be a 2 x 2 matrix which satisfies conditions (i)—(v). I et @T
be a normalized solution of the Schrodinger equation igT ——TH@7 such that limi (~Pi(t)@T (t)~( = 1.

Then

N

lim )(P2(t)@T(t)(~ = ) e ' ' exp iT—
r 2

(exp
~

TIm ei(z)dz
~

~

g,

= exp
~

2TIm eq{z)dz) ) e ' exp I

—iTRe
l2=1

e, (z)dz
)

+0 Ti)5 ~
(7 5)

Pemark. In the case of a real symmetric Hamiltonian on t,he real axis, the preceding formula reduces to

2

ei(z)dz
j

lim ([P2(t)@7(/)(( = exp 2T Im ei(z)dz ) e(zi)exp iT Re-2= t' .
t~ oo j

j
( I i

+0ITigs ~ (7.6)

where ~(z, ) = kl.
Using the geometric notions introduced in [9] we can give a geometric formulation of this theorem.
Theorem 7.8. Under the hypothesis of theorem 7.1 we have

1
lim ((P2(/)@T(t)~~ = e 2T"'~" ~& ) e &+2) e ~ '+ "&cos[Tdp(z~, zg)+Re(0~ —Hp)]+0 ~taboo j=l jyk

Remarks.
(1) Theorems 7.1 and 7.2 have been obtained under

the boundary conditions c2(—oo) = 0 and ci(oo) = l.
Nevertheless, if these boundary conditions are reversed,
the theorerns still hold (with Pi in place of P2). Indeed,
if (ci(z), c2(z)) are solutions of (2.10) for z g 1R with
the above boundary conditions, then ( —c2(z), ci(z))
satisfy the same equation with reversed boundary condi-
tions, z p 1R. Now the transition probability is given by
lc2(~) I

in the frst c~e, and by
I

—c2(~) I
= lc2(~) I'

in the second one, showing that they are equal.
(2) If we replace the oscillating function of T in front

of the exponential by its mean value and denote by P(T)
the result, we get

P(T) = exp
~

2TIm ei(z)dz
~

(7.7)

where the mean prefactor is equal to the sum of the in-
dividual geometric prefactors.

reaction A* + B —+ A + B + Ae when the interaction
between the atoms is of the dipole-dipole type. This is
one of the processes which can be studied with the help
of a 2 x 2 real symmetric Hamiltonian. In this case the
Hamiltonian reads (see [5], paragraph 9.3.2 and [14])

( AE

2 R3

where Ac and C are constants and R = R(r)
gb'2+ r2v2 is the distance between the atoms at time
r. We also introduce the quantity d = (2CjAe) ~,
which is the typical interaction distance of the prob-
lem. The probability of the reaction is then equal to
the transition probability, ~ci(oo)~ with boundary con-
ditions ci(—oo) = 0 and c2(—oo) = 1 in the adiabatic
limit v ~ O. It is given by the formulas of theorems
7.1 and 7.2 (see the remark after the theorems). By in-
troducing the rescaled dimensionless time t = vr/d, and
the ratio b = b'/d, where d is fixed, the time-dependent
Hamiltonian reads

VIII. EXAMPLES

The first example comes from a model designed by
Nikitin [14]. The physical process is the following: one
excited atom A' moves along a straight line with velocity
v && l. It passes near a second atom B with impact
parameter O'. We want to compute the probability of the

(
H(~) =

( (b2 + g2)3/2

(b2 + g2)sj2

—1 )
(8.2)

It is easily verified that this Hamiltonian satisfies hy-
potheses (i)—(iv). The function p(z) is given by
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p(z) = Ae
i
1+ b2+ z2 sp

(8.3)

and its zeros are

., = (1+b' —&3b2)'/'. *~

(I + b4 ~3b2) 1/4 i(// —y)

(I
y = —arg ——b +i

(8.4)

(1 + b2)1/2&ix FIG. 3. The Stokes lines of example 1.

and their complex conjugates.
We have computed numerically the level lines

Imb, i2(z) = ImAi2(zi) for different values of the param-
eter b. In aI1 cases, they display the same general features

I

represented on Fig. 3, where they are given for b = 1.
The main point is that they pass through z~ and z2.

We also have computed that c(zi) = e(z2) = —1, thus by
theorem 7.1, we have, with T = d/v,

= exp
~

—2TIm

)ci(oo)( = e ' "("&2 1+cos(TRe[Ai2(zi) —Ai2(z2)])+ 0
I

1

gg /' Sg t' 1

o
gp(z)dz ~

4 cos
~

T y p(z)dz/2
~
+ O

I T,/,(T /
(8.5)

Let us now turn to a family of examples which will pro-
vide a wide variety of behaviors in the leading term of the
asymptotic transition probability, as well as emphasize
the global character of condition (v). Let H(t) = B(t) s
be defined by

B t
ts + n't p't

gt +d 'gt +, d 'gts+d (8.6)

where n', P', and 7' are constants to be determined later
and d is a large constant. Again, hypotheses (i)—(iii) are
easily verified. The function p(z) is

