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In the analysis of laser-spectroscopic line shapes, velocity-changing collisions are accounted for by
adding to the density-matrix equations-of-motion terms involving the direct collision kernel. The
direct collision kernel is the probability density per unit time that an atom has a specific velocity
after a collision, as a function of its velocity before the collision. If the collision partner s velocity
distribution is not thermal, however, the direct collision kernel alone does not completely characterize
the effect of collisions. In such cases it is necessary to include terms involving the exchange collision
kernel. The exchange kernel is the conditional probability density per unit time that the atom has a
specific velocity after the collision as a function of its collision partner'8 velocity before the collision.
Both the direct and the exchange collision kernels are obtained from the linearized Boltzmann
equation. We derive an expression for the exchange kernel in terms of the colliding pair scattering
cross section, and calculate the exchange kernel for hard-sphere collisions. Moreover, we propose a
phenomenological exchange kernel similar to the Keilson-Storer direct kernel [J. Keilson and K.E.
Storer, J. Appl. Ma.th. 10, 243 (1952)] and compare it with the hard-sphere kernel. In an earlier
paper [P.R. Berman, J.E.M. Haverkort, and J.P. Woerdman, Phys. Rev. A 34, 4647 (1986)], a
connection was made between the collision kerneLs of laser spectroscopy and the collision integrab of
classical transport theory. We expand on this earlier work by including the exchange collision kernel,
and indicate how results from classical transport theory might be used in setting the parameters
appearing in the phenomenological exchange kernel. We interpret an excitation-transfer experiment
in terms of the exchange kernel.

I. INTRODUCTION

A. Direct and exchange collision kernels
I'(v) = Ikg(v ~ v') d 5' (1.2)

The effect of velocity-changing collisions in the spec-
troscopy of atoms in a dilute gas has been studied ex-
tensively [1—4]. Laser light, because of its narrow band-
width, interacts with narrow velocity subgroups within
the wider Maxwellian profile. The collisional transfer of
atoms into and out of an interacting velocity subgroup
must be accounted for to adequately interpret spectro-
scopic line shapes. This is often done by adding terms
to the density-matrix equation of motion that represent
the interaction of an active atom (A) with a reservoir of
perturber atoms (P). The effect of the interaction on the
A atoms can be characterized by a direct collision kernel,
which gives the probability density per unit time for an
A atom to go from a given initial velocity to a given final
velocity as a result of collisions with P atoms. Knowl-
edge of the direct kernel allows one to construct a master
equation that represents the time evolution of the active
atom velocity distribution due to collisions,

('dg1 = —r(v) g(v) i I', (v' v) g(v') d'v,
) coll'&s'&on

where Ag(v' ~ v) is the direct kernel and I (v) is the
collision rate for A atoms with speed v given by

The first term in Eq. (1.1) is the rate at which A atoms
leave the velocity subclass and the second term is the
rate that A atoms enter the velocity subclass as a result
of collisions.

Equation (1.1) can be derived from the Boltzmann
equation with the following approximations: (a) A-A
collisions do not affect the A atom distribution, and (b)
the perturber reservoir is thermalized and is not affected
by A Pcollisions. If-one of these conditions is not satis-
fied, then there will be extra terms in Eq. (1.1).

A type of experiment in which the direct kernel alone
adequately describes relaxation is one in which a low-
density population of A atoms is immersed in a much
higher density buffer gas of P atoms [4—7]. In this case
the perturber population is distinct from and much larger
than that of the A atoms so the A-A collisions can be
neglected relative to A-P collisions. Also the effect of
A-P collisions on the P distribution is negligible, so the
P atoms remain in a thermal distribution. In a typical
experiment of this sort a narrow velocity distribution of
A atoms is produced by laser excitation and it relaxes
back towards equilibrium by undergoing collisions with
P atoms [8].

There are other types of experiments [9,10], however,
for which the direct kernel alone cannot adequately de-
scribe the relaxation. Consider, for example, a process
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involving resonant excitation exchange collisions. This
process involves an initially excited atom (which we call
a "P atom"), transferring its excitation to another atom
(which we call an "A atom"), through a collision. In a
typical experiment of this sort [9], the P atoms are not
in a thermal distribution and the A atom distribution is
initially Maxwellian. One is interested in the A atom dis-
tribution after an exchange collision with a P atom. En

this case, the direct kernel does not contain information
on the evolution of the A atom distribution. To lowest
order, the right side of Eq. (1.1) vanishes. In such cases
it is necessary to include terms in Eq. (1.1) involving
the exchange collision kernel, which gives the probability
density per unit time that an A atom will have a velocity
v~ after colliding with a P atom having a velocity v2 be-
fore the collision. The A atom velocity distribution will
depend upon the initial P atom distribution and on the
exchange kernel. The terms involving the exchange ker-
nel are derived from the linearized Boltzmann equation.

B. Laser spectroscopy and kinetic theory

When analyzing spectroscopic data, one often uses
phenomenological collision kernels with several ad-
justable parameters rather than kernels derived from the
A Pcross section-s. A phenomenological direct kernel
that is often used is the I&eilson-Storer kernel [11] with
two adjustable parameters; one that characte'rizes the
collision rate, and one that characterizes its strength.
The strength parameter depends on the ratio of the
masses of the colliding atoms and there are various pro-
cedures to set its value [4,1'2).

Recently, an article appeared [13] (hereafter referred
to as I) in which a connection between the collision ker-
nels of laser spectroscopy and the transport coeKcients of
classical transport theory was established. The transport
coefficients characterize the bulk properties of a gas such
as viscosity, diffusion, and heat conductivity [14]. They
are derived from the interactions between molecules of
the gas and are related to the effective transport cross
sections [15]which are the matrix elements of a linearized
collision operator. The effective transport cross sections
can be expressed as linear combinations of the collision
integrals, which are weighted integrals of the differential
cross section, and thus contain information on the col-
lisional interaction between molecules of the gas [14,16].
The relations between the effective cross sections and the
collision integrals, as well as the collision integrals for
different model potentials, can be found in various texts
[14,16].

In I it was shown that, by writing the linearized colli-
sion operator in terms of the direct kernel, one can de-
rive a relation between the collision integrals of transport
theory and integrals of the collision kernel. Using these
relat, ions it is possible to put constraints on the parame-
ters of the phenomenological kernels in fitting line-shape

data.
The theory can be extended, in a more general treat-

ment, to include the relation between the collision inte-
grals and the exchange kernel. In fact it is necessary to
include the exchange kernel when expressing the collision
operator in terms of the collision kernels for a single com-
ponent gas in which the A and P atoms are indistinguish-
able. As is done for the direct kernel, one can develop
a phenomenological exchange kernel and use some of the
results from transport theory to set the parameters that
characterize the kernel.

This article is organized as follows: In Sec. II the lin-
earized Boltzmann operator is expressed as a sum of two
terms; one of which describes direct collisions, the other
exchange collisions. We present two independent meth-
ods for calculating the collision integrals from integrals
of the exchange kernel. In Sec. III, two specific exchange
kernels are introduced, one based on a hard-sphere inter-
action and the second on a phenomenological kernel. We
investigate some of the properties of these kernels and
make comparisons with the direct kernels. En Sec. IV the
collision integrals are calculated for these two kernels us-
ing the methods introduced in Sec. II. We discuss how the
collision integrals can be used to determine the suitabil-
ity of the parameters characterizing the phenomenologi-
cal kernel. In Sec. V we define the longitudinal exchange
kernel and compare the hard sphere and phenomenolog-
ical kernels. We then use the hard-sphere longitudinal
exchange kernel to discuss the results of a resonant ex-
citation exchange collision experiment, in which the ex-
change kernel is effectively measured. In Sec. VI, we
discuss the relation. between the collision kernels and the
transport coefficients for a real gas.

