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Regge-pole positions and residues calculated from phase-integral formulas
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Regge-pole positions and residues associated with real and complex optical potentials of the
Lennard-jones type are calculated by phase-integral formulas. Two relevant transition zeros are
taken into account; they may lie at an arbitrary distance from each other, while the origin and
the other transition points are assumed to lie far away from the two relevant transition zeros. The
calculations are performed up to the 13th order of the phase-integral approximation. The results
obtained are much more accurate than results published earlier.

PACS number(s): 34.40.+n, 03.65.Nk, 03.65.Sq.

I. INTRODUCTION

The purpose of this paper is to calculate Regge-pole
positions and associated residues by means of phase-
integral formulas, which are derived by Froman and
Froman [1] in a recent paper. The results in that pa-
per have already been used by the present authors [2] for
accurate calculation in the first-order approximation of
the differential scattering cross section.

The Regge-pole theory, in which the positions and the
residues of the Regge poles are key quantities, provides
a powerful reformulation of atomic and molecular po-
tential scattering theory. Differential cross sections can
be described in terms of a small number of interfering,
physically significant amplitudes, whereas the series of
partial-wave amplitudes is slowly convergent and tedious
in application. Recent research has led to an improved
analysis of large-angle oscillatory struct, ures in the differ-
ential cross sections of chemically reactive systems mod-
eled by complex optical potentials [3—5]. Regge-pole the-
ory has recently also dealt with the description of orbiting
[6—ll] and rainbow scattering [12], as well as diA'raction
scattering in elastic [13] and rotationally inelastic [14—
16] collisions. See also a review by Connor [17] on earlier
applications of Regge-pole theory.

In using the phase-integral method for calculating
Regge-pole positions and corresponding residues, when
there are two relevant transition zeros tq and t2, one has
so far assumed that they lie suFiciently far away from
each other and from the origin and other transition points
[18, 19]; see Fig. 1. The case where ti and tq may lie at
an arbitrary distance from each other (i.e. , even close
together), which is highly relevant for elastic difFraction

II. PHASE-INTECRAL FORMULAS FOR
RECGE-POLE POSITIONS AND RESIDUES

FOR THE CASE OF A WELL ISOLATED
CLUSTER OF TWO RELEVANT TRANSITION

ZEROS
According to Ref. [1] the Regge-pole positions E and

residues r can be calculated from the (2N+ l)th-order
phase-integral formulas

where rn is any non-negative integer and

(2 1)

and rainbow scattering of atoms and molecules, has been
treated for the first time in the paper by Froman and
Froman [1]. It is shown in that paper that, when ti
and t2 approach each other, the earlier known formula
for Regge-pole positions [17, 18] remains valid, while one
needs a new formula, given in Ref. [1],for the correspond-
ing residues; the latter formula goes over into the earlier
known residue formula when the distance between tq and
t,2 is sufFiciently large. The phase-integral formulas now
mentioned will be used in the present paper, and it will
be seen that the use of the new residue formula makes
it possible to attain a much higher accuracy than that
attained earlier.

In Sec. II the basic formulas for the case of two relevant
transition zeros are reviewed, and expressions up to the
13th order of approximation are obtained for the quan-
tities D~ "+ ~ appearing in these formulas. Applications
to particular real and complex potentials and compari-
son of the results with those obtained. earlier by numerical
calculations are given in Sec. III.

f(yo, , year) exP (2i iirn w(r)i —kr+ (l+ -', )t~ ~ ~
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(2.2)
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The quantity 7 is defined by

(2.5)

with

1
72n = 2' Ys„Q(r)dr, (2 6)

The quantities in these formulas are obtained as we
shall now describe. The function w(r) is defined by

1
m(r) = — q(r)dr,

~~, (&)
(2 3)

where the contour of integration I i, (r), as shown in Fig.
1, starts from the point corresponding to r but lying on
an adjacent Riemann sheet, encircles the transition zero
t2, and ends at the point r in the complex r plane under
consideration. The function q(r) in (2.3) is given by

FIG. 1. The relevant transition zeros tq and t~ and the in-
tegration contour I'~ (r) in (2.3). Note that although the con-
tour I'&, (r) is drawn here in a different way than in Ref. [1], it
gives the same value of the integral in (2.3). Solid thin curves
indicate anti-Stokes lines associated with the transition zeros.
The wavy line joining tz and tz indicates a cut in the complex
r plane. The figure is drawn for the particular situation when
the zeros ti and tz can be joined by an anti-Stokes line (coin-
ciding with the cut joining t& and tz). The phase of the base
function Q(r) is chosen such that Q(r)/~Q(r)~ ~ 1 as r ~ oo
along the real r axis.

where the path of integration is a contour encircling in
the positive sense the two transition zeros f~ and t2 but
no other transition point. Note that the quantity 7 used
by previous authors [17, 18] is related to p according to
the formula 7 = x7.

