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Compton and Rayleigh double scattering of unpolarized radiation
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Analytical expressions describing double-scattering intensities of the Compton and Rayleigh effects
(Compton-Compton, Compton-Rayleigh, Rayleigh-Compton, and Rayleigh-Rayleigh contributions), are
deduced in the framework of the transport theory for an infinitely thick sample irradiated with collimat-
ed monochromatic radiation. An orders-of-interaction solution of the integro-differential Boltzmann
equation for unpolarized photons is used to separate the multiple-order terms. Interaction kernels for
coherent and incoherent scattering include atomic form factors describing the effect of the electronic dis-
tribution in multielectron atoms. The total attenuation coefficient of the target takes into account, be-
sides the mentioned scattering processes, the photoelectric effect, important in the x-ray regime. First-
order Compton and Rayleigh interactions give monochromatic peaks according to the theoretical model
that neglects electron motion. In contrast, Compton-Compton, Compton-Rayleigh, and Rayleigh-
Compton contribute asymmetric continuous spectra whose wavelength breadths are the DuMond width
and 2A, z (A,~ is the Compton wavelength), respectively. Single- and double-scattering intensities of the
Rayleigh and Compton effects are computed for pure and composite materials as a function of the exci-
tation energy and the angular orientations of the incident and take-off beams. Since absorption in the
target is considered, computations can be straightforwardly compared with experimental data and with

realistic Monte Carlo simulations. The agreement is good for low excitation energies because the
second-order term remains dominant in multiple scattering and bremsstrahlung emission is weaker.
However, for higher excitation energies the probability of higher orders of multiple scattering increases,
and they cannot be neglected. Although analytical calculations are performed up to the second order in

this work, a Monte Carlo simulation is used to show the importance of higher orders in light elements.

PACS number(s): 32.80.Cy, 07.85.+n, 78.70.Ck

I. INTRODUCTION

Techniques using the inelastic scattering of x and y
rays are applied to obtain information on electron-
momentum distributions in a wide range of materials
[1—3]. The analysis of the energy distribution of the scat-
tered photons —the Compton profile —cannot be per-
formed assuming that the photons undergo only one col-
lision before arriving at the detector because there is a
substantial contribution from the photons scattered two
or more times that overlaps the profile. This interference
must be stripped off to obtain acceptable data.

The correction of the measured Compton profile is per-
formed in practice by subtracting the intensity spectrum
due to multiple-scattering events [4]. To this end, Monte
Carlo simulations are actually preferred to analytical cal-
culations that have failed to accurately provide the infor-
mation required.

The first analytical approach to the multiple scattering
of the Compton effect was introduced by Dumond [5] in
1930. He predicted that multiple scattering may affect
the breadth of the single Compton line, change its struc-
ture, and distort the background until rendering unreli-
able the Compton shift measurements. Dumond studied
the problem of the double incoherent scattering of mono-
chromatic photons by free electrons and assumed the first
scatterer in the center of a solid and homogeneous
sphere, neglecting absorption. He predicted a faint line

or border at a shifted position of the incident wavelength.
He estimated the importance of the double scattering in
14%%uo of the single-scattering intensity for a graphite
sphere of 1 cm diameter. Williams, Pattison, and Cooper
[6] extended the Dumond treatment to include the
scattering from moving electrons and considered the
mixed case with one elastic and one inelastic collision.

Another type of analytical method is based on a gen-
eralization of the Dumond approach. In place of the
electric field it deals directly with the intensity of scat-
tered radiation and uses the narrow-beam attenuation law
in a probabilistic way to write a differential expression for
the intensity. As pointed by Halonen et al. [4] this ap-
proach leads naturally to a Monte Carlo technique.
Tanner and Epstein [7,8] examined the general case with
this technique in order to determine qualitatively the
effects of the sample geometry, the scattering angles, the
absorption coefficients, and the shape of the scattering
cross sections on the intensities of single and higher-order
scattering. They described the energy profile rejected by
a cylindrical sample as much of finite as of infinite radii,
of finite thickness and assuming constant absorption
coefficients. Braun-Keller and Epstein [9,10] proposed a
generalization of this approach assimilating the problem
of extracting the single Compton profile from the
multiple-scattering contribution to the solution of a non-
linear operator equation.

Although the natural analytical approach to attack

4232 1991 The American Physical Society



COMPTON AND RAYLEIGH DOUBLE SCATTERING OF. . . 4233

problems of particle diffusion in a medium, the
Boltzmann transport theory, is acknowledged as being
capable of tremendous generality, curiously in this Geld it
has been discarded because it is judged unable to separate
multiple-order terms [4]. What probably happened was
that transport theory was initially applied in this context
with the scope of finding a full solution of the Boltzmann
equation: Chandrasekhar [11] and O' Rourke [12] ob-
tained a "first-order approximation" to the total spectral
distribution of isotropically scattered radiation that, un-
fortunately, due to the approximation they used, led to
unphysical results precluding the use of monochromatic
sources; and Brockwell [13] found an approximated an-
gular solution to the intensity equation for a slab. Any-
way, none of these results was adequate for finding the
contributed intensity by the individual terms of multiple
scattering in an infinite-thickness target (where multiple
scattering becomes important) excited with a mono-
chromatic x-ray beam.

However, equilibrium radiative-transfer techniques are
a powerful tool for the study of photon transport [14,15].
Recently, transport techniques [16—21] were successfully
applied in a similar framework to study the angular and
energy dependence of single-order terms due to the multi-
ple scattering of x rays in a solid thick sample under
monochromatic excitation. The method is based on an
appropriate solution of the Boltzmann transport equation
for photons in an infinite-thickness homogeneous speci-
men. The reported solution [16] is exact, independent for
each order of scattering, and valid with all kinds of in-
teractions. It is the capability for separating the contri-
bution from different chains of interactions that make
this solution particularly adequate to describe mixed col-
lision effects in general, and with the coherent and in-
coherent scattering in particular. Several photon-atom
processes in the x-ray regime have already been tested
with this solution [17—21]. These results fulfill the accu-
racy requirements for (analytical) Compton profile un-
folding in the formal frame of the transport theory.