Throughout this article, the interacting atoms are di-
vided into two classes labeled "A" and "P".These labels
come from the first type of experiment mentioned above
in which the A atoms are "active, " interacting with the
laser field, and the P atoms are "perturbers" which do
not interact with the field, but do contribute to the relax-
ation of the A atoms. In the second type of experiment
mentioned above, the excitation exchange collision, the A
and P labels are used for convenience, they do not mean
"active" or "perturber" as used above; here the P atoms
interact with the field as well as with the A atoms. A
more appropriate label might be "donor" and "acceptor"
for the two populations; however, we use the A and P
labels to maintain consistency with the usual treatment
of the Boltzmann equation in laser spectroscopy [13].

In deriving the relation between the collision integrals
and the collision kernel, we consider a binary gas con-
sisting of A atoms and P atoms in which A-A and P-P
collisions are ignored. 'Of course, for a real gas the A-
A and/or the P Pcollisions play -an important role in
determining the bulk properties of the gas. Our model,
however, shows the essential relation between the colli-
sion kernels and the Boltzmann operator in a simple way.
If the A and P atoms are the same, then the following
discussion is correct for a one component gas. Consistent
with our model in which the A-A and P-P collisions are
ignored, all collision rates refer to A-P collisions, unless
otherwise stated.
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II. COLLISION KERNELS, THE LINEARIZED
COLLISION OPERATOR, AND THE COLLISION

INTEC RALS

where

Zd f, (v, ) = » [f,(v', )W, (v', ) —fl(v, )W2(v2

A. Boltzmann equation xgo(g, 0) dQ d v2, (2.7)

The Boltzmann equation is

cl—f, (vl) = Lf, (vl),
dt

(2.1)
xgo. (g, 0) dQd v2 . (2.8)

&ef1(vl): &1 [Wl(vl )f2(v2) Wl(vl)f2(v2)]

+f1(vl) = [ fl(v', )f2(v2)

—fl(vl) f2(v2)]0 (g, Q)g dA d v2, (2.2)

where g = v2 —vl and fl (f2) is the velocity distribution
for the A (P) atoms, and a.(g, 0) is the dilI'erential cross
section in center-of-mass coordinates for A-P scattering.
The primed quantities refer to those quantities before the
collision and unprimed after.

The Boltzmann collision operator for a real binary gas
would include another term to account for the effects on
fl resulting fram A-A collisions. This extra term is simi-
lar to Eq. (2.2) but involves the A-A rather than the A P-
cross section, and is a function of fl alone rather than fl
and f2. Il' the A-A collision rate is negligible compared
to the A-P rate, as is true in many cases of experimental
interest, then Eq. (2.1) adequately describes the problem.

One can write the distribution functions as

f, (v;) = n, W, (v;) [1+C;(v;)], (2 3)

where n; is the average number density of atoms of type
i,, and W, (v;) is the thermal distribution:

with the Boltzmann collision operator for the A atom
distribution given by

For an experiment in which the low-density nonthermal
A atoms are immersed in a higher density gas of ther-
mal P atoms, then f2(v2) W2(v2) for all times so
that 2,fl(vl) = 0. The direct collision operator
completely describes the (collisional) evolution of f1(vl).
The exchange collision operator, on the other hand, de-
scribes the effects of collisions on an initially thermal A
distribution when the P atom distribution is nonthermal.

B. Collision kernels

The direct Boltzmann operator describes the change
in a nonthermal A atom distribution resulting from A-P
collisions when the P atoms are in a thermal distribution.
It can be written as

~dfl (vl) IX d(vl ~ vl) f1 (vl ) d Vl —I 1(Vl )fl (vl)

(2 0)

where I"& is the collision rate for active atoms with speed
vl, and Ild(vl ~ vl) is the direct collision kernel. The A
atom collision rate is obtained by integrating the direct
kernel over the final A atom velocities:

W;(v;) = (~u, ) ~ exp( —v, /u, ), (2.4) IYd(vl ~ v 1 ) d V 1 (2.10)

with u; the most probable speed for atoms of type i,

u; = +2k1dT/m, ,

where k~ is the Boltzmann constant, T is the tempera-
ture, and m; is the mass of an i atom. The Boltzmann
operator can be linearized if either C)1 or 42 (or both)
are small such that

In the case that the P distribution is nonthermal, this is
not the total A collision rate, but only a first approxima-
tion as is shown below, Eq. (2.15).

The exchange Boltzmann operator describes the
change in an initially thermal A distribution when the
P distribution is nonthermal. It can be written

C&C2 &g 1, (2 5)

~f1(V1) —~dfl(V1) + ~ f1(V1) (2 6)
I

which is the case in all situations studied here.
Using Eqs. (2.3) and (2.5) and the fact that

Wl(vl) W2(v2) = Wl (vl) W2 (v2) one can write the
Boltzmann operator Eq. (2.'2) in terms of a direct part
Zd and an exchange part 8, :

&.fl(vl) = I~e(v2 ~ vl) f2(v2) d v2

J(v2gvl)f2(v2) d V2 (2.11)

where I1.,(vz ~ vl) is the exchange kernel which is
the probability density per unit time that type-1 (A)
atoms have a velocity vl after colliding with a type-2 (P)
atom that had a velocity v2 before the collision. Using
Eq. (2.8) one can write the exchange kernel as

f ml
~~, (v2~v, ) =»

l

P
gg|(g v() v(g, B) ( egg)g g+ g (1( vl)) g gd g

g m2 P
(2.12)
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where g = v2 —vi, g: V2 —vi, ailcl p = (Bl17712)/(mr+
m2) is the reduced mass.

The collisional flux density J(v2, vi) is defined as

J(v2, vi) d vi —I'2(v2), (2.20)

J(v2, vi) = ni Wi(vi)g(T(g), (2.13) [»,(v2 ~ vi) —J(v2, vi)] & vi ——0, (2.21)
where a(g) = I o (g, 0) dQ. The quantity J(v2, vi)d vi
is the number of collisions per unit time undergone by
a type-2 atom having a velocity v2 with thermal type-1
atoms with velocity vi (within the volume d vi) . The
total collision rate for a thermal A atom colliding with P
atoms is given by the expression

1I'1(») = „W( )
J(v2, vi) f2(v2) dsV2 .

(2.14)

If f2(v2) is a Maxwellian with a correction as in Eq. (2.3),
then

I'1(») = I'1(vi) + &(vi) (2.15)

1
~(V1) =-

ni Wi (vi)
J(v2, vi)[f2(v2) —n2W2{v2)] d V2 .

(2.16)

The collision rate of the perturber atoms I'2(v2) is ob-
tained by integrating the exchange kernel over A atom
velocities:

I'2(v2) = (2.17)

where I"1 is given by Eq. (2.10) and 7 is a correction to
the direct collision rate due to the non-Maxwellian part
of f2(v2) given by

W2(v2)[», (v2 ~ vi) —J(v2, vi)] d v2 —0,

(2.22)

~(u, x) ~(a, ~ —x), (2.24)

where o'(g, y) is the difFerential scattering cross section
and y is the center-of-mass scattering angle.