Then the magnetic field B(t) is completely determined
with

n' = —,p' = +/p —n'/4, 7' = 6~7 . (8.10)
2 '

In order to have a real magnetic field for real values of z,
we have to impose

(8.11)

which in terms of a, b, and c reads 2c ) a. VVe choose the

p(z) =
z' + 2n'z' + (n" + P")z' + 7"

z6 + d6

z +nz +pz +7
Z'+ d' (8.7)

and we choose the constants appearing in (8.7) in such a
way that the simple zeros of p(z) are zi —b+ic, z2 ——ia,
z3 ———b + i c and their complex conj ugates . Thus we
must have

Z —Z] Z —Zy Z —Z2 Z —Z2 Z —Z3 Z —Z3
p(z) =

and by expanding and comparing the coefIIcients of the
powers of z we obtain

p /2 + p/2 (b2 + c2)2 + 2a2(c2 b2)

7=7' =a (b +c)
(8.9)

FIG. 4. The Stokes lines for b = bq
——3.
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FIG. 5. The Stokes lines for b = bo ~ 3.88. FIG. 6. The Stokes lines for b = b2 ——5.

values a = &, c = 1, and d = 2 and keep 6 as a parameter
of the model. By analyzing the model we can see that
there are two difFerent regimes characterized by 6 && 1
and b &) 1 separated by a limiting case. By a numerical
investigation we have obtained for three values of b: bj ——

3, bo 3.88, b2
—5, the Stokes lines displayed in Figs. 4,

5, and 6. These figures lead to the following conclusions
about the leading term of the transition probability.

In the case 6 = b~, there is an infinite Stokes line pass-
ing through z~ only, the closest eigenvalue crossing to
the real axis in the Euclidean and the p metric (see [9]).
Thus the leading term of the transition probability can
be computed by means of the analysis given in [9].

In the case b = bo, there is an infinite Stokes line pass-
ing through z~, z2 and z3, and the analysis developed

in this paper is necessary. Note that the Euclidean dis-
tance between the real axis and zi (or zs) is greater than
between z2 and the real axis, although we have in the
p distance d~(ZI, 1R) = d~(z2, 1R) = d~(zs, 1R). Thus the
leading term of the transition probability will display the
interference phenomenon described above.

In the case b = b2, there is an infinite Stokes line pass-
ing through zi and zs only, showing that d~(zi, 1R) =
dp(z3, 1R) ( d~(z2, 1R) although the contrary is true in
the Euclidean metric. In this case too, an interference
phenomenon, governed by zq and z3, wiH take place in
the leading term of the transition probability.

Vfe have also computed the values of e ' & numerically
and plotted the leading terms of the transition probabil-
ity in the difFerent cases considered:

p(T) 2T ImEqq(zq) (8.12)

(see Fig. 7),

p(T) 2T ImEqz(zq) (
2 ImC{zql + —2imC(z~) + I

+2e ("l cos{TRe[AI2(Z2) —BEI2(zi)] + Re[@(Z2) —e(zi)])
+2e ("l cos(T Re[AI2(zi) + AI2(z2)] + Re[4(zi) + 4(z2)]) + 2cos [2TReAI2(zi)] )

(8.13)

if b = bo 3.88 (see Fig. 8), and

P(T) 2Tim&~q(z~)( 2imC(zq) + —2Im4&(zx)

+2 cos [2T ReA I2 (z I )]) (8.&4)
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APPENDIX

if b = b2 ——5 (see Fig. 9).
Note added in proof It is possible b. y using other meth-

ods to show that all error terms of the form O(l/TI~ )
in the final results can be replaced by O(1/T)

In this appendix we prove lemma 3.1. It is shown in
the Appendix of [9] that the vectors defined by (2.2) are
given by

(A1)
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we have

0.8- ibz(0) —&~In(2+p(0)[gp(0) + ( l)~Bs(0)]) (A5)

0.6-

Q4

P2

This representation is valid as long as gp(z) g +Bs(z),
which is equivalent to B~~(z) + B22(z) g 0. In particular
we suppose that Bs(z') g 0. This restriction will be
lifted later.

We first compute ay& on the real axis and then ana-
lytically continue the result in the complex plane up to
z*:

4
T

FIG. 7. 1 (T) for b = bi ——3.

a~~(z) = -(v~(0)l~(z) '~,'(z))
= -(v ~(z) lv,'(z)) .

