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Doubly excited 'I" autoionizing states in He between the N =2 and 3 thresholds of He+ ions are cal-
culated by use of a method of complex-coordinate rotation. Hylleraas-type wave functions are used to
calculate resonance parameters for the lowest ten resonances, and products of Slater orbitals are used for
higher-lying resonances. In the KTXn notation, the states reported in the present work include six
members in (113n) series with (3 + n + 8), four members in the ( —113n) series (3 n ~ 6), four members
in the (203n) series (4~ n ~ 7), four members in the (003n) series (4~ n ~7), and three members in the
( —203n) series with (4 ~ n & 6). Comparisons are made with other theoretical calculations and with ex-
perimental observations.

PACS number(s): 31.20.I3i, 32.80.Dz, 31.50.+w

I. INTRODUCTION

There has been continuous experimental interest to ob-
serve the doubly excited 'P' states of helium atoms. The
helium doubly excited states are located at energy regions
of about 60 to 79 eV, measured from the ground state of
helium atoms. They lie below each and every excitation
threshold of He+ as a result of the combination of
Coulomb potential and the attractive dipole r potential
due to the ns np degen-eracy of the He+ ions [1]. The
doubly excited 'P' states can be accessed from the 1s 'S
ground state by using a single-photon ultraviolet light
source. Ever since the first observation of such 'P' states
in the classic experiment by Madden and Codling [2—4]
in 1963 using the 180-MeV synchrotron at the United
States National Bureau of Standards, it has attracted con-
tinuous experimental interest to study the 'P' states as
new synchrotron facilities around the globe become
operational. Other facilities that were used to study the
'P' doubly excited states in He include the INS-SOR in
University of Tokyo [5], the NBS 2SO-MeV electron syn-
chrotron storage ring (SURF-II) [6], the Wisconsin Tan-
talus storage ring [7], the Stanford Synchrotron Radia-
tion Laboratory (SSRL) [8], the Berlin electron storage
ring (BESSY) [9,10], and the Daresbury Synchrotron Ra-
diation Source (DSRS) [11]. In addition, synchrotron ra-
diation source was also used to study photoionization of
He X =2 state in the Orsay ACO-LURE storage ring fa-
cility [12].

Because of the recent experimental activities, accurate
calculations for resonance parameters are needed to com-
pare with the experimental measurements. Qn the
theoretical side, studies of such highly correlated atomic
systems would enhance our understanding of atomic
correlation e6'ects. In the last few years we have been
able to provide some of the most accurate resonance pa-
rameters (positions and widths) for doubly excited 'P' in
intrashell states (the two electrons occupy the same shell)
[13]. By using a method of complex-coordinate rotation
and employing Hylleraas-type wave functions, a total of

eight 'P' resonances were reported in the energy region
between the X =2 and iV = 3 He+ threshold [13]. It was
found that the convergence for the intershell resonances
(the two electrons occupy diff'erent shells) was somewhat
slow. As a result, we were able to report only one digit of
accuracy for the widths of several narrow resonances. It
is now felt that improvement of the earlier calculation is
needed, especially for the intershell states. This work
presents such a calculation. The advantage of using this
method is that resonance parameters can be obtained by
using bound-state-type wave functions and no asymptotic
wave functions are necessarily used. Such an advantage
becomes apparent when we are calculating a resonance in
which many channels are open. The calculation of the
resonance position and total width for a many-channel
resonance is as straightforward as that for an elastic reso-
nance.

Various theoretical methods have also been used to
study the resonance in He for the energy region between
the X =2 and X =3 He+ threshold. The earlier calcula-
tions are reviewed in Ref. [13]. Here we only mention the
theoretical activities that were carried out since early
1980. Several versions of close-coupling approximations
were used in the past decade to study resonances of He
between the X =2 and X =3 He+ threshold. These in-
clude the algebraic variational method by Wakid and
Callaway [14], an R matrix calculation by Hayes and
Scott [15], and a nine-channel many-body perturbation
calculation by Solomonson, Carter, and Kelly [16].
Several modifications of the Feshbach projection formal-
ism were used to study resonances in He. For example,
the Feshbach saddle-point technique was used by Wu and
Xi [17] and a saddle-point technique was used by Chung
and Davis [18].L techniques have also been used recent-
ly to study resonances in He. These include the calcula-
tions by CJersbacher and Broad [19] who used Sturmian
basis sets, and a K-matrix L, basis set calculation by
Moccia and Spizzo [20]. Other theoretical methods that
have been used to calculate energy levels of 'P' states in-
clude the use of adiabatic potential curves [21,22] and the
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use of multiconfigurational Hartree-Fock theory [23].
In addition to the theoretical investigations on the en-