The significance of the two terms in L,fi(vi) is more
clearly seen if we consider a specific physical situation.
We calculate the velocity distribution of an A atom im-
mediately after one collision with a P atom in a reso-
nance exchange collision. The A atoms are initially in a
Maxwellian distribution and the P atoms are in an arbi-
trary nonequilibrium distribution. In this case, f2(v2) is
the distribution of the excited-state perturber atoms and
n2 is the density of excited state P atoms. Since the A
atoms are initially in equilibrium, Lq fi (vi) = 0 to lowest,
order, and

n2W2(v2) J(v2, vi) = ni Wi(vi) J(vi, v2) . (2.'23)

When the masses of the A atoms and P atoms are
the same, the exchange kernel can be obtained from
the direct kernel by the substitution in the first term
of Eq. (2.7) of

This expression is a statement of the conservation of
probability. In general, I'~ is not equal to I'q. The aver-
age collision rates are related by

d

&&
f1 (vi ) = ».(v' - vi)»(v') d"2

J (v2, vi)f2(v2) d V2 . (2.25)

(2.18)

For later use, we note several easily established relations
between the collision rates, the exchange kernel, and the
collisional Aux density:

f1 (vi ) = n 1 Wi (vi ) + Af1 (v 1 ), (2.26)

where 4f1 is the change in the A atom distribution due
to the collision, and is approximately given by

We can write the A atom distribution after the collision
as the sum of two parts

n2 W2(v2) J(v2l vl) d V2 —ni Wl(vl)1 1(vl}

(2.19) or

1 df, &

1 ('l (dt d
(2.27)

d-( fi (vi) Ii, (v'. ~ vi) f2(v2) d v
I'1(v, )

d(~2 ~llf2(v )dlUl) (2.28)

1
fi(vi) =

1 1(V1)
», (v2 ~ vi) f2(v2) d v' . (2.29)

We see that the expression I&, —J is related to the change
in the A distribution. The second term on the right is
equal to niW1(vi) by Eq. (2.14). Using Eq. (2.26) one
finds

I

The distribution of A atoms after an excitation exchange
collision with P atoms is proportional to the integral of
the exchange kernel with the P distribution. If a spe-
cific P atom velocity class has been excited, then f2(v2)
= n2b(v2 —v, ) and

fi(vi) = », (v2 ~ vi) . (2.30)I'i(vi)
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C. Detailed balance

The exchange kernel must satisfy a form of the law
of detailed balance, an "exchange balance. " This is ex-
pressed as

+2W2(vz)I~. 2i(V2 Vl) —&1Wl(vi)ICi2(vl vp)

(2.31)

where Ii2i (Iiiq) is the probability density per unit time
that type 1 (2) atoms have velocity vi (v2) after a colli-
sian with with type 2 (1) atoms having a velocity v& (vi)
before the collision. The relation Eq. (2.31) is easily veri-
fied using Eq. (2.12). The kernel I~i2 is not equal to uzi
if the type-1 and type-2 masses diA'er.

A kernel of the form of Eq. (2.12) derived from an inter-
action potential automatically satisfies this condition. A
criterion for the suitability of a phenomenological kernel
is that it satisfy this condition as well.

The efI'ective transport cross sections are defined in
terms of the matrix elements of the operatars Zd, in an
eigenfunction basis y~; (v;), where

@,', (vi) = %~+4~ —'
I

L ~. ' —', &~, ( v, ) .
u;) u,.

(2.35)

The I~ ' are Laguerre polynomials, and the Y~& are
spherical harmonics. The normalization constant B~
is given by

I3~ = [-', i/~m!/I'(t+ m+ -', )]~,

where I' is the gamma function. The g' form a complete
orthonormal set, and are used to expand the correction
4&, [14—17]:

C (v)= ) a,*, g,
' (v).

B. Linearized collision operator
and the collision kernels

It is convenient to define a linearized collision operator
in terms of the linearized Boltzmann operator[13, 15]:

The orthonormality condition is

(@' ~g' ) =b„b 6, (2.36)

1
71i 7lz R@i (vi ) — ZW1 (vl )C i (vi) ~ (2 32)

Wi vi

'RCi(vi) = Rgci(v, ) + Z.,Ci(vi),
where

(2.33)

1
ni +2+8, @1(vl) — ~d, Wl(vl)C 1( 1)Wi(vi)

(2.34)
I

The collision operator Z can be expanded into a direct
part and an exchange part:

where ( ) indicates an integration over vi with W'i(vi),

(f(v)~g(v)) = Wi(v) f*(v)g(v) d'u . (2 37)

The direct and the exchange effective cross sections are
defined by [13,15]:

(2.38)

where 6„= (8kBT/vrp) 2 is the average relative speed.
The two parts of the collision operator are related to

the collision kernels using Eqs. ('2.9), (2.10), (2.11), and
(2.34) as

1
nz7Zgc i(vi) =-

Wi vi
Wi(vi)ICJ(vi ~ vi)[4i(vi) —C'i(vi)] d ui (2.39)

1+1+ @1(Vl )—
Wi vi)

Wz(v2)[I'i p(v2 ~ vi) —J(v2) vi)]C'2(v2) d v2 (2.40)

Equations (2.40) and (2.38) give the relation between the
exchange kernel and the exchange effective cross section.
The relation between the direct kernel and the direct ef-
fective cross section is treated in I.

It is convenient to use a quantity U„'„, instead of rr, (I"„,)
to calculate the matrix elements of g, . The U„'„, are
defined as

2l+ 1

U'„„=»[(21+1)&t % ~ ]
' ) (0i",l&.0i", )

(2.41)
Using Eqs. (2.40), (2.41), (2.37'), (2.35), and the additian
theorem for spherical harmonics, one finds that the U„'„,
are given by

1

U„„i = — W2(v2) ~

—
~

— I.„' —
~ I„i' —

z ~
Pt(vz vi) [I~,(V2 ~ vi) —J(v2, vi)] d ui d v2,

(uz l ui (+i u~ i+ ~ u,' 3 3

(2.42)
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where Pj(v2 vi) is a I,egendre polynomial. The first few U „, are

Upp: W2(v2) [Iis(v2 ~ vi) J(v2i vi )] d vi d V2
1 U2. V1 3 3

Q2tl1
(2.43)

1 5 Vq~ V2 V1 3 3
Uip —— W2(v2) ———

2 [IXs(v2 ~ vl) —J(v2, vi)] d Vl d V2
2 tE2 tip tl1

(2.44)

[Iks(v2 ~ vi) —J(v2) vi)] d Vi d V2 (2.45)

1
U10 =—

2
11n1&rOe 1p

1 3 — 10U..= —,-." .(.), (2.47)

The relations between the first few U„„, and the first
few o, (I„",) are

Method I. Chapman and Cowling [16] give expressions
for the bracket integrals in terms of the collision integrals,
and the bracket integrals are proportional to the U„'„,.
These relations can be inverted to express the first few
collision integrals in terms of the U„„,, thus establishing a
relationship between the collision integrals and integrals
of the exchange kernel. The relations are as follows:

2 15 — 20
Upp —

4 niv„o, (2p) (2.48)
(, ,)

1 (1+P)
Pp8

(2.51)

The U„'„, are the same (to within a numerical factor)
as the bracket integrals of Chapman and Cowling [14,16].
The exact relations are given in Appendix A.