For the function f(yo, . . . , pz~) in (2.2) we have the
formula

f(po, . . . , priv) = exp plnyo+ ) D' '+&

1—
P = —(Po+yA +pa + ) (2 9)

(2 7)

D( "+ & being the coef5cients in the formal expansion

lnI'(-'+ y) = 1n(2z.) ~

+~ —+72~+74~ +. . .70 70

)
+D('&A-'+ D('&A+ D('&A'+ .

,

(2.8)

where now

q(r) = Q(r) ) Yz„, (2 4)

Y~„being the quantities appearing in the theory of the
arbitrary-order phase-integral approximation generated
from an unspecified base function Q(r), the phase of
which is chosen as explained in the caption to Fig. l.

and A is a formal expansion parameter. From (2.8) and
(2.9) one can thus calculate D(~"+i&, n = 0, 1, 2, . . .
In Ref. [1] only the first three of these quantities were
given, and therefore we have written a symbolic com-
puter program for obtaining further expressions for these
quantities. Collecting the expressions so far obtained, we
have

D(3)
247p

'

(2.10a)

{2.10b)

D(5) 72 72
24

—2 288073 ~ (2.10c)
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11 1 — — — — 1 —2 — — —2D = —(p2ys + p47s) —
2 (12p2ps + 12y2p4 —ps) + s (8y2p4 —2p2ps —p4)

70 247p2
4 247,'

1 5 2 1
4 (48y2 —120y2p4 + 770) —

24 s (10&2 —7&2&4) —
8064 z (196&z —31&4)

7Q 7p 7Q

317~ 1.277' 511
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(2.10f)

(l3) 1
(272'710 + 2747s + 'Q) 2 (12'72'78 + 24/27476 + 4'74 710)

27p 247p~

1+ s (4p270 + 6y2p4 —727s —p4ps) —
4 (24072p4 —120y2ps —120 /2+4 + 7+s)

7Q 7p
1+ s(1672 —80y2p4+ 14y2ps+ 7p4) +

64 s(336p2 —588p2p4+ 3 ps)
4807Q5 70

1344 7 ' 92160P0s' 76807(~) 67584 10 738017280P11 (2.10g)

For the first-order approximation we have 2N + 1 = 1
and p = 70, and the function given by (2.7) and (2.10a)
ls

(2x) ) exp[f0 (ln y0 —1)]
1'(:+&0)

(2.11)

Figure 2 shows a graphical representation of this function
when 7p is real and positive.

When the two relevant transition zeros tq and t~ lie far
away from each other, f(70, . . . , y2rv) is approximately
equal to unity for E = I, and we obtain from (2.2) the
l.ess accurate formula

III. APPLICATIONS TO PARTICULAR
POTENTIALS

This section reports results of the arbitrary-order
phase-integral calculation of Regge-pole positions and
residues. We emphasize that the analysis of Froman and
Froman [1] and the analysis of Thylwe [18] resulted in the
same formula (2.1) for the pole positions. However, the
corresponding formulas for the residues, i.e. , (2.2) and
(2.12), are diff'erent; we shall label them "uniform" and
"nonuniform, " respectively.

In our study we have chosen a complex perturbed
Lennard- Jones (12,6) potential

f exp~ 2i lim io()) —kr + (I+ —,') 2f' ~+OO

2mi Bp/N

v(.) =4. (-) —(-) —~w (-)
and a real Lennard-Jones (6,4) potential

(3.la)

which has earlier been given by Thylwe [18].

1.4

(2.12) (3.1b)

since results for these potentials have been published pre-
viously [3,20—22].