ergy region between the % =2 and N =3 He thresholds,
there have also been intense theoretical studies below the
X =2 He+ threshold. These studies include various ver-
sions of close-coupling approximations [24—26], several
modifications of the Feshbach projection formalism
[17,27 —29], and calculations using L2 techniques with
finite basis sets [19,30—32]. Other theoretical approaches
such as a nine-channel many-body perturbation method
[33] and a multichannel quantum defect theory [34] were
also used to study resonances below the %=2 He+
threshold.

In the present work, we now report results for the dou-
bly excited 'P' resonant states in He below the %=3
threshold. The method of complex-coordinate rotation
[35] is used in the present investigation. For the first ten
lower-lying resonances we use Hylleraas-type wave func-
tions to take into account of the strong electronic correla-
tion effects. The present work is an extension of the ear-
lier calculations [13]. We investigate the detail conver-
gence behav~«such that precise resonance parameters
can be established. Our results can be used as standard
nonrelativistic values for the lower-lying 'P' resonances.
For the higher-lying resonances, Slater-orbital-type wave
functions are used. The outer electron for these states
has quantum numbers of n ~ 5. The use of separable
wave functions enables us to have an adequate represen-
tation of the two electrons where they occupy different
configurational spaces. Our results are compared with
other calculations and with experimental measurements.

II. WAVE FUNCTIONS AND CALCULATIONS

The wave functions used in this work are of the Hyl-
leraas type for the doubly excited intrashell resonances
and lower-lying states (the first ten lowest-lying),

4 =g Ci „e"p[—~(r, +"2)]r i2

X [r ir2™+1YOO(1)Y,o(2)

+r2r i Yoo(2) Yio(1)]

where (k +n +m) ~co, with co a positive integer. For 'P'
resonances we use wave functions with up to co=18,
which leads to M =1330 terms, where M denotes the to-
tal number of terms in the basis functions.

For higher-lying states we use products of Slater orbit-
als,

O'= A g g C, Il, (r&)gi, (r2)Y~, ib(1, 2)S(cri, o2), (2)
la, lb i,j

where

ri, (r) =r ' exp( g, r ) . —

In Eq. (2), A is the antisymmetrizing operator, S is a
two-particle spin eigenfunction, and the g are individual
Slater orbitals. Y is an eigenfunction of the total angular
momentum I.,

YI, ,„(1,2)=g g C(la, lb, L;m„,m, b M)

X Yi, (1)Yib (2), (3)

H= —'P —P — — + =T+ V,2Z 2Z 2
1 2

T ( I 2 T)p

with Z =2, the charge of the nucleus, and r, and r2 the
coordinates of electrons with respect to the nucleus and
r,z=~ri —r2~. Atomic units are used in this work with
energy units in rydbergs.

In the complex-rotation method, the radial coordinates
are rotated through an angle (9,

r~r exp(i8),

and the Hamiltonian can be written as

H = T exp( —2i8)+ V exp( —i8) .

(5)

(6)

Complex eigenvalues are obtained by diagonalizing the
transformed Hamiltonian. The resonance parameters are
determined by finding stabilized roots with respect to the
variation of the nonlinear parameters a and the angle 0,
with 8)arg(E„, )/2. The complex resonance energy is
given by

E„,=E„—iI /2 . (7)