E. Collision integrals and integrals
of the exchange kernel

The collision integrals are defined by [14,16]:

(k, s)
where

(1 2) 1 (1+P) Ui 5 (1+P)
8 ps 10 16 p& 00 )

n(2, 2) 1 (1+p)'U2 5 (1+p) Ui
p

00 12 pi
00

(2.52)

(2.53)

OO 2s+3

dg exp( —g iu„) ~

— Q(")(g), p=mi m2. (2.54)

(2.49)

whele 0 —F1 + u& is the most probable relative speed
and

(2.5O)

These expressions, together with the expressions relating
the collision integrals to the direct eAective cross sections
as calculated in I, can be used to express the first few
o', (&„",) in terms of the first few og(&"„,) as

1

e 10 = '+d 10

The collision integrals carry information on the molecu-
lar interaction and are related to the transport properties
of the gas as characterized by the transport coeKcients.
Our objective is to provide expressions that relate the
collision integrals to integrals of the exchange kernel. We
propose two methods, similar to the two methods that
relate the collision integrals to the direct kernel as devel-
oped in I.

3
Oe 1p = — '&d 10 )

~.(2o) = Pf«(2o) —2«(io)] .

Me/bod 9. Following a procedure similar to the one
used in I, we can provide an alternative set of expressions
relating the collision integrals to integrals of the exchange
kernel through the quantity G'& defined as

W2(v2) c2 ~v2 —vi
~

[I~s(v2 ~ vi) —J(v2, vi)] d vi d v2 . (2.55)

In Appendix B we show that G'i can be written as where

G') —n1 g W„(g) R,(g) I"i(g) d g, (2.56) W„(g) = (~u„) ~ exp( —g2/u„), (2.57)
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2g

y+ g WT(y) d y,
nL2

(2.58)
Expanding Eq. (2.56) for specific I and q and integrat-

ing over y we can write G
&

in terms of the colhsion in-
tegrals [Eq. (2.49)]:

with

wT (y) = (s uT ) / exp( —y2/uT ), (2.59)
G' =16n u' nl'')1

01 1 21+ p
(2.61)

and

/ 2g T 1/2

(mi + m2

G;, = 32n, u', [(P+ I/P)A&' ) + Q~' )]'(1+P)'
(2.62)

Fi(g) =g"
~ l ). ~

I- (1+P')' "(2P)"Q'")(g)/ p )21 /1

&I+ Pi
(2.60)

= 16, ' (-'n~' ')+ Pn&' ')), (2.63)11 1 2(1+p)2 2

and these can be inverted to give the collision integrals
in terms of the G'&.

n, n&' ') = —,', (1+p)u2'Goi, (2.64)

fI(12) ( +P)' 4 . 3 (1+P)
p 2 o2 32 p 2 oi (2.65)

32( +p) u2 G02 (1+p ) 16 l I u2 Gli u2 Goi(2,2) 2 -4 ~ 2 1 /'I+P& 4 . 3 (1+P) -2 (2.66)

We now have two different sets of expressions for the colli-
sion integrals in terms of integrals over the exchange ker-
nel. Using a kernel derived directly from an interaction
potential, the two sets of expressions, Eqs. (2.51)—(2.53)
and Eqs. (2.64)—(2.66), must be identical. However, for a
phenomenological kernel, there is no guarantee that the
two sets should be the same.

Since each of the collision integrals is related to a spe-
cific type of transport process, through the transport co-
eKcients, they are excellent candidates for setting the
adjustable parameters for phenomenological kernels, (see
Sec. IV). How well the parameters will work may be indi-
cated by comparing Eqs. ('2.51)—(2.53) and Eqs. (2.64)—
(2.66) when evaluated using the phenomenological kernel.
We use the notation A(U) to indicate an BE"') calculated
from the U„'„„Eqs. (2.51)—(2.53), and B(G) to indicate
an Qt"") calculated from the G'&, Eqs. (2.64)—(2.66).

III. THE HARD-SPHERE
AND PHENOMENOLOGICAL

EXCHANGE KERNELS

We next consider two specific exchange kernels, one
calculated using a hard-sphere inter action potential,
and the other a phenomenological kernel similar to the
Keilson-Storer direct kernel.

A. Hard-sphere exchange kernel

The differential cross section for hard-sphere scattering
is o(g, 0) = o/47r where o = vr(ri+r2) and ri and r 2 are
the radii of the two hard spheres undergoing a collision.
Integrating Eq. (2.12) with this expression for o(g, 0) we

get

nio. (1+P)2 1 ( (P —S)2& — ( (P+ S)21—
K, (vz —+ vi) =

/
—exp

~ 2 ~

—exp
~

(3.1)

with P = mi/m2, P = )vz —Pvi) and S = )vz —vi). Since the kernel Eq. (3.1) is derived from a specific interaction
potential, it satisfies Eqs. (2.17) and (2.31).

For comparison, we write the direct hard-sphere kernel [8]:

n2o(1+ p)2 1
Idg(vi ~ vi) =

4s'/2u2 S
—exp

(1+p)2 ~ 2S v', )
4P 1+P )

2
Qj ) (3 2)
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wllel'e S = vl —%1, P = IIII /III2.
It is noted that the direct and exchange kernels have

the same form when rnid
——m2. This is expected; when

rn~ ——m, 2 the exchange kernel can be obtained from the
direct kernel with the substitution o (g, y) ~ o (g, n —y).
For hard-sphere scattering, the diA'erential cross section
is independent of scattering angle, so the exchange and
direct kernels are the same if mj ——m2.

B. Phenomenological exchange kernel

r, (., ) = —
j

'
r„, h, , (z,),P ' (ll

2 (1+P
wllei'e zl —p ~ VI/Ill, z2 —p ~ V~/II2,

hl(z) = e + (2z + 1/z) erf(z),
2

{1,2)
O 'O2, ].r

(3.8)

(3.9)

(3.10)

where

= (1 —p (le) Bl (3 4)

P = ml/m~, and a, and I Ks are adjustable parameters.
The parameter I'Ks is the velocity-independent collision
rate of P atoms and the parameter o., is a measure of the
strength of the collision and depends upon the ratio of
the A-P masses, as will be shown later. Physical consid-
erations impose limits on the value of o., : for all values
ofP, 0(Pn2 ( l.

This kernel is diagonal in the basis functions QI&(wl)
and gz", (vz) (see Appendix C), i.e. ,

I42(V2)tjf2q (V'2)IIX e(%2 ~ %1) PI ( 1) d v2 d Vl

= rKs(P'c e)'"+'61 4n ~, . (3.5)

This kernel is similar in form to the Ekeilson-Storer kernel
[ll] and becomes the same as the direct Keilson-Storer
kernel for P = 1, with n, = nd. For comparison, the
direct Keilson-Storer kernel is:

A realistic exchange kernel should satisfy detailed
balance Eq. (2.31) and the conservation of probability
Eq. (2.17). These conditions are satisfied by a kernel of
the form:

Iy, (v,' ~ vi) = IKs(~~') ~ exp[—(vi —n, v2) /~ ],
(3.3)

D. Persistence of velocity

After a collision, an atom will generally have a veloc-
ity component that lies in the direction of its velocity
before the collision, a phenomenon known as the persis-
tence of velocity. We generalize this notion to include a
persistence of velocity in the exchange collision.