In what follows we shall apply such a solution with ap-
propriate interaction kernels describing Compton and
Rayleigh photon collisions with many-electron atoms,
finding analytical expressions for the intensities due to
double scattering in the target. Although the precollision
motion of the electrons will be not considered for the
sake of simplicity, the effect of the electronic distribution
in the atoms will be described by means of atomic scatter-
ing factors included in the cross sections. We shall de-
scribe the Compton-Compton, Compton-Rayleigh,
Rayleigh-Compton, and Rayleigh-Rayleigh x-ray wave-
length spectra as a function of the direction of emission
with respect to the sample surface, and of the source
beam s direction, energy, and intensity. The allowed in-
teractions in the x-ray region are the Compton and the
Rayleigh scattering and the photoelectric effect. Anoma-
lous scattering and bremsstrahlung are neglected. Be-
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FIG. 1. Irradiation scheme of a homogeneous specimen of
infinite thickness excited with a collimated monochromatic x-
ray source. The magnitudes are represented in the photon
transport equation (1).

sides, we shall assume that the photon energy in the x-ray
regime does not exceed the threshold for pair production.

We shall calculate double- to single-scattering intensity
ratios as a function of the excitation-detection geometry,
the incident energy, and target composition. We shall
briefly discuss the influence of higher order of multiple
scattering with recourse to Monte Carlo simulation.

For the sake of completeness in the following section
we shall summarize theoretical results from previous pa-
pers [16,18] that will be necessary to perform our
second-order intensity computations.

II. THEORY

A. Photon transport model

We consider a semi-infinite and homogeneous medium
of density p which attenuates the incident radiation with
total mass attenuation coefficient p(A, ). The mono-
chromatic radiation source is plane slant monodirectional
placed in the interface between the two semispaces. We
are interested only in the interacting photons in the lower
semispace (positive z axis). The photons crossing towards
the upper side can only be absorbed in that portion of the
space domain and can never return back to the sample.
A sketch of the geometrical arrangement is shown in Fig.
1.

In standard notation (using i)=co, ), the following bal-
ance equation for a source of I0 photons per second re-
sults:

= —p(A. )f (z, co, A, )+ J dA, '
J dro'k(ro, k, , co', k')Vl(z)f (z, co', A, ')+I05(z)5(co —coo)5(A, —Ao),az 0 4~
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where Vl(z) is the unitary-step Heaviside function. The
flux f (z, co, A)d, rodk gives the number of photons with
wavelengths between A, and A, +dA. , and with directions
between co and ~+dcu, which cross a unit area per unit
time. The wavelength k is used in place of the energy E
because it is convenient to our purposes of maintaining
close compatibility with previous results in the field, but
the use of E is entirely equivalent. The kernel
k(co, A, , r0', X') gives the probability density of photon
scattering into m and A, from u' and A, ', per unit path
through the medium and per unit de and dA, . It contains
the sum of the individual kernels for each one of the al-
lowed processes with independent probability of oc-
currence. Although Eq. (1) is one dimensional, it con-

tains the full phase-space information for the incident
and take-oF directions and wavelength (energy).

B. Solution of the Boltzmann equation

Equation (1) has been solved [16] by means of a
Neumann-type series in powers of the kernel k. As solu-
tion we have both the source-dependent zeroth-order Aux

r

f (z, r0, «(, )= 5(r0 —coo)5(A, —A o)exp
(0) 0 plzl

X ( I+sgnr) sgnz)

and the generic nth-order flux (positive z)

f '"'(z, co, A. ) == 1

r

exp — ~ f dr exp f d«(,
' f dc@'k (co, A, co', &,')f '" ' (&,a)'«&')

2 rjl o leal o

+ f dr exp — f dA, ' f dr@'k(re, k, , r0', A, ')f'" "( +z, c0', A, ')
leaf o

(3)

which depends on the (n —1)th-order tiux. The sgng
function is + 1 or —1 according to the sign of the polar
angle cosine.

The partial intensity, defined as the number of photons
passing through a surface element per unit time, can be
obtained as the partial current of the Aux through the
surface at z =0 (albedo flux) in the given direction.
Therefore it is given by the positive-definite quantity

I'"'(co, A, ) = lgl f '"'(O, ro, k. ) . (4)

The partial intensity I'"' gives the number of photons (of
order nth) by unit time, unit surface, unit solid angle, and
unit wavelength, having angular direction co and wave-

length A, , and therefore offers full information about the
angular and spectral properties of the emitted radiation.
In a similar way we define the wavelength-integrated in-

tensity

J'"'(ce)= f d A, I'"'( tie, ) (5)

that totals the spectral information and gives the magni-
tude of the whole partial intensity emitted in the direc-
tion co.

The first-order intensity is obtained straightforwardly
by replacing Eq. (3) (with n =1) in Eq. (4). An explicit re-
lationship [18] for the second-order intensity was derived
for the couple of interactions a and b (in this order)

I.',"(~,X)= 1 —sgng 1+sgnvlp Io 1

lqol p~lgl+po~lgol

X f d A, f dc' kb(c0«A«c0 «A, )kz (co «X «ceo«Ao)
0

1+sgng' 1 1 —sgng' 1

p ~lrII+p'~lq'I 2 p ol «rl)+op'~lr)'I
(6)

C. Photon interactions dominating the x-ray regime

Equation (6) is valid with the class of photon-atom in-
teractions producing a secondary photon, therefore able
to be considered as photon-photon interactions. What is
named an interaction may not be strictly a single process.
Any sequence of physical processes in rapid succession
started by a photon and that produces an end photon can
be considered as a unique interaction from this point of
view. The obvious drawback of this approach is the miss-

ing photons produced by the particles (other than pho-
tons) freed during the photon-atom interactions. In con-
sidering such a contribution the transport problem be-
comes far more complicated. In order to add the photons
originated by electron interactions, for example, it is
necessary to handle two coupled transport equations, one
for photons and the other for electrons, and certainly the
transport of charged particles is not to be solved analyti-
cally. Anyway, the error of ignoring the class of
particle-photon interactions will depend on their relative
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P —0 C+ C7g +7 (8)

where o c and o z are the Compton (incoherent) and Ray-
leigh (coherent) integral attenuation coefficients and r is
the photoelectric attenuation coefFicient.

probability to the competing photon-photon processes.
In this work we shall assume that the main interactions
between photons and isolated atoms giving place to
secondary photons are the coherent and the incoherent
scattering and the photoelectric effect [22,23]. We shall
neglect other possible photon sources [24,25] and, partic-
ularly, the anomalous scattering [26], the pair
production-annihilation and the bremsstrahlung of pho-
toelectric and Compton electrons [27]. These assump-
tions are good enough within the energy range between 1

and 100 keV.
The possible processes of double scattering involving

the three interactions allowed in this work are shown in
Table I, together with some references about their study
with this transport model.