The theoretical aspects of the complex rotation method
have been discussed in previous publications [35] and will
not be repeated here. Instead we only briefly describe the
computational procedures. First, we use the stabilization
method to obtain optimized wave functions with which
complex-coordinate calculations will then be carried out.
The use of the stabilization method as a first step for the
method of complex-coordinate rotation has been demon-
strated in a review [36]. Once the stabilized wave func-
tions for a particular resonance are obtained, a straight-
forward complex rotation method is applied, and the so-
called "rotational paths" are examined. The final reso-
nance parameters, both resonance position and width, are
then deduced from the condition that a discrete complex
eigenvalue was stabilized with respect to the changes of
nonlinear parameters in the wave functions [see Eq. (1)]
and the changes of 8. The optimized 0 is determined by
examining the resonance complex eigenvalue when it ex-
hibits the most stabilized characters. This is usually done
by employing smaller basis expansion sets. For example,
for the 3s3P 'P' (1) resonance, it is found that when
M =286 terms (co=10), the resonance complex eigenval-
ue would exhibit the most stabilized character, i.e.,
B~E/88=minimum at approximately 8=0.35 rad.
Once the optimized value for 0 is obtained, we can exam-

with C the Clebsch-Gordan coeKcients. For the inter-
shell 3lnl' states with n + 5, quite extensive basis sets are
used for the wave functions. %'e use a total of 16 s-, 15
p-, 14 d-, 13 f-, 10 g-, 9 h-, 8 i-, 5 k-, 3 l , 2 m-, an-d 1 n

type orbitals. These orbitals would couple to a total of
987 terms for the 'P' states.

The Hamiltonian for the helium atom is given by
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TABLE I. Convergence behaviors for the 3s3p 'P'(1) state
using Hylleraas functions. In the notation of KTXn, this state is
(1133)(a=0.66,8=0.35).

TABLE III. Convergence behaviors for the X=3 'P'(3) state
in He using Hylleraas functions (the quantum numbers for this
state are —1133)(a=0.66, 8=0.35).

12
13
14
15
16
17

455
560
680
816
969

1140

E„(Ry)
—0.671 251 928
—0.671 251 161
—0.671 251 908
—0.671 251 847
—0.671 252 156
—0.671 2S 1 770

—' I (Ry)

0.007 022 46
0.007 024 45
0.007 023 52
0.007 024 19
0.007 023 55
0.007 023 64

12
13
14
15
16
17

455
560
680
816
969

1140

E„(Ry)
—0.565 657 351
—O.S65 657 804
—0.565 657 916
—0.565 657 964
—0.565 657 930
—0.565 657 942

—' I (Ry)

0.001 461 32
0.001 462 05
0.001 462 03
0.001 462 09
0.001 462 08
0.001 462 08

ine the convergence behaviors for the resonance parame-
ters for di6'erent expansion lengths. The lowest ten 'P'
resonances are obtained by this procedure with which
Hylleraas-type wave functions are used.

III. RESULTS AND DISCUSSIQNS

In Table I we show the convergence behaviors for the
3s3p 'P' (1) state. In the notation of approximate quan-
turn numbers KTNn, this state is 1133. In this work we
employ quantum numbers KTNn to denote each reso-
nance. The "approximately good" quantum numbers K
and T were proposed by Herrick and Sinanoglu [36] and
by Lin [37]. Readers are referred to the earlier references
for their physical meanings [38]. For the 'P' (1) reso-
nance (the 1133 state), we fix the nonlinear parameters
a=0.66 and the optimized 0 is found at approximately
0.35 rad. We calculate the complex eigenvalue as a func-
tion of co (and of M). Up to a total of co=17 (M =1140
terms) are used for this state. We determine the reso-
nance parameters as E„=0.6712518+5X10 Ry and
I /2=0. 007023 6+5X10 Ry. Table II shows the con-
vergence behaviors for the N =3 'P' (2) state (the 2034
state). The optimized nonlinear parameters are found at
a=0.5 and 0=0.35. We estimate this state to have pa-
rarneters of E„=—0.571 901 48+1 X 10 Ry and
I /2=3. 409X10 +1X10 Ry. The results for the 'P'
(3) state (the —1133 state) are shown in Table III with
optimized parameters of +=0.66 and 0=0.35. From
this table we determine the resonance param-
eters as E„=—0.565 657 94+1 X 10 Ry, and I /2
=0.00146208+1X10 Ry. Table IV shows the con-
vergence behaviors for the 'P'(4) (1134), 'P'(5) (0034),
'P'(6) (2035), and 'P'(7) (

—1134) states. We use a=0.5

and 0=0.35 for these resonances. We determine the res-

TABLE IV. Convergence behaviors for the %=3'P'(4),
'P'(5), 'P'(6), and 'P'(7) states in He. The quantum numbers for
these states are 1134, 0034, 2035, and —1134, respectively
(a=0.5, 0=0.35).