For direct collisions the persistence of velocity is a mea-
sure of an A atom's memory of its velocity before the col-
lision; in exchange collisions it is a measure of the transfer
of information of velocity from P atoms to A atoms. The
persistence of velocity is defined as

1
(~I)d, = r (, )

~l 1&d, e(&~I 2 ~ Vl) d Vl

(3.11)

In carrying out the integration of Eq. (3.11) using the
direct and exchange Keilson-Storer kernels Eqs. (3.6) and
(3.3) we obtain

(~1)d —Ird ~IKS (3.12)

and erf(z) = (2/ijx) fz e ' dt. Both of these expres-
sions, Eqs. (3.7) and (3.8), are constant as a function of
P when VI/ul and v2/u2 take their equilibrium values:
(VI/ul) = (V2/u2) = z. We also note that the expres-
sions are identical under the substitutions P ~ 1/P and
V2 Gg ~ Vy tip.

V] ~ = O.'gV2 )
KS (3.13)

~~e(~2 ~ ~1) —rKS(7r~ )
' eXp[—(~1 Od~l) /~ ]

(3 6)

where ~~ = (1 —n~) u21.

C. Collision rate

We first calculate the collision rates for the P atoms,
in the exchange collision, using Eq. (2.17), and the col-
lision rate for the A atoms in the direct collision us-
ing Eq. (2.10), and the hard-sphere interaction poten-
tial. The collision rates for the Keilson-Storer kernels
are adjustable parameters; they are not derived from the
collisional dynamics.

The hard-sphere collision rates are

( )Hs p 1 "2(zl) &

1+P ' (3.14)

p1+p hl(z2) j (3.15)

As is well known [12], and seen here, the parameter ng is
associated with the persistence of velocity. We also see
that o., is associated with the persistence of velocity in
the exchange process. Thus one way to fix the value of
n, is to set it equal to the corresponding expression for
the persistence of velocity in the hard-sphere case, as is
often done for nd [4].

Carrying out the integration for the hard sphere inter-
action we get

r~(») = — rHs I I(»)1 1 {g)
2(1+p)- (3.7) where zl —P ~ VI/ul, z~ ——P ~ v2/u2,
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h2(z) = e + (2z —1/z) erf(z) ~,
1

(vi) d' = &[I —(ui/vi)']vi (3.17)

For the expansion of Eq. (3.15) in the limit P ~ 0 we

require vz/uq « I/~P or )z2) && 1 to get

(3.18)

These are expected results; with mq )& m~ the collision
is strong and the A atom loses nearly all memory of its
velocity before the the collision. In the exchange process,
however, nearly all the information about the P atom's
initial velocity is transferred to the A atom distribution.
The A atom distribution is offset by an amount v& in the
direction v2 .

In the limit that P —+ oo [with ~P && v~i/ui or

1» I
«»n Eq. (3 14) and v2/»» I/~P or I» I

)&»n
Eq. (3.15)] one finds

4 I)
(vi)~

3 Pi
(3.19)

(vi)". ' = —[I —(»/v2)']v2 (3.20)

Again this result is expected. With mq &) m2 the active
atoms undergo very weak collisions. The velocity does
not change much and the A atom has nearly complete
memory of its velocity before the collision. Also, there
is very little transfer of information from the P atom to
the A atom distribution. In this limit the P atoms have
little effect on the A atom distribution.

One may fix the value of I'Ks by setting

(3.16)

and hi(z) is given above, Eq. (3.9). Again, these expres-
sions are identical under the substitutions P ~ I/P and
vs/u2 ~ vi/ui. We consider these expressions for the
limits mg gg mg and mg &( mg.

In the following expansion of Eq. (3.14) in the limit
P ~ 0, we require vi/ui ))~ or (zi ) )) 1. One finds

IV. CALCULATION OF THE COLLISION
INTEGRALS FOR HARD-SPHERE AND

PHENOMENOLOGICAL KERNELS

A. Calculation of the collision integrals

We first calculate the U„'„, and the G'& for the hard-
sphere and phenomenological kernels ance then calculate
the 0&"") by the two methods [Eqs. (2.51), (2.53) and
Eqs. (2.64), (2.66)].

Using Eq. (2.42) for the U„'„, we obtain, for a hard-
sphere interaction,

(&)
U00 = —2 I'~sI+P (4.1)

I (2)
10 (I P)2 HS (4.2)

In using the phenomenological exchange kernel, one
must choose an appropriate n, and I'Ks. One way, as
mentioned previously, is to use the hard-sphere persis-
tence of velocity and average collision rate. In the fol-
lowing we will consider the role of the collision integrals
in determining the suitability of a particular set of pa-
r arne ters.

The collision integrals are the link between the mi-
croscopic properties of a gas—the interaction between
pairs of individual molecules —and the macroscopic prop-
erties of the gas as characterized by the transport coef-
ficients [14,16]. Therefore a particular collision integral
will be appropriate in determining the suitability of a
phenomenological kernel when the process under inves-
tigation is related to a particular transport process. For
example, if diffusive processes give rise to the exchange
collisions, then A~i i) may be appropriate for determin-
ing the parameters since it is related to the coeKcient of
diffusion. Some justification for the manner of choosing
n, is achieved if the value of 0, , gives the same value for
O(~ ') as calculated by the two methods described above
[Eqs. (2.51), (2.53) and Eqs. (2.64), (2.66)]. In the fol-
lowing we calculate the 0("") by the two methods and
comparisons are made.

IKS = IHS

and the value of n, by setting

)KS ( )HS

(3.21)

(3.22)

with

P (~)U00: 4 I ~s1+p

(2) = 2~ u ~ 0 Di

(4 3)

(4 4)

resulting in

HS 1 P
1 ~ h2(p~ v2/ug) )

1+P i hi(P~ v2/uq))
(3.23)

the hard-sphere velocity averaged collision rate.
Using Eq. (2.55) for the G'& we get, for a hard-sphere

interaction,

In using this expression, one must also choose a value
for vq/uq. Often the experimental situation will deter-
mine what value is to be used. Here, we generally will
choose (v2/u2) = 2, which is its average value for an
equilibrium distribution.

(&)
GQy 4 ~ u2 r~s j1+p

I
I+

1

1 f' P 5 4 (,)
1+ g 1+

(4 5)

(4.6)
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3
Go2 =8 I( )

(1+P)2 2 Hs (4.7)

(4 8)

Using the U„'„, and Eqs. (2.51)—(2.53) or the G' and
Eqs. (2.64)—(2.66), we get, in both cases,

g(~, ~) ~ I (2)
4 HS~

0.8

0.6

3I (2)
4 Hs~ (4 9)

0.4

(4.10)

which agrees with the previously derived results in I for
the direct kernel.

To evaluate the U'„„, and the G'& with the Keilson-
Storer kernel we must also choose a phenomenological
J(vq, vi). A reasonable choice is

J(v2, vi) = FI&S 14'1(vl) . (4.11)

Note that this satisfies Eqs. (2.19)—(2.22) and detailed
balance, Eq. (2.23).