The single-process kernels play an important role in
Eq. (6) because they represent the probability density-
by unit wavelength, by unit solid angle, and by unit
path —that the process may change the phase-space vari-
ables from (to', A, ') to (m, A, ). Therefore a kernel is directly
related to the double-differential scattering coefficient of
the interaction. Thus the scattering coefFicient for the
process T can be obtained from

oT(A, ', co')= J dA. J dcokT(to, k., co', X'), (7)
0 4m.

allowing the comparison with experimental or theoretical
data. Since the three photon-photon processes that we
are considering are statistically independent and since
they constitute the main part of the total attenuation
coefficient as can be appreciated even in the most recent
compilations [28], we can define the total attenuation
coefficient as

In what follows we shall write the interaction kernels
for the scattering processes of interest in this work. Since
our aim is to explain the contribution of the multiple-
scattering terms, we shall use coherent and incoherent
scattering factors to describe atomic modification (elec-
tron binding and electronic charge distribution) of the
single-electron-scattering cross sections. The form-factor
approximation associates a smooth behavior with the
scattering cross sections that cannot explain scattering
resonances, but it gives a quite detailed view of the atom-
ic effects on the scattering of photons. On the other
hand, we shall not consider the motion of the electrons in
the atom which could complicate the transport equation.
However, at least for the incoherent case, the scattering
factor can be obtained from the integration through
momentum profiles of single orbitals [29] giving a simple
connection between the Compton pro61es and the corre-
sponding scattering factor. Polarization effects are out-
side the scope of this work.

l. Coherent (Rayleigh) scattering kernel

F (A, , co'co, Z)
Z

(9)

where o. =pXZr 0 /(2 2 ) is a macroscopic scattering
coefficient (in cm ), ro being the classical radius of the
electron, N Avogadro's number, p the density, and A the
atomic weight. The 5 function stresses the monochroma-

The coherent scattering is a process where the photons
change direction but not energy. This scattering takes
place with the more bound electrons of the atom which
behave rigidly during the interaction. The Rayleigh
atomic kernel for unpolarized photons, with phase-space
coordinates (to', X') scattered by a pure element target
with atomic number Z into the coordinates (co, A, ), is [18]

kR(co, l, , co', A, ') =cr5(AX')[,1—+(co.to') ]

TABLE I. Physical meaning of the double-scattering chains (a, b) involving the photoelectric effect, and Rayleigh and Compton
scattering. Only the Rayleigh and Compton interaction effects are analyzed in this work. XRF denotes x-ray fluorescence.

Photoelectric
effect

Coherent
scattering
(Rayleigh)

Incoherent
scattering
(Compton)

Photoelectric
effect

Secondary XRF intensity.
Eq. (13b) in Ref. [17].

XRF due to photoelectric absorption
of Rayleigh scattering.
Discrete spectrum.
Eq. (12) in [20].
XRF due to photoelectric absorption
of Compton scattering.
Discrete spectrum.
Eq. {14) in [20].

Coherent
scattering
(Rayleigh)

XRF photons
Rayleigh scattered
towards the detector.
Discrete spectrum
Eq. (13) in [20].

Discrete spectrum.
Eq. (15).

Continuous spectrum
Modifies the Compton peak.
Eq. (28).

Incoherent
scattering
(Compton)

XRF photons
Compton scattered
towards the detector.
Continuous spectrum.
Modifies the XRF line shape
Eq. (16) in [20].
Continuous spectrum.
Modifies the
Compton peak.
Eq. (26).
Continuous spectrum
Modifies the Compton peak
Eq. (24).
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ticity of the scattering. The angular dependence of the
kernel (9) is given by the last two factors: the Thomson
angular factor, and the atomic form factor comprising
the constructive interference from the whole atomic
charge distribution. The coherent form factor
F(A, ', to oo', Z) can explain atomic contributions that are
significantly greater than Z times the contribution from
one single electron. Special limits are F ( X', 1,Z)
=F( ~, to m', Z)=Z and F(O, to co', Z)=0. Experimental
data tables of form factors and references to theoretical
computations for many-electron atoms may be found in
the classic paper of Hubbell et al. [30] and in more re-
cent works [31,32]. A closed expression [33] giving ap-
proximated values for I' is available. More precise values
are achieved with semiempirical formulas and fitting
coefficients of theoretical calculations [34].

2. Incoherent (Comptonj scattering kernel

In incoherent scattering, energy as well as direction is
changed. This process takes place with the outer elec-
trons of the atom. The Compton atomic kernel for in-
cident photons, with phase-space coordinates (co', A, ')
scattered by a pure element target of atomic number Z
into the coordinates (co, A, ), is [18]

kc(co, k, , co', A, ') =crKKN(A, A')S,(A, ,', to co', Z) 1

C

0
and A, C=0.0242 A is the Compton wavelength. The
aKKN(A, , A, ') factor denotes the well-known Klein-
Nishina differential coefficient [25,35]. The direction-
wavelength 6 fixes the integration path in the phase space
along the line 1 —co to'+(A, ' —

A, )/A, C=O (this condition
does not account for the shift for bound electrons [36]).
S(k', to co', Z) is an incoherent scattering form factor tak-
ing into account the electron binding. Some special lim-
its are S(A, ', 1,Z)=S(ao, to to', Z)=0 and S(O, co to', Z)
=1. Data tables and references to theoretical computa-
tions are found elsewhere [30,32] (note that the "scatter-
ing function" in Ref. [30] means SZ here). A closed-form
approximation formula for S was obtained [33] with the
Thomas-Fermi model. Precise values of the S factor can
be computed with semiempirical formulas and fitting
coefficients to theoretical calculations [37].

The precollision motion of the electrons has been ig-
nored in the kernel (10), limiting the Compton peak to a
monochromatic line. The more rigorous theoretical
treatment associated with the Compton profile is not
sufficiently tractable for extensive calculation and will not
be considered here. However, the multiple-scattering
effects will be better appreciated in a context of generali-
ty, independent of the state of excitation of the atom and
the chemical bond to other atoms.

where

K~N(A, , A, )—
2

tX6 1 co'co +
C

A A' A
—A' A —A'

~C ~C

(10)
III. MULTIPLE SCATTERING OF THE RAYLEIGH

AND COMPTON EFFECTS

A. Rayleigh and Compton peaks

The first-order intensities describing the emission of
photons due to one single Rayleigh or Compton scatter-
ing into a pure element target are given, respectively, by

I~'~(to, k, )=5(A, —Ao) 2 (i)O, Ao, i), ko)[1+(co coo) ]F (Xo, co too, Z),' Z
Ic'"(oi, l, ) =5(AD+Ac(1 to too) —k)cr. ICKN—(ko+A c(1—co coo), Ao) 2 (i)0, Ao, i), AD+Ac( 1 co too) )S (A—o, co. o)O, Z),
where

1 —sgngz 1+sgng& Io 1

Ig I p(~ )/Ig I+@(~ )/Ig I

(12)

(13)

(14)

Equations (12) and (13) represent, respectively, the in-
tensities of the Rayleigh and Compton peaks. Since we
neglected the motion of the electrons both peaks are
monochromatic for the source and geometry considered.