14
15
16
17

14
15
16
17

680
816
969

1140

680
816
969

1140

E„(Ry)

1 pe(4)
—0.542 390 657
—0.542 387 720
—0.542 386 832
—0.542 386 525

1po(5)
—0.535 287 988
—0.535 288 001
—0.535 288 000
—0.535 288 001

—' I (Ry)

0.002 895 68
0.002 895 43
0.002 895 86
0.002 895 91

0.000 022 642 7
0.000 022 687 2
0.000 022 678 4
0.000 022 679 2

14
15
16
17

680
816
969

1140

1p 0(6)
—0.514 891 10
—0.514 861 318
—0.514 864 805
—0.514 864 500

0.000 037 376 8
0.000 017 856 9
0.000 022 678 4
0.000 021 733 5

14
15
16
17

680
816
969

1140

1Po(7)
—0.503 166 838
—0.503 154426
—0.503 156 393
—0.503 157419

0.000 523 694
0.000 519273
0.000 519 332
0.000 520 003

16
17
18

969
1140
1330

E„(Ry)

1P0(8)
—0.501 548
—0.501 551
—0.501 547

—' I (Ry)

0.001 303
0.001 300
0.001 298

TABLE V. Convergence behaviors for the N =3 'P'(8),
'P'(9), and 'P'(10) states in He using Hylleraas functions
(a=0.4, 0=0.3).

E, (Ry) —' I (Ry)

TABLE II. Convergence behaviors for the X =3 'P'(2) state
in He using Hylleraas functions (the quantum numbers for this
state are 2034) (a=0.5, 0=0.35).

16
17
18

969
1140
1330

1P0(9)
—0.496 448 93
—0.496 448 76
—0.496 448 80

0.000 01073
0.000 01072
0.000 01073

14
15
16
17

680
816
969

1140

—0.571 901 539
—0.571 901 483
—0.571 901 489
—0.571 901 485

0.000 034 1594
0.000 034 071 6
0.000 034 097 3
0.000 034 091 8

16
17
18

969
1140
1330

1P0(10)
—0.491 035 302—0.491 035 304
—0.491 035 305

1.41 X 10
1.37 X 10-'
1.36 X 10-'
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TABLE VI. The lowest ten 'P' resonance states below the N=3 He+ threshold. For each reso-
nance, the first row entry is the resonance position, the second row is half the width.

State

1P0(1)

'P'(2)

'P'(3)

1p o(4)

1Po(5)

1p0(6)

'P'(7)

'P'(8)

'P'(9)

'P'(10)

XTNn

1133

2034

—1133

1134

0034

2035

—1134

1135

0035

—2034

Present

—0.671 251 8+5 X 10
0.007023 6+5 X 10-'

—0.571 901 48+1 X 10
3.409 X 10 +1X 10

—0.565 657 94+1 X 10
0.00146208+1X10-'

—0.542 386 5+1X 10
0.002 895 9+1X 10

—0.535 288 00+1 X 10
2.2679 X10-'+1X10-'

—0.5 14864 5~1X10-'
2.17X 10-'+1X10-'

—0.503 157+2X 10
5.20 X 10-"+2X 10-'

—0.501 55+1X10-'
0.001 30+1X 10

—0.496448 8+5 X 10
1.07 X 10 +5 X 10

—0.491 035 30+1X 10
1.36X 10-'+1X10-'

Ref. [13]
—0.671 25

0.007 0
—0.571 90

0.000028
—0.565 65

0.001 45
—0.542 45

0.003 1
—0.535 285

0.00001
—0.514 86

0.000015
—0.503 2

0.000 5
0.501 8
0.001 2

onance parameters for the 'P'(4) state as E„= —0.542 386 5+ 1 X 10 Ry, and I /2 =0.002 895 9+ 1