We now obtain expressions for the collision integrals
in terms of the adjustable parameters. The U', are di-nn'
agonal matrix elements of the phenomenological collision
operator. Using Eqs. (3.3), (4.11), (2.42), and (3.5) we
obtain

U'.. = (FKs/&i'. ) [b ohio —(P'~.)'"+']b-
(4 12)

oi'

Uoo = —2P' &. FKs (4.13)

Uio ——0, (4.14)

Uoo = 4Pcr, FKs —. (4.15)

Goj = 3o'& &2 IKs,2 (4.16)

G» = —(5 —~.)~.u2FKs, (4.17)

One evaluates the G'& with Eqs. (3.3), (4.11), and

(2.55) to get

0.2

p I I ! J ~~ I 1

0 4
P

10

IG. 1. a, and 1 —ag as obtained via the persistence
of velocity as a function of P = mi/m2. The hard-sphere
interaction is used, and (vi/ui) = (v2/u2) 2

1 —0,'d (4.22)

these expressions for the O(V) are identical to those that
were calculated in I with the o'd(&"„,). Thus the expres-
sions for the 0( "& give a relationship between the param-
eter o, d for the direct Keilson-Storer with the parameter
n, for the exchange Keilson-Storer. However, relation-
ship Eq. (4.22) is not consistent with the values of n,
and o.d obtained from the persistence of velocity. For ex-
arnple, n, and n~ calculated from Eqs. (3.19) and (3.20),
in the limit P ~ oo do not satisfy Eq. (4.22). Further-
more, substitution of n, = nHs (in the limit P ~ oo)
into the expression for A(i i), Eq. (4.19), does not give
the correct hard sphere result, Eq. (4.8), while substitu-
tion of o, , = 1 —nd does give the correct result. ThisHs

indicates that the persistence of velocity may not be the
best method for setting n, . In Fig. I we show a plot of
n, and 1 —n„, with (vi/ui)' = (v2/u2)' = ~, as a
function of P. The curves show a significant difference
for most values of P.

Using the formulas Eqs. (2.64)—(2.66) we get a second
set of expressions for the collision integrals:

ni~("'(G) = —,', (1+p)~. FKs, (4.23)

Go~ = 15(1+1/P —n, )n, u, FKs . (4.18)

Using the formulas Eqs. (2.51)—(2.53) we get, a first set
of expressions for the collision integrals:

~""(&)= —:,(I+P)(5+(I/P)[2-(I+P) .]) .F ~,
(4.24)

ni 0&"&(V) = so (1 + P)n, 1 Ks,

niA&'2&(V) = si2s(1+ p)n, I Ks,

(4.19)

(4.20)

~""(&)= —.', (4- 1/P')(1+P)[2-(1+P) J .F ~

(4.25)

niA (V) = —is(1+ P)[2 —(1+P)n, ]n, I'Ks . B. Comparison of the A(U) and the O(G)

With the substitution

(4.21)
The expressions for 0( & are identical using both

methods. This is expected; for any kernel that satisfies
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detailed balance, it can be shown using Eqs. (2.43) and
(2.55) that

1

"2'Goi = 2P—'
Uoo .

Using Eqs. (2.51) and (2.61) we see that

so

0.5

0.4—

0.3—

0.2

0.1—

0
0

0.8

0.6

0.4

0.2—

(a)

(b)

I

j

I I I

~

~ T T I I I

n ' (HS)/I

(G, U) /I

6 8
P

0 ' (HS)/I

n""(G)/r

n" '(v)/r

10

I dd'tion n&i i& is guaranteed to be finite for all P
(1,1)r r)for a kernel that satisfies detailed balance since n t~)

= n&i'i&(l/P) must hold owing to the fact that the diffu-
sion coeFicient Di2 ——D2i .

The other collision integrals have very diferent forms
in the two cases. To compare them, then, one must
choose a value for o;, . We choose the persistence of
velocity to set n, , Eq. (3.23), with (v2 ju2) = 2. ig-

ures 2(a), 2(b), and 2(c) are plots of n, n &''~ and
O~ & respectively, as obtained by the two methods as a
function of P . On these plots the constant value for the
hard sphere O~ '~ is also shown.

For P ) 1, the two methods give remarkably similar
values, differing at most by 10%, and showing a re a-
tively constant value as P is increased. For 0 ( P ( 1,
the n&"'&(U) show only a slight deviation from the con-

diverge for P ~ 0, and these divergences persist for any
p ysica yh sically realistic o, The reason for the divergences
has to do with the way in which the G'& are defined and
the fact that the Keilson-Storer collision rate is indepen-
dent of velocity.

The n&"'&(U) are finite and approximately constant
but their values differ from those of the hard sphere by
as much as 50% when I'Ks = I'Hs. This can be adjusted
by altering the phenomenological collision rate.

0 I

0 2 4 6 8
P

10

V. EXPERIMENTAL MEASUREMENT
OF THE LONGITUDINAL

EXCHANGE KERNEL

0.8—

0.6—

(c)
I T I ~ I I I

(

T I M
f

I T

n""(Hs)/r

We consider here an experiment in which the exchange
kernel was effectively measured [9]. To compare the re-
sults of this experiment with the preceding analysis, we
first calculate the longitudinal exchange kernel for both
a hard-sphere interaction and the Keilson-Storer kernel.
We compare plots of the two longitudinal kernels for sev-
eral mass ratios.

0.4—
n ' (G)/I

0.2

n (v)/r A. Longitudinal exchange kernel

0—
0 4 6 8

P
10

FIG. 2. The collision integrals divided by the average col-
lision rate as a function of mi/mq. The Q(U) have been
calculated with the U' „i and the A(G) have been calculated
with the G'&. Also shown are the values for A(HS), the colli-

sion integrals for hard-sphere Interaction. pa~ is 0~ ' ~ ~b& is
0&' l, and (c) is A~

In using collision kernels to fit experimental data, one
is often interested in the one-dimensional longitudina
exchange kernel rather than the full three-dimensional
kernel Eq. (2.12) because the laser picks out a velocity
subclass along one dimension only. The longitudinal ex-
change kernel is obtained from Eq. (2.12) by averaging
over an initial P atom transverse velocity distribution
and summing over the A atom final transverse velocities.
The initial P atom transverse distribution is assumed to
be in equilibrium and is given by



G. L. ROGERS AND P. R. HERMAN

~~t(v2t) = («2) ' exp[—(v2tlu-. )'] (5 1) K, (v2, ~ vi, ) = 2t( 2t) e( 2 1) d V2t d V1t

where v&~ ——v 2
—z v& is the transverse velocity, with z a

unit vector in the z direction. The longitudinal exchange
kernel is given by

(5 2)

where v~q ——v~ —zvi, . Carrying out the integrations for
the case of hard-sphere interaction we get

nio 1+pK, (V2, Vi, ) =

x ~
—j(»/I) —{ 2/ ~) l y+~ +~erf2 I 2 v„—all + P I —Ilk —n erf(v2, /u2)

r'V2, —.
l
1 + p/I plk—

+P z (1 —e) + n erf(vrz/ur) —nerf l— (5.3)

where P = mi/m2, c = (P —I/lP —ll), k = v2, —viz t and n = k/lkl.
When P = 1, the expression Eq. (5.3) assumes the same form as the hard sphere longitudinal direct kernel as

derived by Kol'chenko, Pukhov, and Shalagin [18]:

Ii, (V2, ~ vi, ) = —nia(e l~""~"'l ~""~"'& i[1 —nerf(v2, /u2)]+ [1+nerf(vrz/ur)]] . (5 4)

The longitudinal form of the phenomenological kernel
Eq. (3.3) is found using Eq. (5.2) to be

~~e(V2z ~ Vlz): ZKS(~7['u) eXP[—(Vlz CteV2z) /tz' ]

(5 5)

Figures 3(a)—3(c) are plots of the hard-sphere
[Eq. (5.3)] and the phenomenological [Eq. (5.5)] longi-
tudinal exchange kernels as a function of v~, . We have
chosen in all cases v2, ——u2/~2 = gP/2ur, its most
probable value in a thermal distribution. We have cho-
sen the parameters for the Keilson-Storer kernel as fol-
lows: The collision rate I'Ks ——I'2(u2/vt2) so that the
curves are normalized, and o., is its hard-sphere value
given by Eq. (3.23). The three plots use mass ratios
P = mr/m2 of 0.01, 1, and 10, respectively. The ar-
row indicates the velocity v2, . There is fair agreement
between the two curves with greatest disagreement oc-
curring for m, ~ (( m2.