As in Ref. [4] the radial Schrodinger equation is trans-
formed by the introduction of the dimensionless param-
eters

A=ko, Ii =E/e, C=2pWo /h, R=)"/o,
(3.2a)

for the potential (3.la), and
1.2 A=k);„, I~ =E/e, R=r/) (3.2b)

1.0

Yp

for the potential (3.1b). For the radial Schrodinger equa-
tions thus transformed, the squares of the base functions
are chosen to be

A' ( 1 1) . C (l+~)2

FIG. 2. Graphical representation of the function po de-
fined by (2.11). and

(3.3a)
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TABLE I. Positions and residues of Regge poles for the potential (3.1a), specified by the reduced quantities A = 141.425,
K = 5, C = 0, and S = 0. In the column labelled "order" the digits indicate the diR'erent orders of the phase-integral
approximation, while Num. (Ref. [21]) and Num. (Ref. [22]) indicate the numerical results quoted from Refs. [21] and [22j,
respectively. (Note that the numerical results r are given in the "uniform" column. ) The numbers in square brackets are the

powers of 10 by which the entries are to be multiplied.

Order

7
9
11
13

Num. (Ref. f21])
Num. (Ref. [22j)

Position

180.0153
180.0119479
180.011948024
180.011948024
180,011948024
180.011948024
180.011948024
180.012
180.01195

21.21840
21.21891562
21.218915128
21.218915128
21.218915128
21.218915128
21.218915128
21.219
21.21892

Residue (nonuniform)
Res Imr

S.34[s] 4.24[S]
s.84[s] 4.s8[s]
5.73[5] 4.so[s]
s.8v[s] 4.61[S]
s.4[s] 4.3[s]
8.4[s] 6.5[5]
o.2[s] o.2[s]

Residue (uniform)
Res Imr ~

5.745[5] 4.ss4[s]
s.vv4vlo[s] 4.s334v23[s]
5.77470703[5] 4.53347700f5]
5.77470703[5] 4.53347700[5]
5.77470703[5] 4.53347700[5]
5.77470703[5] 4.53347700[5]
5.77470703[5] 4.53347700[5]
5.79[5] 4.52[5]
5.7730[5] 4.5349f5]

1
3
5
7
9

11-13
Num. (Ref. [21])
Num. (Ref- [22])

1
3

5—13
Num. (Ref. [21])
Num. (Ref. [22])

178.5261
178.522893725
178.522893751
178.522893751
178.522893751
178.522893751
178.522
178.52289

174.8832
174.880818084
174,880818033
174.881
174.88082

26.889
26.89009572
26.890095348
26.890095348
26.89009534S
26.S90095348
26.890
26.89010

62.4429
62.4442070
62.444206948
62.444
62.44421

—1.423f7]
—1.43789[7]
—1.437683[7]

1 437694[7]
—l.437692 f7]
—1.437693[7]

—1.2465 f6]
—1.2430054[6]
—1.24300490[6]

2.o26[v]
2.O6863[V]
2.068303[7]
2.068319[7]
2.068317[7]
2.068318[7]

1.527[6]
1.5333823[6]
l.saaa8122[6]

—1.446[7]
—1.4376913[7]
—1.43769254[7]
—1.43769254[7]
—1,43769254[7]
—1.43769254[7]
—1.43[v]
—1.4382[7]

—1.250[6]
—1,24300479 [6]
—1.24300490 [6]
—1,25[6]
—1.2431[6]

2.0600[7]
2.0683181[71
2.06831771[7]
2,06831771[7]
2.06831771f7]
2.06831771[7]
2.OS[7]
2.o6vv[v]

1.5318[6]
1,53338108[6]
1.53338122[6]
l.s2[6]
1,5328[6]

A
Q (R)=A 3 l (E+~)

R'p R' (3.3b)

respectively, in order that the first-order phase-integral
approximation will agree with previous semiclassical re-
sults.

We consider for the potential (3.1a) three sets of the
parameters A, I&, C, and S (Tables I—III) and for the po-
tential (3.lb) one set of the parameters A and It (Table
IV).

The computational procedure follows closely that for
the semiclassical approach [16, 17j. The notable excep-
tions are that Miiller's method, rather than Newton and
Raphson's method, is used in the present root searching
routines [23], and that the quadratures along the com-
plex paths are based on the Numerical Algorithms Group
(NAG) Fortran library routine D01AHF instead of the
Gauss-Mehler quadrature. The derivative Op/DE in (2.2)
is calculated according to formula (23) in Ref. [24].