X10 Ry. The 'P'(5) would lie at E„=—0.53528800
+1X10 Ry with I /2=2. 2679X10 +1X10 Ry.
The 'P'(6) state is determined as E„=—0.514864 5+1
X10 R.y and I /2=2. 17X10 5+1X10 Ry, and the
'P'(7) state as E„=—0.503 157+2X10 Ry and I /2
=5.20X10 +2X10 Ry. In Table V we show results
for the 'P'(8), 'P'(9), and 'P'(10) resonances. The quan-

turn numbers of these states are 1135, 0035, and —2034,
respectively. For all three resonances we use the opti-
mized nonlinear parameters a=0.4 and 0=0.30. In or-
der to have a better estimate on the errors for the reso-
nance parameters, we extend the calculation to co=18
and M = 1330 terms. Resonance parameters are
determined for 'P'(8) as E„=—0.50155 +1X10 Ry
and I /2=0. 001 30+1X10 Ry for 'P'(9) as E„

TABLE VII. Comparison of 3s3p 'P' resonance with other theoretical calculations.

E„(Ry)

—0.671 251 8
—0.670
—0.668 5
—0.671 388
—0.670 7
—0.675 8
—0.675 58
—0.671 14
—0.669 27
—0.670 766

—(Ry)
r
2

0.007 023 6
0.006 95
0.005 48

0.006 6

0.007 04
0.004 20
0.006 763

Reference

Ho (1991)'
Wakid and Callaway (1980)
Senashenko and Wague (1979)'
Nicolaides and Komninos (1987)
Hayes and Scott (1988)'
Koyoma, Takafuji, and Matsuzawa (1989)'
Sadeghpour (1990)
Gershacher and Broad (1990)"
Wu and Xi (1990)'
Moccia and Spizzo (1991)'

'Complex-rotation, 1140-term Hylleraas, present calculation.
bAlgebraic close coupling [14].' Reference [39].
dMulticontigurational Hartree-Fock calculation [23].
'R-matrix calculation [15].
'Adiabatic potential curves [21].
sAdiabatic potential curves [22].
"L technique with Sturmian functions [19].
'Feshbach saddle-point technique [17].
'K-matrix L basis-set calculation [20].
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= —0.496448 8+5X 10 Ry and I /2=1. 07X10 +5
X 10 Ry, and for 1P'(10), E„=—0.491 035 30 +1
X10 Ry and I /2=1. 36X10 +1X10 Ry.

In Table VI we summarize the lowest ten 'P' reso-
nances in the present calculation and compare them with
those obtained in the earlier complex-rotation calcula-
tion. It is seen that the resonance positions reported in
Ref. [13] are very good. The present calculation does
provide an improvement for the widths for the 'P'(2),
'P'(4), 'P'(5), 'P'(6) resonances. Furthermore, with the
small errors estimated in the present work, our results
can be considered as standard nonrelativistic resonance
parameters. It is noted that for the 2s2p 'P' state, the
relativistic elf'ects would lower the nonrelativistic reso-
nance position by 5.2X10 Ry [27]. In Table VII we
compare our 3s3p 'P' state with other recent calcula-
tions. It is seen that the results obtained by Gershacher
and Broad [19],who used an L technique with Sturmian
functions, agree best with out values.

For higher-lying states [for 'P'(ll) to 'P'(2l)] we use
separable wave functions such as products of Slater orbit-
als. Table VIII shows the parameters used to construct
the two-electron wave functions. A11 the nonlinear pa-
rameters are then multiplied by a constant scaling factor
a'. Resonance parameters are deduced by the stabiliza-
tion conditions with respect to the changes of a' and of 0.
For example, for the 'P'(l l) state, the resonance energy
exhibits the most stabilized behavior when a'=0. 5 and
49=0.2. No error estimates are however made for the
higher-lying resonances.