B. Chains of double scattering involving the Rayleigh
and Compton eft'ects

There are four contributions involving a double
scattering with the Rayleigh and the Compton effects:
Rayleigh-Rayleigh, Compton-Compton, Compton-
Rayleigh, and Rayleigh-Compton. The mathematical
complexity in the computation of these intensities de-
pends on whether the involved scattering is Rayleigh or
Compton. The Rayleigh-scattering contributions are

I

discrete and do not change the energy of the incident ra-
diation. The intensities contributed by the Compton
effect depend on the coupled relationship between the
scattering angle cosine and the wavelength shift which in-
troduces some difficulties in the computation with these
processes. The coupling between wavelength and direc-
tion prevents the separation of the phase-space integrals
and make it necessary to separate them with rnathemati-
cal tricks.

Rayleigh-Rayleigh contribution

This contribution can be easily calculated due to the
monochromatic kernel of the Rayleigh scattering. By re-
placing both kernels k, and k& by kz in Eq. (6) the inten-
sity can be straightforwardly expressed as
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1(Rnyt. Sh R.y1. Sh)(~ ~)=&(~—~0) — ~ (np ~p n ~0)z
[I+(c0' ~o' ') ][I+(ro' coo+') ]

X f dip' f drl' F (Ao, co'.r0'+', Z)F (go, co' F0+,Z)
0 0 'g S o/ n +I 0/n'

[I+(to' ca' ') ][I+(c0'.rept ') ]
+ f dy' f d2)', , F (Ao, co' r0' ', Z)F (Xo, co'. r001 ', Z)

0 0 'g 1M0/ 9 +Po/'9
(15)

where

r0». r01 —1 —+~ »)2+ ( 1 ~»2)1/2( 1 ~2)1/2cos(» @ )

'+-'=+q'q+(I —q')'"(I —Z')'/' o (+ —+) .

Equation (15) gives the Rayleigh-Rayleigh discrete modification to the coherent line (12).

(16a)

(16b)

2. Compton-Compton contribution

The double scattering of the Compton effect is not so straightforward as the Rayleigh one. Substitution of both ker-
nels, a and b, by the Compton kernel (10) in Eq. (6) gives

(2) 2
Compton-Compton ( ~» ~ ) ~ ( 10» ~0» 9» ~ )

X f "dg f dr0'&„N(p, A, ')IC~N(k', Ao)S(A', to ro, ', Z)S(Ap, r00 a)', Z)
0 4m

1
x5(A, (1—ro c0')+k' —&)5(& (1—r0 'r0')+~

1 + sgnYj' 1 —sgng' 1

2 p /I 2) I
+1M'/I 2)'

I
2 Po /12) 0 I

+1tt' /I 2)'
I

(17)

Each one of the two 5 functions in Eq. (17) describes
separately the integration path corresponding to one sin-

gle interaction. These paths are shown in the upper part
of Fig. 2. Since the vector co' moves in all the space, both
paths might separately attain a wavelength amplitude of
2A,c. However, when they are joined in the integral (17)
the resulting wavelength amplitude is lower (in general)
than the addition of the independent amplitudes. By ap-
plying a 5-function property it is possible to join them
into a composite path of amplitude 2i,ceo+, where

to„= I a) + coo I

=+2( 1+r0 F0 )=2 cos-x (18)

is the modulus of the resultant vector of the incident and

the outgoing directions, and y is the scattering angle.
Since co and u0 are unitary vectors, co+ belongs to the in-

terval [0,2]. The wavelength amplitude in the joined path
is centered in A,0+2k, C (see the lower part of Fig. 2), and

it may attain the extreme values Ao+Ac(2+co+). It is

clear that the incident and the outgoing directions define

the range of the continuous spectrum. Integrating Eq.
(17) over A,

' and writing explicitly the angular integral we

get (for co+&0)

X f dq&' f 12)', IC~N(A, , X)KKN(X, , Ao)S(X, to t0', Z)S(Ao, a)0 c0', Z)
0 —I 'g

X6(a g'r)z —(1—2)' —)' (1—gz )' cosh. )

1+sgng' 1 1 —sgng' 1

p/I'll+12/I21'I 2 pollgoI+PII2)'I
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Ap A,
A= 2+

COg
(20a)

(20b)

(1 —bio)' +(1—i) )'~ cosy
cpg =arccos

I. z —(rjo —n)']'"

P=c@»—

(20c)

(20e)

Cd Cd 0

2+ CdR

0—1

Cd ' Cd

A, =Ac+Wc(l —r0 n~')
Cl 2-

rC

ro;.co'=co;cg'[i)'rI;+(1 —i)' ) (1—rI;) cos(g' —p;)],
(20g)

2 —
CdR

I

I

0 I

0

'CdR

I

I

I

I

CdR

where m; stands for co, cop, or mz.
By recourse to the property

5(x —x„)
&(g(x))= g

for g (x„)=0 and g'(x„)%0 (21)

the 5 function of Eq. (19) transforms to

FIG. 2. Integral paths in the calculation of the Compton-
Compton intensity. The upper two paths correspond to the 5
functions in Eq. (17) and represent the possible wavelength
changes in each isolated scattering depending on the geometry
with which the interaction occurs. A chain of two interactions
imposes some restrictions on the geometry of the single interac-
tions that results in a limitation of the wavelength spectrum, as
shown in the lower path. The projection of the integration an-

gular vector co' on the resultant co& may vary between the two
symmetrical limits +coR belonging to the interval [ —2, 2]. The
change in wavelength is bound by the limits A,o+ k&(2+coR ) that
belong to the interval [A,O, AD+4K, &].

@v
' —ml)+&(v ' —

v 2)
, „,('n' —

I ~rid
—

I
(1 nz )(1—&—')]'"I ) 'I rl' I ~nz—+ I (1 —rl~ )(1—~—') l'"] ) 1

where

y& =y& +arccos
'9 'Qz

&2)( 1
2 )]i/2

(23a)

2~+9'z (V'i O'R ) .