The numerical results quot, ed in our Tables I—IV are
obtained by means of a method of Sukumar and Bardsley

TABI E II. Same as Table I but vvith 4 = 141.425, K = 5, C = 2 x 10, and 8 = 12. The numerical results are taken from
Refs. [3] and [22]. The numbers in square brackets are the powers of 10 by which the entries are to be multiplied.

Order

1
3
5
7
9
11
13

Num. (Ref. [3])
Num. (Ref. [22])

Rel
Position

192.3599
192.35701674
192,357016977
192.357016977
192.357016977
192.357016977
192.357016977
192.357
192.35702

Iml

19.37305
19.37323342
19.373233303
19.373233303
19,373233303
19.373233303
19.373233303
19.373
19.37323

1.94[3]
2.11[3]
2.ov[3]
2.12[3]
2.o[3]
a.o[3]
6.4[1]

—1.38[3]
—1.S1[3]
—1.48[3]
—1,S2[3]
—1,4[3]
—2,2[3]
—3.8[1]

Residue (nonuniform)
Rer Imr ~

Residue
Res ~

2.oSvs[3]
2.O839S1V2[3]
2.08395156[3]
2.08395156[3]
2.08395156[3}
2.o839sl s6[a]
2.08395156[3
2.o8[a]
2.0843[3]

(unifor m)
Imr

—1.484[3]
—1.4921294[3]
—1.49212863[3]
—1.49212863[3]
—1.49212863[3]
—1.49212863[3]
—1.49212863[3]
—1.50[3]
—1.49 13[3]

14

1
3
5
7

9—13
Num. (Ref. [3])

Num. (Ref. [22])

1
3

5—13
Num. (Ref. [3])

Num. (Ref. [22])

191.5636
191.56072704
191.560727210
191.560727210
191.560727210
191.560
191.56073

190.7540
190.75 1768469
190.75 1768469
190.751
190.75177

24.89303
24.89339594
24.893395803
24.893395803
24,893395803
24.893
24.89340

58.3915
58.39259283
58.392592720
58.393
58.39259

—2.263[4]
—2.2V28O[4]
—2.272506[4]
—2.272S23[4]
—2.272521[4]

v. s9s2[4]
7.5901989[4]
7.59019458[4]

7.97[4]
8.1157[4]
8.11441[4]
8.11448[4]
8.11447[4]

-s.933[4]
—5.9627976[4]
—5.96279242 [4]

—2.3O[4]
—2.272 5200[4]
—2.2V2S2O92[4]
—2.2V2S2O92[4]
—2.27252092[4]
—2.2Sf4]
—2.2749[4]

V.62[4]
7.59019439[4]
7.59019458[4]
v. sv[4]
V.S904[4]

8.103[4]
8.1144VO[4]
8.11446871[4]
8.11446871[4]
8.11446871[4]
8.12[4]
8.1131[4]

—5.951[4]
—5.96279222[4]
—5.96279242[4]
—5.98[4]
—5.9s9s[4]
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TABLE III. Same as Table I but with A. = 53.401, A = 2.462, t = 1 x 10, and S = 20. The numerical results are taken

from Refs. [3] and [22]. The numbers in square brackets are the powers of 10 by which the entries are to be multiplied.

Order Rely
Position

Imf
Residue (nonuniform)

Res Imr
Residue (uniform)

Re@ Imr

1
3
5

9
11
13

Num. (Ref. [3])
Num. (Ref. [22])

1
3

9
11-13

Num. (Ref. [3])
Num. (Ref. [22])

1

5—13
Num. (Ref. [3])

Num. (Ref. [22])

76.957
76.936799
76.936749
76.93675206
76.936752359
76.936752335
76.936752312
76.955
76.93675

76.575
76.56192
76.56189838
76.56189832
76.56189830
76.56189830
76.580
76.56190

81.5997
81.596082
81.596079236
81.613
81.59608

4.668
4.67775
4.6776483
4.6776460
4.677646201
4.677646269
4.677646268
4.679
4.67764