In Table IX we compare our results with experimental
observations. In converting our results into eV, the re-
duced rydberg 1 Ry = 13.603 876 eV, and the ground-
state energy of E = —5.807448 75 Ry are used. It is seen
that the recent measurements [7—10] for the widths of
the 1133 state (ranging from 0.178 to 0.2 eV) are much
closer to the present theoretical value of 0.1911 eV than
the earlier experimental [4] value of 0. 132+0.014 eV. It

TABLE VIII. Parameters used in the Slater-orbital basis.

0
1

2
3
4
5
6
7
0

2
3
0
1

2
3

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.5
0.5
0.5
0.5
0.25
0.25
0.25
0.25

1

2
3

5

6
7
1

2
3
4
1

2
3
4

1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.5
0.5
0.5
0.5
0.25
0.25
0.25
0.25

1.0
1.0
1.0
1.0
1.0
1.0
0.5
0.5
0.5
0.5
0.25
0.25
0.25

1.0
1.0
1.0
1.0
1.0
0.5
0.5
0.5
O.S

0.25
0.25
0.25
0.25

l=4 I=S

1.0
1.0
1.0
1.0
1.0
1.0
0.5
0.5
0.25
0.25

1.0
1.0
1.0
1.0
1.0
0.5
0.5
0.25
0.25

1.0
1.0
1.0
1.0
0.5
0.5
0.25
0.25

1.0
1.0
0.5
0.5
0.25
0.25

I =10

1.0
0.5
0.25

1.0
0.5

10 1.0
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is also noted that the experimental widths for the —1133
state are substantially larger than those of the theoretical
values. For example, the results from the Wisconsin ex-
periment [7] (0.07 eV) and the DSRS experiment [11]
(0.073+0.015 eV) are much larger than the results from
the present calculation (0.039 eV), the nine-state algebraic
close-coupling calculation [14] (0.030 eV), and the recent
l. basis set calculation [20] (0.0374 eV). Such a
discrepancy between theory and experiment has yet to be
resolved.

Table X summarizes our results for all the resonances
we have calculated between the N =2 and N =3 thresh-
olds of He+. We are able to locate six members for the
113n series, with 3 n (8, four members for the —113n
series with 3(n ~6. We have also determined parame-
ters for four members in the 203n series, 4(n ~ 7, four
members in the 003n series, 4 (n (7, and three members
in the —203n series, with 4(n (6. In Table X we also

compare the recent results by Moccia and Spizzo [20]
who carried out a E-matrix I. basis set calculation. In
general their results agree reasonably well with ours.
Their widths for the 113n series differ from our results
ranging from 4%%uo for the 1133 state to 25%%uo for the 1135
state. The agreements for the —113n, 203n, and the 003n
series are very good. Their widths for the —203n series,
however, differ substantially with ours. Furthermore, as
they have mentioned in Ref. [20], their width for the—2035 state has a larger value than that of —2034, in
contrast to what might expect of that for a Rydberg
series.

In Table X we also compare results obtained by Solo-
monson, Carter, and Kelly [16], who carried out a nine-
channel many-body perturbation calculation. They have
obtained widths for the 203n, 003n, and —203n series.
While their results for the 203n series are reasonably ac-
curate, the 003n results are almost double our values and

TABLE IX. Comparison of the present calculations with experimental observations for the 'P' reso-
nance states in He.

KTNn

1133

1134

1135

1136

1138

—1113

'Present calculation.
bNBS-I (1973) [4].
'Wisconsin (1982) [7].
SSRL (1987) [8].

'BESSY (1988) [9].
"DSRS (1989) [11].

E, (eV)

69.8722
69.919+0.007
69.917+0.012
69.917+0.012
69.914+0.015
69.880+0.022

71.625
71.66+0.01

71.601+0.018
71.625

72.181
72.20+0.01

72, 181+0.015
72.174

72.448
72.47+0.011
72.453+0.011

72.423

72.600
72.61

72.59+0.01
72.561

72.696
72.70

72.67+0.01
72.640

71.3086
71.30+0.04

71.261+0.030

I (eV)

0.1911
0.132+0.014
0.178+0.012
0.178+0.012
0.200+0.020
0.180+0.015

0.0788

0.096+0.015

0.0354

0.067+0.015

0.0207

0.038+0.015

0.0133

0.007 78

0.0398
0.07

0.073+0.015

Reference
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those of Ref. [20]. Their widths for the —203n series are
almost 20 times larger than the present calculation. Wu
and Xi [17] also calculated resonances in this energy re-

gion by using a saddle-point complex-rotation method.
However, except for the lowest 3s3p 'P' state, these au-

thors did not calculate the widths for the A =3 reso-
nances.