The difference of the step functions gives the validity range of g according to the path set by the 5 function. To obtain
Eq. (22) it was assumed that a %1 and i)z W l.

By replacing Eq. (22) in Eq. (19) we get the final expression for the Compton-Compton intensity
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I(2) „„(a),A, ) — A (i/O, A,O, i/, A. )
cog A,c

1 VE(yl —P) )X dg'
&')(1 n—~ ) —« —n'n~ )') '"

I('KN(A ik )I('KN(A k AO) -(,),(, )s (X '„+ ', ~.~'„(+ ', z)s(x„~, ~'„(+),z)
/ ~ill+/ (~k+')~n'

r2 6'( y2
—

/32)+ dg'
P2 i)' [(1—i)' )(1 i)g)—(&+—i1'r/i() ]

+KN(~&~ k )+KN(~ k &~0) —
( ),( )

k=l / I'Inl+/(~» ') I' n'

(24)

where for convenience we have introduced
/3] =max(0, ai)i( D), —y, =mill(1, ai)R +D), /3i
= —min(o, ai/i(+D), yz= —max( —l, ai))t D), and —the
quantities

co r0'„' '=+r/'—r/, + (1—il')'~'( I —i)')'~'cos(y'„(*) —y ),

m co'k '=+)1'"t)+—( I —i)' )' (1—i) )' cos(q'k' —' —
q ),

(25b)

The integration limits /3; and y; cannot exceed the values
—1 and 1. The Heaviside functions in the integrals are
different from zero only when y, ) /3; and indicate the va-
lidity range of every integral. The Compton-Compton in-
tensity is continuous, in contrast to the preceding contri-
bution. Its wavelength spectrum extends from
AO+A, c(2—(oz) to A.O+A, c(2+o)i() and has the charac-
teristic shape shown in Fig. 3. Limit cases for special
values of co&, gz, and a can be calculated similarly.

i(+) 0,'+ YJ Yj'g
q'1 —=y~ +arccos

I:(1 r/' )(1—i—)R )]

A, 'k
—'=A, O+)(,c(1 ri)0 oi'k—'), —

D = [(1—i)~ )(1—a ) ]'

(25c)

(25d)

(25e)

(25f)

3. Rayleigh-Compton contribution

The Compton scattering in the ra direction of
Rayleigh-scattered photons is obtained replacing the ker-
nels k, and kb with kc and ki(, respectively, in Eq. (6).
In a similar way as with Eq. (24), we can obtain the
Rayleigh-Compton intensity

I(2)
Rayleigh-Compton(~& ~) ~ ( 90~ ~0~ 9~~)+KN(~~~0)S(~0»Z

r) " n' / ilail+/ 0&'9' [(1 g' )(1—vl') —(& 0"9)']'"—
2

X g [I +( rooa)'+') ]F (A, a) oi'+' Z)
k=1

, 1 1 Vl(y, —f3, )
+ dx/ + + /

X g [I+(r00 co'k' ') ]F (AO, coO oi'k' ', Z)
k=1
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where P, =max(0, a 2)
—D), y, =min(1, a rI+ D), P2= —min(0, ail+D), y2= —max( —l, ag D—), and

coo'@ok as in Eq. (25a)—are defined in terms of

Xo
a =1+

~C

D =[(1—
2) )(1—a')]' ',

(27a)

(27b)

I(+)— a+g'g
y1' —' =qv+ arccos

[(1—g')(1 —i)') ]' (27c)

m2'+ '=2 -+V (m'i'+—

The meaning of the limits p,. and y; is as in Eq. (24). The
Rayleigh-Compton intensity is continuous and its wave-
length spectrum extends from ko to A,o+2A, c (in energy
from Eo/[1+2Eo/(moc )] to Eo); therefore it overlaps
the Compton-Compton spectrum. The shape of the
Rayleigh-Compton spectrum is shown in Fig. 3. The
characteristic maximum at the same energy of the Comp-
ton line broadens that peak.

4. Compton-Rayleigh contribution

The Rayleigh scattering in the ~ direction of previous-
ly Compton-scattered photons is obtained similarly,

0.20 Q.25 0.30

FIG. 3. Characteristic shape of the double-scattering con-
tinuous contributions due to the combined inAuence of the
Compton and Rayleigh eA'ects. Calculations are for Al excited
with 59.54 keV (y line of 'Am) and for the geometry defined

by the incidence and take-ofF polar angles BO=45' and 6=135'.
Azimuthal angles yo and cp will be assumed as 0 unless express-
ly indicated.

0
Z~C

X g [1+(co co'k+') ]F (X,co co„'+',Z)
k=1

r2, 1 1 VE(y2 —P2)
g' po/Ii)OI+p/g' [(1—i)')(1—2)') —(a +il'il )']'/'

X g [1+(ro co'„' ')']F'(A, , co ra'„' ', Z)
k=1

(28)

0a =1+
~C

D —[( 1 r12)( 1 a 2)]i/2 (29b)

where P, =max(0, a2)0 —D), y i
=min(1, a ilo+ D),

P2 = —min(0, a 210+D), y2 = —max( —1,a ih D), and-
ro r0'ki —'—as in Eq. (25b)—are defined in terms of

(29d)

The meaning of the limits p; and y, is as in the preceding
equation. The Compton-Rayleigh intensity is continuous
and its wavelength spectrum extends from Xo to A,o+2k, c
(as in the preceding case). Therefore it overlaps the
Compton-Compton and the Rayleigh-Compton spectra.
The shape of the Compton-Rayleigh spectrum is similar
but not equal to that of Rayleigh-Compton as shown in
Fig. 3.

~(+) a + g'go=tpo+ aI ccos
[(1 i2)(1 2)]i/2 (29c) IV. SUM RULE I OR COMPOSITE MATERIALS

The intensities contributed by double scattering, Eqs.
(15), (24), (26), and (28), were deduced for a pure element
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W-=1 . (30)

The mass attenuation coefficient (in cm /g) for a compos-
ite material obeys the relation

W
P

(31)

where ((((, /p) is the mass attenuation coefficient for the
single element j. The coe%cients of the partial interac-
tions follow similar relationships.

The intensity from a composite material is easily ob-
tained from the intensities of the single components if we
replace all the attenuation coefficients by mass attenua-
tion coefficients in Eqs. (15), (24), (26), and (28). The fol-
lowing relationship stands for the intensity contributed
by the double interaction chain (a, b) in a multielement
target:

I((,)b)(ro, l, )= g g W, W II,)„)(a),A, )~, (32)

where I((,)b)(co, k)~, is the partial intensity emitted as a
consequence of one interaction a on the atom Z, , fol-
lowed by one interaction b on the atom Z .

target of atomic number Z. In what follows we shall
build an adequate expression valid for a mixture of
several elements.