By (Al)

p,'(z) = ib,'—( z)p, ( z) ~ e '"~'l@,'(z)

(A6)

(A7)

ld
~,'( ) =

2 d»(2u p( ) [V'p( ) + (—1)'Bs( )1)

+i B~(z)B2(z) —B2(z)Bl (z)
2V'p(z) [V'p(z) + (—1)'Bs(z)]

with the choice

(A3)

where

z(z) (Bs(z) + ( 1) gp(z)~ Bq(z) + iBq(z)) (A2)

and

(A8)

(v ( ) Ip,'( )) = ~ p([- ~ ( )] — b (*))
X p z

&
z

An explicit computation yields

(& ( )I@,'( )) = [B ( )»'( ) —B ( )Bl(*))

+(-1) "()P"-B;(.)ep(.)
)

(A9)
@~(0) = ll@2(0)11~2(0) = e*"'"vs(0) (A4)

and on the real axis we have

i~ (z)+ i~ (*)= —,
' »(4P(z)[V'p(z) —(—1)'B (z))[v'p(z)+ (—1)'B (z)))

—2
»(*')B'(z') —»( ') B'(z')

2+p(z')
I

GZ

Jp( ')+ (-1)'B.( '))
B.(*')[B (")B,'( ') —B (*')B'( ')]„.,

v'p(z') [Bl(z') + Bl(z'))

X I

(gp(z) —(-I)'Bs(z')

= —,
' »(4P(z)[Bi(z) + B2(z)]) —i(—1)'

These formulas lead to the following expression for a~&(z), z g IR:

(A10)

Bs(*')[B~( ')B'( ') —B2(z')B'( ')]d ~

V'p(z') [Bi(z') +»'(z')I )
2V'p(*) 4(Bi (z) + B2(z))

(—1)' —B'(*)gp( ) + [B ( )»'( ) —»( )B'( )]
B.(*)p'(*)

q 2V'p(z) .)
(Al 1)

By assumption (i), the functions B&(z) have analytic
extensions S~ so that the analytic continuation of ay&

from z to z in 0 is obtained by analytically continuing
the expression (All) along a path p from z to z such

I

that gp(u) g +Bs(u) or, equivalently, B& (u) + B2(u) g
0 Vu g y. This leads to the formulas of lemma 3.1.

We now consider formula (3.1) when Bs(z') = 0. Con-
dition (iv) implies then that one of the B&(z ) g 0,
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FIG. 8. P(T) for b = be 3.88. FIG. 9. P(T) for b = b2 = 5.

ey ~ e3, e2 ~ ey, e3 ~ e2 . (A12)

k = 1,2 must be nonzero; say Bi(z') g 0. In this case we
perform a change of axis, generated by a z-independent
unitary operator S such that the axis eJ exchange their
labels in the following way:

In particular, if @ satisfies the Schrodinger equa-
tion for H, Sg satisfies it for SHS i and if
yt(z) = U(z)i'(0) is such that H(z)ipse, (z)
et (z)pi(z), Spi(z) = [SU(z)S ']Spy(0) satisfies
SH(z)S '[Spy(z)] = et(z)[Spt(z)]. Thus we can write
with the same coefBcients ez as before,

Thus any vector g in the old system of axis corresponds to
Sy in the new one and the Hamiltonian becomes SHS

2

) iTA~ (S- (A14)

Bi B& iB—
qB2 ~ iBs B, —

in the basis
I 0 ~, I i ) . (418)

&0

Then we proceed as we did in the old set of axes to com-
pute the eigenvectors Spk and coefficients at&, but this
time with B~ in place of B3, B2 in place of Bq, and B3
in place of Bq in formulas (All) and (3.1).

' Present address: Observatoire de Neuchatel, Avenue de
Beauregard 3, 2036 Cormondreche, Switzerland.

[1] C. Zener, Proc. R. Soc. London 137, 696 (1932).
[2 N. Rosen and C. Zener, Phys. Rev. 40, 502 (1932).
[3] E. Majorana, Nuovo Cimento 9, 43 (1932).
[4 A. Shapere and F. Wilczek, Geometric Phases in Physics

(World Scientific, Singapore, 1989).
[5] E. E. Nikitin and S. Ya. Umanskii, Theory of Slois Atomic

Collisions (Springer-Verlag, Berlin, 1984).
[6] A. M. Dykhne, Zh. Eksp. Teor. Fiz. 41, 1324 (1962) [Sov.

Phys. —JETP 14, 941 (1962)].
[7] J.-T. Hwang and P. Pechukas, J. Chem. Phys. 67, 4640

(1977).
[8] M. V. Berry, Proc. R. Soc. London Ser. A 430, 405

(1990).

[9] A. Joye, H. Kunz, and Ch.-Ed. Pfister, Ann. Phys. 208,
299 (1991).

[10] A. Joye and Ch. -Ed. Pfister, J. Phys. A 24, 753 (1991).
[11] J. W. Zwanziger, S. P. Rucker, and G. C. Chingas, Phys.

Rev. A 43, 3232 (1991).
[12] L. D. Landau and E. M. Lifshitz, quantum Mechanics

(Pergamon, New York, 1965), Sec. 53.
[13] J. Davis and P. Pechukas, J. Chem. Phys. 64, 3129

(1976).
[14] E. E. Nikitin, Chem. Phys. Lett. 2, 402 (1968).
[15] T. Kato, Perturbation Theory for Linear Operators

(Springer-Verlag, Berlin, 1980).
[16] W. Magnus, F. Oberhettinger, and R. P. Soni, Forrnu

las and Theorerns for Specia/ Functions of Mathematical
Physics (Springer-Verlag, Berlin, 1966).