B. Excitation transfer

A situation in which the exchange kernel plays an im-
portant role is in an excitation exchange collision. This
is a collision between an excited atom and a ground-
state atom in which the excitation is transferred dur-
ing the collision. A typical experiment might involve ex-
citing a narrow velocity subclass of P atoms (donors)
with a pump laser, then probing the A atoms (accep-
tors) with a weak probe beam after the excitation has
been transferred from the P to the A atoms as a re-
sult of an excitation transfer collision. If an excited A
atom is probed immediately after the transfer, before it
has undergone another collision, its longitudinal veloc-
ity distribution will have precisely the same shape as the

tot—p""(») = —IFr (»)+~~)p""(vr)

+ ~~ (v2 v1)P. (v2) " (5.6)

which in the steady state becomes

longitudinal exchange kernel divided by the longitudinal
collision rate, with the value of vq determined by the P
atom subclass that is excited [see Eq. (2.30) and preced-
ing discussion]. An excitation exchange experiment was
carried out by Picque and Vetter [9] using Kr atoms as
the P atoms and Xe as the A atoms. Their experiment
diAered from the above description, however, in that the
hole burned in the lower Kr level by interaction with a
pump field is transferred to the Xe excited-state popula-
tion, which is then probed. The signal is sensitive only to
the perturbation in the Xe excited state due to the hole
in the Kr donor state, and they found the width of the
Xe perturbation to be only the inhomogeneous width.

The level scheme is shown in I"ig. 4; the Kr levels a
and 6 are coupled by the pump field yq, level a' of the
Xe atom is populated by excitation exchange collisions
with Kr atoms, and this population is monitored by the
weak probe field y2 coupling Xe levels a' and c'. The Kr
transition is between 4p 5s [3/2]2 and 4p 5p' [1/2]1 and
the Xe transition between 5p 5d [1/2]1 and 5p 6p [I/2]1.

We can interpret their experiment in terms of the the-
ory developed here. The donor (P atom) velocity dis-
tribution is p«(v2), and the acceptor (A atom) veloc-
ity distribution is p (vi). (In the following we asso-
ciate the subscript 1 with the acceptor population and
the subscript 2 with the donor population. ) We write
the density-matrix equation of motion for p, I,I(vi) as
(neglecting the eR'ect of the probe field g2)
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)+~ lp". ( ) = I"( )p-( ) d

(5.7) Xe

where p, & is the rate of spontaneous emission from level a'

Xz

C1 I ~T t I I
I

T
T I I T

(~)
ill, /ni2=. 01

1 I I T
t

1 I ~ T
I

T I

FIG. 4. The energy-level scheme for the excitation trans-
fer experiment. Kr is the donor atom and Xe is the acceptor
atom. Population is transferred from the Kr level 6 (not the
ground state) to the Xe level a' as a result of excitation ex-
change collisions.

0.8—

CD

I
0.6—

D

0 4

0

0. 2
I
—— a'. This equation diAers in two significant ways from

Eq. (2.29): the inclusion of spontaneous emission as a
relaxation mechanism, and a velocity-dependent collision
rate that, includes alt collisions, so that I'I '(vi) ) I i(vi).
The quantity I'i(vi) is defined by Eq. (2.14), and is
the rate of excitation exchange collisions for an accep-
tor atom, while I'I '(vi) is the fotat rate of collisions for
an excited accepter atom, and will equal the sum of the
collision rates for collisions between an atom in p / /(vi)
and atoms in each of the populated Kr levels (the density
n2 )) ni so A-A collisions are ignored).

Under the conditions of the experiment, the sponta-
neous emission rate is always somewhat larger than the
total collision rate [19]. This justifies the fact that we
do not include the direct collision kernel in the density
matrix equation of motion —the atoms in p (vi) will
decay away before undergoing a collision.

The population of level a is given by

0
v, /u,

T T T I I I

m, /m, =1

0.8

4
0.6--

X
+1

05 0.4—

-------KS

—————HS

0, 2

paa(V2) = n2 IV2 (v2) + 4 2(v2) (5.8)
0

vi/uI

where the unperturbed population density of level a is
n2 —f n2, where n2 is the number density of Kr atoms
and f is the fraction that are in level a. The perturbation
in level a is

I I I ~ I I I T I T T
(c)

L
m I/TI12= 1 0

0.8 ——

ID

(D

ID

0.6—
65

O
X

$2(v2) — n2 I/I/'2(v2)—I I I r'. ,
a —I,n„+r, (5 9)

0. 4
"CI

4Q

0

0
vi/u,

FIG. 3. The longitudinal exchange kernel as a function
of the final A a.tom velocity. The initial P atom velocity
is indicated by the arrow. Showa. are both the hard-sphere
and Kielson-Storer exchange kernels. (a) mi/m2 = 0.01, (b)
mr/mz = 1, and (c) mz/m2 ——10.

I.( '& )~2( 2)d' ' = I' ( )~( ) .

(5.10)

The term on the right is the number of A atoms per

where I is the dimensionless intensity, r, ~ is the dephas-
ing rate, A is the field detuning from resonance, k~v2, is
the Doppler shift for an atom with velocity vz, and k~
is the wave vector of the pump field, directed in the z
d ire ctlon.

We first consider the acceptor population, p (vi),
when the pump field yi is off. In this case, p, (V2) =
n2W2(v2). Using Eqs. (2.19) and (2.22) the right side of
Eq. (5.7) becomes
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velocity interval entering the velocity subclass ~~ of level
a' per unit time. Using Eqs. (5.7) and (5.10) we can write
the zero field a' population as

solve Eq. (5.7) for Pi(vi) using Eqs. (5.8), (5.10), and
(5.13) to get

&. "(Vi) = ni(vi)
with

(5.11)
P'i" (vi)+V p]4i(vi) = Ile(v2 ~ vi)g)»(v2) d V2

(5 14)

r, (v, )n'1(vi) = , „ , ni Wi(vi),
( &/+ '4p

(5.12)

p, , (Vi) = n', (vi)+ pi(vl), (5.13)

where Pi(vi) is the perturbed part of the population.
Due to the modulation technique used by Picque and
Vetter, the experiment measures the perturbation. We

l

where nq is the number density of Xe atoms. If spon-
taneous emission is negligible compared to the total col-
lision rate, then the velocity dependence of I'1(vi) and
I'1 '(vi) cancel and the distribution ni(vi) is Maxwellian.
However, if spontaneous emission is a significant relax-
ation mechanism, nl(vi) will have a width greater than
that of a thermal distribution. This can be understood
by the fact that faster atoms undergo exchange collisions
at a greater rate, but relaxation due to spontaneous emis-
sion is independent of speed.

When the pump field is on, we can write p ~s~(vi) as

The longitudinal form of this equation is obtained by
summing over the transverse velocity of vq . We make
the assumption that the transverse distributions remain
in equilibrium so that

0'1(V1) —(t'lz (Vlz ) ~lt (V it ) (5.15)

&2( .) —&~.(V2, ) I4'~t(v. t)

where

(5.16)

Wt(v;, ) = (~u2)-' exp[—(v;, /u, )']

and m;q ——v; —v;, z with i = 1, 2. We want to compare
the width of the perturbation $1,(vi, ) and the width of
the zero-field longitudinal distribution ni, (vi, ) to see the
line narrowing effect.