We denote with W~ the weight fraction of the element j
which satisfies the relationship

of the target where the element Z can be a partial com-
ponent. It is not easy to extract a general behavior since
the attenuation coefficients are complicated functions of
the energy and composition, as the scattering functions
are, of the geometry and the energy. Figure 4 shows sep-
arately the behavior of the Compton intensity, the total
double-scattering intensity under the Compton peak, and
their ratio as a function of Z. The ratio vanishes for in-
creasing Z, rendering a cleaner Compton peak in heavier
elements. For low Z, double scattering can be high
(&70%%uo of the Compton peak for H) and, therefore,
higher orders of multiple scattering should be calculated.
Figure 5(a) shows double-scattering spectra for some ele-
ments of low and medium Z. The integrated intensity
changes with constant energy width. The contribution of
the partial double-scattering intensities relative to the to-
tal double-scattering intensity is strongly influenced by Z.
In Fig. 5(b) it is shown how the Compton-Compton term
decreases monotonically. The mixed-scattering Rayleigh-
Compton and Cornpton-Rayleigh terms reach a max-
imum (near Al) and decrease with lower slope than the
Compton-Compton term. The different slopes allow a
similar contribution of the three components near Fe.
For elements lighter than Fe the Compton-Compton in-
tensity dominates. For heavier elements the mixed-
component intensity become higher than the Compton-
Compton intensity, their peaked shape producing a

V. RESULTS AND DISCUSSION

A. Numerical methods

The intensities described by Eqs. (15), (24), (26), and
(28) have been studied in pure elements of low and medi-
um Z and in multicomponent mixtures Iusing Eq. (32)].
A Romberg integration algorithm generalized to improp-
er integrals [38] was used for computing the innermost
integrals in the Rayleigh-Rayleigh intensity and the sin-
gle integrals in the other contributions with a precision of
four figures. Significant differences of precision were
found in Rayleigh-Compton and Compton-Rayleigh cal-
culations between four- and five-figure accuracy, there-
fore five figures are recommended in this case. The outer
integral (when it exists) is computed with a trapezoidal
algorithm. Two meshes, 20 and 100 intervals, were tested
to determine how important the density of the grid is. In
all cases a lower density grid gave a comparable precision
with —,

' of the computation time.
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B. Calculations for pure targets

As follows from Eqs. (15), (24), (26), and (28), the inten-
sities depend on some main physical variables: the atom-
ic number Z of the scatterer, the incident wavelength A,o,
and the incidence and take-off beam directions.

The inAuence of Z is complex because it modifies a
number of the problem variables: firstly, the scattering
functions I' and S; secondly, the attenuation coefficients p

FIG. 4. The single- and double-scattering integrated intensi-
ties describing the overall contribution of the corresponding or-
der of scattering. Here they are plotted as a function of the
atomic number Z of the target for some representative elements
(H,O,Al, Fe,Zr), polar angles of 80=45 and 8=135 and an ex-
citation of 59.54 keV. The double- to single-intensity ratio
8' '/8"' that gives the importance of the continuous second-
order (Compton-Compton, Rayleigh-Compton, and Compton-
Rayleigh) terms relative to the intensity of the Compton peak is
plotted with a solid line.
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greater distortion of the Compton profile.
The excitation energy Eo (or wavelength A.o) deter-

mines the position of the energy intervals for both the at-
tenuation of the beam into the target and the next
scattering. The attenuation is relevant in determining the
relative importance of the contributions. It depends on a
monochromatic energy for Rayleigh scattering, and ex-
tends along the width of the low-energy tail in the Comp-

ton case. When attenuation at Ep predominates, the
main contribution is the Rayleigh-Compton at low Ep
and the Compton-Rayleigh at high Ep. When attenua-
tion at the tail energy (lower than Eo) prevails, the main
contributions are Compton-Rayleigh at low E and
Ra lei h-ay eig -Compton at high Eo. Figure 6(a) shows h
the in

p. Qws ow
e increase of Ep has the e6'ect of increasing the integral

intensity without modifying the wavelength width (but
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FICx. 5. (a) Total double-scattering wavelength spectra for
some elements from H to Fe. The intensity of the double
scattering is substantially greater for lighter elements. For
heavier elements the Compton-Rayleigh and Rayleigh-Cornpton
mixed contributions become more important. (b) Partial
double-scattering intensities as a function of the atomic number
Z. The Compton-Cornpton, Compton-Rayleigh, and Rayleigh-
Compton continuous contributions are plotted as a dashed line.
The total double scattering is plotted with a solid line. Bp=45,
8=135', and the energy is 59.54 keV.

FIG. 6. (a) Total double scattering in Al as a function of the
ratio (P.—Ap)/Ac for several incidence energies Ep. The in-

cidence and take-off angles are 45 and 135', respectively. (b)
The double scattering importance %d,„», for Li, Al, and Cu as a
function of the incidence energy Ep. Three values of Ep were
used in the calculations (17.5, 60, and 160 keV) that approxi-
mately correspond to the energy of some excitation lines report-
ed frequently in the literature (Mo Ka, 'Am and ' Tc). In-
cidence is normal and take-o6' is 150'. These values may be
compared to Monte Carlo simulations performed in similar con-
ditions (Ref. [42]).



CQMPTON AND RAYLEIGH DOUBLE SCATTERING OF. . . 4243

shifting the wavelength origin) of the spectrum. In Fig.
6(b) we attempt to link the atomic number and the energy
response for some representative elements. It is easily
seen that the quantity Ad, „»,=d' '/(4"'+d' ')
represents a lower limit for the multiple-scattering impor-
tance% =( g» 8')')/(8'"+ g» J"'). For the lowest
Z % can be much more greater than Ad, „b&, since
higher-order scattering terms are important. For the rest
of the Z, Ad, „», can be considered as an acceptable
(lower) estimation of %. From this figure it is clear that
multiple scattering becomes a very important fraction of
the overall emission for increasing Eo on all the elements
exemplified. For low energies greater differences in the %
importance arise for low Z.