10.359
10.369766
10.3697723
10.3697729
10.3697729
10.369773005
10.371
10.36977

41.9016
41.9081033
41.908102484
41.910
41.90810

—3.96[1]
—4.33[1]
—4.25[1]
-4.35[1]
—4.05[1]
—6.1[1]
—O. 1[1]

3.524[2]
3.5624[2]
3.562125[2]
3.562150[2]
3.56214V[2]
3.562148[2]

—2.7503
—2.75158226
—2.75158295

—0.98[1]
—1.02[1]
—1.01[1]
—1.02[1]
—0.98f1]
—1.1[1]
—0.1[1]

—2.67[2]
—2.7536[2]
—2.75295 5[2]
—2.752970[2]
—2.V52967[2]
—2.V5296V[2]

—1.812
—1.802450
—1.80244629

—4.253[1]
—4.2svv2[1]
—4.287374fl]
—4.2SV3V23[1]
—4.2873750[1]
—4.2SV3V520[1]
—4.287375 05[1]
—4.30[1]
—4.2SV3[1]

3.583[2]
3.56200[2]
3.5621453[2]
3.562 1478[2]
3.5621480[2]
3.5621480[2]
3.56[2]
3.5624[2j

—2.7582
—2.7515811
—2.75158295
—2.76
—2.7510

—1.053[1]
—1.01152[1]
—1.011723f1]
—1.0116974[1]
—l.0116970[1]
—1.01169750[1]
—1.01169759[1]
—0.977[1]

1.0177[1

—2.715[2]
—2.V532 [2]
—2.752975[2]
—2.7529678[2]
—2.7529673[2]
—2.V529672[2]
—2.V6[2]
—2.V524[2]

—1.817
—1.802450
—l.80244629
—1.80
—1.8025

[20], also used by Connor and co-workers [3, 21], and by
means of Prufer's method used in a. paper by Pajunen
[22]; his Tables I—IV refer to t, he same cases as our Tables
I—IV, respectively, although Pajunen does not give the
correct values of the parameters C used in his Tables III
and IV.

Apart from possible misprints [3,4] concerning Imro for
the parameter values used in our Table III, the previously
published phase-integral results [3, 4, 21] for the present
potentials are in complete agreement with the first-order
results for Z and the first-order "nonuniform" results
for r in our tables.

Concerning the calculations of Regge-pole positions,

we make the following observations. Comparing consec-
utive orders of the phase-integral approximation, we find
consistent numerical values with at least nine correct dec-
imals in our optimal results, except for the first three
Regge poles in Table III, where there are a,t least seven
correct decimals in the optimal results. The reason for
this diminished accuracy is that the parameters of the
potential in Table III are less favorable for phase-integral
calculations, since the potential is very steep, and a large
number of comparatively close-lying transition zeros are
present.

Furthermore, the pole positions obtained by Pajunen
[22] are seen to be in full agreement with our phase-

TABLE IV. Positions and residues of Regge poles for the real Lennard-Jones (6,4) potential (3.lb), specified by the reduced
quantities A = 63.641 and A = 1.1489. The numerical results are taken from Refs. [20j and [22]. The numbers in square brackets
are the powers of 10 by which the entries are to be multiplied.

Order

1

5

11
13

Num. (Ref. [20])
Num. (Ref. [22])

Position

97.5198
97.517893910
97.517893925
97.517893925
97.517893925
97.517893925
97.517893925
97.519
97.51789

12.39810
12.39832484
12.398324519
12.398324520
12.398324520
12.398324520
12.398324520
12.398
12.39832

Residue
Res

3.3s[v]
3.63[V]
3.56[V]
3.65[V]
3.40[v]
5.0[7]
0.1fv]

(nonuniform)
Imr ~

—1.31[S]
—1.43[8]
—1.41[8]
—1.44[8]
—1.34[S]
—2.0f8]
—0.4[v]

Residue
Rer ~

3.64[7)
3.591641[7]
3.59165430[7]
3.59165429[7]
3.59165429[V]
3.59165429[7]
3.59165429[7]
2.0s[v]
3.59233[7]

(uniform)
Imr m

—1.4133[8]
—1.417293S[S]
—1.41729377[8]
—1.41729377[8]
—1.41729377[8]
—1.41729377[8]
—1.41729377[8]
—1.42[8]
—1.41725[8]

1
3

7
9—13

Num. (Ref. [20])
Num. (Ref. [22])