Integrating both sides of Eq. (5.14) with respect to vit
we get

Ji (1/g %1)W2/(1 ig) d v2t d Vlf ) $2*(V2 ) dVQ (5.17)

The term in large parentheses on the right is Ii, (vz, ~
vi, ), the longitudinal exchange kernel [Eq. (5.3)], and the
first term in large parentheses on the left is the longitu-
dinal collision rate, I'ti t(vi, ). The a' level perturbation
can be written

1
g)iz(viz) =

Fl (viz) + esp

F (vl )n'„(vi, ) = ' n, Wi, (vi, ) .
Fi"(» )+~p

(5.19)

VVe obtain the zero-field longitudinal distribution
ni, (viz) by summing over the transverse velocity of the
zero-field distribution n'1(vi), to get

X I&e(V2z ~ Viz) &2z (V2z) dV2z (5.18)
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FIG. 5. A comparison of the hole in the a' population
distribution, Pt, with the tt' equilibrium distribution, n't

We approximate the interaction between the Kr and Xe
atoms as that of hard spheres and use the hard-sphere
exchange kernel. In making this approximation, we ex-
pect that the calculated width of $1,(vi, ) will be some-
what narrower than the actual width since the long-range
part of the interaction is being ignored. A collision with
a large impact parameter will change the velocities of
the colliding atoms very little:, when these large impact
parameter collisions are significant and included in the
expression for the exchange kernel (by including a long-
range part in the interaction potential) the final A atom
velocity distribution will tend towards a Maxwellian, and
less of the donor perturbation will be transferred to the
acceptor population.

Figure 5 is a plot of Pi, (vi, ) and of ni, (vi, ). We use
mx, /mK„— )9 = lss ——0.63. The width of $1,(vl, ) is

approximately
&

that of ni, (vi, ), showing a slight, nar-
rowing. The degree of narrowing, however, diA'ers with
the results of Picque and Vetter, who observed a width
for Piz(viz) equal to s that of a thermal distribution. As
yet, we can oA'er no explanation for this discrepancy.
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VI. TRANSPORT COEFFICIENTS
AND THE COLLISION KERNELS

To relate the transport coeFicients to the collision ker-
nels in a real binary gas we must include several other
kernels in addition to the direct and exchange kernels
discussed here. As already mentioned the correct Boltz-
mann operator for a binary gas includes a term involving
A-A collisions. In addition, to fully characterize the gas,
another equation describing the time evolution of the P
atoms is needed. This equation involves two terms also:
the eA'ect of P-P collisions and the efFect of P-A colli-
sions on the P distribution. Each term can be analyzed
as we have done in Sec. II, yielding a direct kernel and
an exchange kernel for each term. There is a difFerent set
of collision integrals corresponding to each of the types
of collision: A-P, A-A, and P-P, and the transport coef-
ficients are related to sums of the collision integrals over
the sets [14]. In certain limits, the contributions due to
one of the types of collision will be negligible, but always
there will be more kernels with non-negligible contribu-
tions to the bulk properties of the gas than the simplified
treatment in Sec. II gives.

The usefulness in relating the collision integrals to
transport coeFicients comes from the fact that the trans-
port coef5cients are related to specific processes occur-
ring in the gas. There are various techniques for calcu-
lating the transport coefFicients from the collisional cross
section; these techniques can be employed in setting the
phenomenological parameters [14].

VII. CONCLUSION

We have shown that, the direct and the exchange ker-
nels can be obtained from the Boltzmann equation, and
have given a physical interpretation of the exchange
Boltzmann operator in terms of an excitation exchange
collision.

Two independent methods of obtaining the collision
integrals from integrals of the exchange kernel were de-
veloped.

The exchange kernel for a hard-sphere interaction po-
tential was obtained and a phenomenological exchange
kernel similar to the Keilson-Storer direct'kernel was pro-
posed. The collision rates and the persistence of velocity
for these exchange kernels and the corresponding direct
kernels were calculated.

A method for setting the adjustable parameters using
the collision integrals was proposed, and a comparison
of the collision integrals as calculated with a hard-sphere
potential and a phenomenological kernel was made.
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APPENDIX A

The relations between the U„'„I and the Chapman and
Cowling square bracket integrals are

3
U„'„, = L ' (C, ) Ci, L„',(C2) C2

- 12

5U„„=— L'(C, ) CiCi, I „',(C2) C2C2

where L„are I,aguerre polynomials, C; = v;/u, and C;C,
is a symmetric, traceless tensor.

APPENDIX B

In the following we show how the Gq& can be put into
the form of Eq. (2.56) from which they can be easily ex-
panded into linear combinations of collision integrals. We
start with the definition of G'&, Eq. (2.55), and express
Ii, (vz ~ vi) and J(v2, vi) using Eqs. (2.12) and (2.13),
respectively. Writing go (g) = I(1/g') o (g', Q)6(g'—
g) d g' in the expression for J(vq, vi), we get

G', = ni— W.(v2) Wi(g' —v') —,o(g ~I)~(g —g)

x8
~

" g+ " g' —(»', —«, )) d3gdxg' d»,
(mi m~

+ni v~' ~v2 —vi ~' W2(v2)Wi(vi) —,o.(g', O)b(g'—

Integrating over v~ in the first term, and substituting g = v2—

d3 I
V2

g) d g d vi d v2

vi so d vi ——d g in the second term, one can obtain

G'( ——ni
21

v2 W2(vg)Wi(g —v2) —,o(g') B)6(g' —g) g
' — g+ g' d gd g' d v2 .

g m2 fAi

Integrating over g' and noting that the angle between g
and g' is the scattering angle y, one finds for the term in
large parentheses:

where we have used P = mi/m2.
Using the fact that

W2 (v2 )Wl (g —v2 ) = W. (g) Wr (y)
where y is the velocity of the two particle center of mass
given by y = v2 —p/m2 g and W„and W~ are given
by Eqs. (2.57) and (2.59), and using the definition of
q("&(g), E,. (2.5O), ~ obt
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G', =nt d g

2q 21+1 l

d'y y+ g ~T(y) ~r(g) „). I
& I (1+P')' "(2P)'Q(')(u)

m2

which is the same as Eq. (2.56).

APPENDIX C

In determining the eigenvalues of the exchange
Keilson-Storer kernel, we follow the procedure developed
by Snider [20] to determine the eigenvalues of the direct
Keilson-Storer kernel.

The generating function of Kumar [21]

G(a, t ) = exp( —a + 2a. t )

can be expanded into a series of the eigenfunctions gt"
[Eq. (2.35)]:

G(a, v;/u;) = ) bt„a "+' Y*,(a) Ii",
q (v, ),

n, l, q

where Y~& is a spherical harmonic, and bt„——(—1)"/
[4 a,„r(n+ &+ —,')].

Using

I

I&, (v2 ~ vg) = FKs(n(u ) ~ exp[—(vg —nv2) /~ ]

one finds that

W2(v2) I'C (v2 ~ v&) G(a, v2/u2) d v2

= r .W, (,) G(~~Pa, v, /u, )

provided that n u&~ + u~ = u&, which agrees with our
previous definition of ~, Eq. (3.4). Expanding G on both
sides of the above equation, and setting equal the coefB-
cients of like functions of a, we obtain

W2(vg) Its (v2 ~ vl) 'lj)2 (vg) d V2

(V &~)'""~ (v ) 0'",(v ),
which is the eigenvalue equation for the Keilson-Storer
exchange kernel.
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