Finally, we ~ention that although we use the notations
of %Tan to classify the 'P' resonances, there also exist
other classification schemes to describe such states in the

TABLE X. Doubly excited 'P' resonances between the X=2 and 1V =3 thresholds of He+.

1133
1134
1135
1136
1137
1138

—1133
—1134
—1135
—1136

2034
2035
2036
2037

0034
0035
0036
0037

—2034
—2035
—2036

Present

—0.671251 8
—0.542386 5
—0.501 552
—0.481 89
—0.470 75
—0.463 705

—0.565 657 94
—0.503 157
—0.481 69
—0.47048
—0.571 901 48
—0.514 864 5
—0.488 82
—0.474 87

—0.535 288 00
—0.496 448 8
—0.478 58
—0.468 866

—0.491 035 30
—0.476 12
—0.467 32

Wave functions
used

z (Ry)
Hylleraas
Hylleraas
Hylleraas
Slater
Slater
Slater

Hylleraas
Hylleraas
Slater
Slater

Hylleraas
Hylleraas
Slater
Slater

Hylleraas
Hylleraas
Slater
Slater

Hylleraas
Slater
Slater

Ref. [20]

—0.670 766
—0.541 547
—0.501 117
—0.481 535
—0.470 582
—0.463 805

—0.564 834
—0.502 293
—0.481 211

—0.571 744
—0.417 604
—0.488 790
—0.474 860

—0.534 637
—0.496 214
—0.478 484

—0.490 282
—0.475 853

Ref. [16]

—0.571 479
—0.514 878
—0.488 790
—0.474 882

—0.533 623
—0.495 839
—0.478 271 1

—0.488 893
—0.474 735

1133
1134
1135
1136
1137
1138

—1133
—1134
—1135
—1136

2034
2035
2036
2037

0034
0035
0036
0037

—2034
—2035
—2036

0.007 023 6
0.002 895 9
0.001 30
0.000 76
0.000 49
0.000286

0.001 462 08
0.000 520
0.000219
0.000 097

3.049 x 10-'
2.17x 10-'
1.3 X 10
8x 1O-'

2.2679 X 10
1.07 x 10-'
5.8 X 10
2.6x10-'
1.36 x 10-'

&1.0X10 '
(1.0X10 '

—(Ry)
I
2

0.006 763
0.003 006 5

0.001 069
0.000 742

0.001 375
0.000 668 9
0.000 218 7

3.216X 10
2.187 X 10
1.3195x 10 '
8.306 X 10

2.146x 10-'
1.011 X 10
6.8X 10

5.55 X 10
1.85 x 10-'

3.326 X 10
2.176X 10
1.323 X 10
8.085 X 10

4.263 x 10-'
2.025 X 10
1.099 X 10

3.271 X 10
2.286 X 10
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TABLE XI. Different classifications for 'I" states below the N =3 He+ threshold.

ETNn

113n
—113n
203n
003n

—203n

Ref. [40]

(3,na)
(3, b)
(3,nc)
{3,nd)
(3,ne)

Approximate mixings

(3snp + ns 3p)+ (3pnd +np 3d)
(3snp +ns3p) —(3dnf +np3d)
(3snp —ns 3p) + (3pnd —np 3d)

(3pnd np—3d)+(3snp ns3—p)+ 3dnf
(3pnd —3dnf )

Lowest n

literature. In Table XI, we list these schemes as well as
the dominate configurations for these resonances.

In summary, we have carried out an elaborate calcula-
tion for doubly excited 'I" resonant states in He between
the X =2 and X =3 He+ thresholds. Using a method of
complex-coordinate rotation, a total of 21 resonances are
reported. Our accurate results are useful references for
experimental investigations and can also provide access-
ment of merits for other theoretical calculations.
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