1

5—13
Num. (Ref. [20])
Num. (Ref. [22])

95.9485
95.946688763
95.946688714
95.946688714
95.946688714
95.948
95.94669

88.6931
88.691761371
88.691761325
88.693
88.69176

15.68662
15.68696369
15.686963459
15.686963459
15.686963459
15.687
15.68696

37.85922
37.859942569
37.859942545
37.860
37.85994

2.628[10]
2.676 1[10]
2.6V5V0[10]
2.6V5V19[10]
2.675717[10]

5.344f12]
5.3590V1[12]
5.35906740[12]

1.4V9[9]
1.40453[9]
1.404482 [9]
1.404488[9]
l.404487[9]

1.31[12]
1.29169342[12]
1.29169325[12]

2.6716[10]
2.6757163[10]
2.67571696[10]
2.6V5V1696[10]
2.67571696[10]
2.63[10]
2.67567[10]

5.359034[12]
5.3590669[12]
5.35906740[12]

5.35883[12]

1.50[9]
1.404472[9]
1.40448733[9]
1.4044SV33[9]
1.40448733[9]

—1.34[9]
1.405 V3[9]

1.31[12]
1.2916930[12]
1.29169325[12]
0.736[12]
1.29184[12]
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integral results to the five decimals given by him. How-
ever, the numerical results from Refs. [3], [20], and [21]
agree with our phase-integral results to within a few units
in the third decimal, except in Table III, where the results
differ by approximately two units in the second decimal.

Concerning the calculations of the Regge-pole residues,
we make the following observations. Comparing succes-
sive orders of approximation, one sees that the "nonuni-
form" formula (2.12) does not give very accurate results
for low quantum numbers m, with only two significant
digits for rn = O. However, the situation rapidly improves
as rn increases and the relevant complex transition zeros
thus move apart.

As expected, the "uniform" residue formula (2.2) gives
quite consistent and, according to our experience, accu-
rate results for all quantum numbers m. The diA'erence
between uniform and nonuniform results, which is dra-
matic for low values of rn, gradually decreases as rn in-
creases. Again we observe that the parameter values in
Table III are less favorable for our phase-integral treat-
ment than those in Tables I, II, and IV.

The Regge-pole residues obtained by Pajunen [22]
agree with our optimal uniform results up to the third
or fourth digit. This agreement is somewhat surprising,
since the numerical procedure used by Pajunen for cal-
culating the residues has not been theoretically justified.

In Tables I III the numerical results quoted from
Refs. [3], [20], and [21] differ from our optimal uniform re-
sults in the third digit. However, in Table IV the discrep-
ancies are considerably larger. The reason for these dis-
crepancies may partly be that the dimensionless form of
the radial Schrodinger equation was not used in Ref. [20].

The reason for presenting the phase-integral results up
to the 13th order of approximation in Tables I—IV is con-
nected with our desire to illustrate in a lucid way the fact
that one can in many cases obtain considerably more ac-
curate results by the phase-integral method than by nu-
rnerical methods. On the other hand, to reduce the size
of the tables, we have presented the results only for a few
values of m, which are chosen such that the tables are es-
sentially as informative for the judgment of the power of
the method as if the results for the interjacent values of

m had also been included in the tables [25]. We have
strong reason to believe that the results for the optimal
orders of the phase-integral approximation (determined
by the digits which remain unchanged when one changes
the order of the phase-integral approximation) are quite
correct and thus represent the results that are now known
quantum mechanically. The results obtained by numeri-
cal methods by other authors and quoted as Num. (Ref.
[3]), Num. (Ref. [20]), Num. (Ref. [21]) and Num. (Ref.
[22]) in our tables show that it is difFicult to obtain accu-
rate results by numerical methods, that it has been de-
sirable to increase the accuracy of the results, and that
the most accurate results so far obtained by numerical
methods, viz. , those designated by Num. (Ref. [22]) in
our tables, are not quite reliable. To obtain accurate
results that are completely reliable we have used phase-
integral approximations up to comparatively high orders.
In our tables we have presented the results with the ac-
curacy that we have obtained and have not speculated
about which accuracy may be needed in particular ap-
plications, since this is a question that is currently under
investigation.