The third important variable of the problem is the
excitation-detection geometry. The inAuence of the
geometry is not easy to analyze because of the difhculty
of studying simultaneously the inhuence of the three an-
gular variables 6, i)o, and y (assuming F0=0). The
scattering angle g (another important magnitude) can be
defined in terms of these three angles. The angle y
defines the width of the continuous wavelength spectrum
in the Compton-Compton case. A change in 80 and 6
maintaining fixed g varies the relative contribution of the
partial second-order intensities to the double-scattering
spectrum, and modifies the shape of the Compton-
Compton intensity [see Fig. 7(a)]. Since g is constant in
this figure, the wavelength limits of the spectra remain
unchanged. Figure 7(b) shows the behavior of the in-
tegrated intensities. The maximum of 8' '/8"' signals
the worst peak-to-background figure. The best signal-to-
noise ratios are obtained for 8o near 0' and 90'. The last
value is preferable because of the higher intensity of the
Compton peak.

The variation of the double-scattering spectra with 80
is shown in the example of Fig. 8(a). An increase of the
polar angle 8-0 has the effect of changing the shape of the
continuous spectrum, while it increases the integrated in-
tensity. The signal-to-noise ratio has a similar behavior
to that of the preceding case, with an improvement for Bo
near 90 [see Fig. 8(b)]. Spectral shapes as a function of 8
are shown in Fig. 9(a). The spectrum becomes narrower
for increasing 8. The best signal-to-noise ratio is ob-
tained in the neighborhood of 90' as shown in Fig. 9(b).

The effect of changing in a controlled way the scatter-
ing angle g is shown in Fig. 10. The increase of g pro-
duces the concentration of the spectrum at the energy of
the Compton peak [Fig. 10(a)]. The ()i' '/8"' ratio is
displayed in Fig. 10(b). The best signal-to-noise ratio is
obtained for small g. The mot unfavorable situation cor-
responds to 90' scattering.

C. Comparison with experimental data

In order to compare the results of this theory with ex-
perimental data, a full spectrum for water was built by
joining both the monochromatic and the multiple-
scattering continuous parts. The first- and second-order
contributions were calculated with the computer pro-
gl'aiil sHAPE [21] using the analytical expressions deduced
in this and preceding works. The third- and fourth-order

components were determined with Monte Carlo simula-
tion. The monochromatic peaks were artificially
broadened with a Gaussian shape to improve the fit of the
whole spectrum. The multiple-scattering orders are not
retouched. The spectrum so obtained matches well ex-
perirnental points as is shown in Fig. 11. As can be ap-
preciated, multiple scattering introduces low deformation
for this geometry.
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FIG. 7. (a) Double-scattering spectra of Al for a fixed scatter-
ing angle of 90' and EO=59.54 keV. The incidence (take-of@
polar angles are tilted in the scattering plane (maintaining y un-
changed) with values 5' (95'), 30 (120 ), 45'(135'), 60 (150'), and
85 (175 ), showing the change of the absorption for difT'erent
geometrical situations. (b) Integrated intensities of single and
double scattering as a function of the incidence polar angle for
the cases explained above. With a solid line is plotted, in the
same graph, the double- to single-intensity ratio which has a
maximum near 45'.
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VI. COMPARISON WITH OTHER WORK

be
The qualitative importance of multiple scatteri h

een estimated by many authors, but since it has been
commonly applied to the correction of Compton profile
measurements from slabs it makes implicit the depen-
dence on the thickness of the target. Therefore it is not
possible to make a straightforward comparison with pub-
ished values of calculated intensities for infinite-

thickness targets but rather with extrapolated points
from the curves of intensity versus thickness found in the
literature. Furthermore, these estimations were obtained
by different means, ranging from analytical methods us-

ing durerent kind of approximations, to Monte Car os, o onte Carlo

variety makes it di%cult to extract a unique representa-
tive set of data to compare to our results.

Our spectrum shape computations enerall
reasonabl wey well with Monte Carlo simulations [39, 40] for
reAection geometry, although those were performed for
thin-thickness targets. In contra t d
the Pi

as, we o not agree with
t e itkanen et al. [40] assertion that the s d-e secon -order

ri u ion is bimodal for reAection geomet W' hry. it in
e etail with which we have studied the d-ie e second-order

ering ere are three peaks well differentiated. Two
of them belong to the extremes of the Compton-Compton
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FIG. 8. (a) Total double-scattering spectra of Al, with fixed
take-off angle of 135' and Ep =59.54 keV. The incidence polar
angle is tilted in the ssame scattering angle plane with values 5'r

30, 45', 60, and 85'. b, an . ( ) Single and double scattering as a func-
tion of the incidence polar angle f Al

'
h fior, wit xed take-off polar

angle of 135 and Ep =59.54 keV. The doubl-
intensit r

e . e ouble- to single-
i y ratio is plotted in the same graph as a solid line

FIG. 9. (a& Totalotal double-scattering spectra of Al, with fixed
incidence polar angle of 45' and Ep=59.54 keV. The te . e take-off
p ang e is tilted in the same scattering lan

'
h 1

, 120, and 95'. (b) Single and double scattering
as a function of the take-off polar angle of Al, with fixed in-
cidence polar angle of 45 and Ep=59.54 keV. The
sing e-intensity ratio is plotted in the same graph as a solid line
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distribution and the third one is the peaked distribution
due to the sum of the Compton-Rayleigh plus the
Rayleigh-Compton intensities whose maximum coincides
with the Compton peak energy and which overlaps the
peak. Furthermore, we also show that depending on the
target, the excitation energy, and the geometry, the three
peaks can look as two or still as only one.

In order to check independently our analytical results
we performed a Monte Carlo simulation [41] with the
same physical assumptions described along this work.
The predicted Monte Carlo spectrum matches closely the
analytical one, as it is shown in Fig. 12, except in the bor-
ders of the Compton-Compton spectrum where the
analytical results can be better controlled than the Monte

Multi p I e scattering
spectrum

4 ~

' Qompton peak

Rayleigh peak

(0

C

I I I I i I I I I 1
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1 20' y= 6Q'
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FIG. 11. X-ray spectrum of H20 excited with the 59.54-keV
line. The incidence and take-off angles are 45 and 135', and

y=y0=0. The solid line represents the theoretical estimation
computed with sHAFE (Ref. [21]) and corrected with the third-

and fourth-order interactions calculated with Monte Carlo
simulation. Circles denote experimental data [courtesy of R.
Sartori, FaMAF, University of C6rdoba].
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Carlo sampling. The three peaks can be clearly identified
in the figure. We used the same Monte Carlo to explore
the higher orders, and found that the multiple scattering
with the pure Compton effect is the most important con-
tribution in every case. We found another point of
disagreement with the paper of Pitkanen et al. [40] re-
garding the amount of the third-order scattering. They
estimated that contribution to be 10%%uo of the second-
order one, but as it is evident in Fig. 13 it can reach an
entity much greater in light elements.

10

FIG. 10 (a) Total double-scattering spectra of Al for a fixed
incidence energy of 59.54 keV. The polar incidence and take-oF
angles are changed in the same plane of scattering to obtain
scattering angles of 30, 60', 90', 120', and 150 . The spectrum at
90' coincides with incidence and take-off angles of 45' and 135'
respectively. (b} Double- to single-intensity ratio as a function
of the scattering angle y. The incidence and take-off polar an-
gles are assumed symmetrical about the normal to an Al sur-
face. ED=59.54 keV.
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FIG. 12. Analytical prediction (solid line) of a second-order
spectrum compared to a 50000 histories Monte Carlo simula-
tion (Ref. [41]) (dashed line) under the same conditions. The
target is Al excited with 59.54 keV with Bo=45, 8=135', and
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Our results can also be compared to Monte Carlo pre-
dictions of the integrated intensity for the second-order
scattering, or of the importance of the multiple-scattering
intensity. Our data points in Fig. 6(b) can be confronted
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FIG. 13. Two-, three-, and four-collision total intensities
simulated with Monte Carlo (Ref. [41]) for three elements excit-
ed with the same energy ED=59.54 keV. Higher-order scatter-
ing becomes more important for light elements as can be appre-
ciated {the heights of the plots are in scale 40:20:1 for increasing
atomic number). Another element of quantification is the
height of the coherent line {near the right side in the plots) that
becomes more important for increasing Z. For low Z, third-
and fourth-order contributions cannot be neglected.

with infinite-thickness extrapolations to the curves in Fig.
1 of Felsteiner and Pattison [42]. Our results are con-
sistent with their predictions for Al and Cu but not for
Li, which they underestimated. We predict that the im-
portance of multiple scattering for a thick target of Li
must exceed the 30% threshold on all the three excitation
energies they considered, even the lowest.

VII. CONCLUSIONS

First of all, we have proved that the use of the trans-
port theory is adequate to study single-order terms in
problems of multiple interactions which fills a gap in the
analytical approaches accepted to examine multiple-
scattering corrections of Compton profiles.

The analytical expressions for the double-scattering in-
tensities of the Compton and Rayleigh effects have been
deduced using an order-of-interactions solution of the
Boltzmann transport equation for unpolarized photons,
already applied successfully to other atomic interactions
in the x-ray regime. The relationships found describe the
intensities contributed by every type of multiple interac-
tion to the fluorescent x-ray beam as a function of the
direction of incidence and of the incident beam energy.
The target was assumed pure and homogeneous with
infinite thickness, whose total attenuation coefFicient de-
pends on the Compton and Rayleigh scattering and the
photoelectric effect. The Compton and Rayleigh interac-
tions between unpolarized photons and stationary bound
electrons were described with complete transport kernels
including atomic scattering factors.

The four intensity contributions produced by double
collisions of the Rayleigh and Compton effects were cal-
culated, respectively, in Eqs. (15), (24), (26), and (28).
These expressions plus the sum rule (32) are valid for
computing the intensity emitted by a composite material.

The Rayleigh-Rayleigh contribution is the only
discrete one. The others are continuous. The Compton-
Rayleigh and Rayleigh-Compton spectra are peaked at
the Compton wavelength and have equal widths of
hA, = 2A, &. The Compton-Compton distribution has a
characteristic shape centered at A,o+2k,c with peaks
in the two extremes and DuMond's width AA.

=4k.ccos(g/2). The three continuous contributions
overlap and interfere with the unfolding of the Compton
peak.

The double-scattering spectrum is defined by the over-
lap of the Compton-Compton, Rayleigh-Compton, and
Compton-Rayleigh contributions. The shape of the spec-
trum has been studied as a function of the angular vari-
ables, the target material, and the energy Eo. All of these
variables affect the shape of the spectrum in some way,
either changing directly the width and the shape of the
contributions, or modifying the relative probability of
one interaction chain over the others, or changing the at-
tenuation response of the material. The general behavior
of the total intensity for double scattering can be summa-
rized in the following points.

(a) It increases when the atomic number Z of the target
decreases.

(b) It is greater when Eo is greater.
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(c) With increasing Z the relative importance of the
mixed chains Compton-Rayleigh and Rayleigh-Compton
increases over the Compton-Compton one. Therefore the
spectrum concentrates under the main Compton peak in-
creasing the deformation of the profile.

(d) The angular coordinates 8o, 8, and y —
yo (or the

scattering angle X) modifies strongly the shape of the
spectrum, but a general behavior cannot be stated in a
conclusive way.

The other important quantifier of the double-scattering
behavior is the integrated intensity 8' ' expressed in units
of 8'", or in units of cF'"+8' '. The first ratio gives the
probability, relative to the main Compton peak, of the to-
tal double-scattering emission. It can also be interpreted
as an estimation of the inverse signal-to-noise value. The
second ratio, Ad, „b&„defines a lower limit for the impor-
tance of the complete contribution of multiple scattering.
Some other general conclusions can be derived from these
magnitudes.

(e) The multiple-scattering contribution can be very
important. For lighter elements it can easily exceed the
30% of the overall intensity on almost all the x-ray re-
gime. For medium and high x-ray energies the multiple-
scattering contribution exceeds 10%%uo for all the elements
of interest.

(f) The worst signal-to-noise values are obtained in the
neighborhood of the configuration BO=45, 8 = 135',
y=O', and go=0 (X=90').

(g) The best signal-to-noise values are obtained for 8o
and 8 near 90, and for y near 0'.

As could be expected, the analytical computations
match well the results of a Monte Carlo simulation based

on the same physical assumptions. The same Monte Car-
lo was used to study the third and the fourth order. The
importance of the higher orders is not negligible at all.
The following general statement arises.

(h) The importance of the nth total contribution rela-
tive to the previous order cF'")/8'" "can be approximat-
ed by the 8' )/8"' fraction. Therefore the nth contribu-
tion relative to the main Compton peak is given by
( g(2)/y(1) )n

—1

The computed double-scattering spectrum, completed
with the Monte Carlo simulated third- and fourth-order
components and corrected by detector response, agree
well with experimental data from nonpolarized x-ray
sources.

Further work in this subject could be addressed to im-

proving the knowledge of the higher-order terms of mul-
tiple scattering by means of this theoretical approach.
The motion of the electrons and the polarization eftects
could only be considered at the price of reformulating
completely the transport problem for which another solu-

tion should be found.
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