From the present investigation we conclude that the
new Froman-Froman phase-integral residue formula [1],
which is highly relevant for the difI'raction and rainbow
scattering of atoms and molecules, provides an extremely
accurate computational as well as analytical tool in the
Regge-pole theory, We have strong reason to believe that
the optimal uniform phase-integral results obtained in
the present paper are much more accurate than previ-
ously published results for the same potentials.

ACKNOWLEDGMENTS

The authors are grateful to Professor N. Froman and
Professor P. O. Froman for helpful discussions. They
are also grateful to Mr. A. Hokback and Mr. 3. Djarv
for advice concerning the numerical computations. One
of the present authors (A.A.) would like to acknowledge
the financial support of the United Nations Development
Program (UNDP) and the Commission for Higher Edu-
cation of Ethiopia.

' Permanent address: Department of Physics, Asmara
University, Box 1220, Asmara, Ethiopia.
Permanent address: Department of Mechanics, Royal In-
stitute of Technology, S-100 44 Stockholm, Sweden.

[1] N. Froman and P.O. Froman, Phys. Rev. A 43, 3563
(1991).

[2] K.-E. Thylwe and A. Amaha, Phys. Rev. A 43, 3567
(1991).

[3] J.N. L. Connor, D.C. Mackay, and C.V. Sukumar, J.
Phys. B 12, L515 (1979).

[4] J.N. L. Connor, D.C. Mackay, and K.-E. Thylwe, J.
Chem. Phys. 85, 6368 (1986).

[5] J.N. L. Connor and K.-E. Thylwe, J. Chem. Phys. 86, 188
(1987).

[6] S. Bosanac, Phys. Rev. A 19, 125 (1979).
[7] S. Bosanac, Phys. Rev. A 24, 777 (1981).

[8] S. Bosanac, Phys. Rev. A 28, 1344 (1983).
[9] S. Bosanac and K. Knesaurek, Phys. Rev. A 28, 2173

(1983).
[10] S. Bosanac, Phys. Rev. A 30, 153 (1984).
[ll] K.-E. Thylwe, J. Phys. B 16, 1915 (1983).
[12] J.N. L. Connor and W. Jakubetz, Mol. Phys. 35, 949

(1978).
[13] J.N. L. Connor, D. Farrelly, and D.C. Mackay, J. Chem.

Phys. 74, 3278 (1981).
[14] K.-E. Thylwe and J.¹L.Connor, J. Phys. B 21, L597

(1988).
[15] K.-E. Thylwe and J.N.L. Connor, J. Chem. Phys. 91,

1668 (1989).
[16] K.-E. Thylwe, in Resonances The Unifying —Route

Towards the Formulation of Dynamical Processes
Foundations and Applications in Nuclear, Atomic and



REGGE-POLE POSITIONS AND RESIDUES CALCULATED. . . 4209

Molecular Physics, edited by E. Brandas and N. Elander
(Springer, Berlin, 1989), pp. 281—311.

[17] J.N. L. Connor, in Semiclassical Methods in Molecular
Scattering and Spectroscopy, Proceedings of the NATO
Advanced Study Institute, Cambridge, 1979, edited by
M.S. Child (Reidel, Dordrecht, 1980), pp. 45—107.

[18] K.-E. Thylwe, J. Phys. A 16, 3325 (1983).
[19] K.-E. Thylwe, J. Phys. A 18, 3445 (1985).
[20] C.V. Sukumar and J.N. Bardsley, J. Phys. B 8, 568

(1975).
[21] J.N. L. Connor, W. Jakubetz, and C.V. Sukumar, J.

Phys. B 9, 1783 (1976).
[22] P. Pajunen, J. Chem. Phys. 88, 4268 (1988).

[23]

[24]
[25]

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T.
Vetterling, Xurnerical Recipes (Cambridge University
Press, Cambridge, England, 1986), Chap. 9.
P.O. Froman, Ann. Phys. 88, 621 (1974).
See AIP document No. PAPS PI RAAN-44-4203-12 for
the full documentation of Tables I—IV. Order by PAPS
number and journal reference from American Institute
of Physics, Physics Auxiliary Publication Service, 335
East 45th Street, New York, N.Y. 10017. The prepaid
price is $1.50 for a microfiche, or $5.00 for photocopies
up to 30 pages and $0.15 for each additional page over
30 pages. Make checks payable to the American Institute
of Physics. Air mail additional.


