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Quadrupole moments as measures of electron correlation in two-electron atoms
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We have calculated quadrupole moments, Q„, of helium in several of its doubly excited states and in
two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their
ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-
interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions
and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments
calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model,
which has been used to describe the eftects of electron correlation in these two-electron and pseudo-two-
electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity
of the independent-particle model. In addition to their predictive use and their application to testing
simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable
information about the electronic structure of these atoms. Experimental methods by which these quad-
rupole moments might be measured are also discussed. The quadrupole moments computed from CI
wave functions are presented as predictions; measurements of Q„have been made for only two singly ex-
cited Rydberg states of He, and a value of Q„has been computed previously for only one of the states re-
ported here. We present these results in the hope of stimulating others to measure some of these quadru-
pole moments.

PACS number(s): 31.20.Tz, 31.90.+s, 32.90.+a

I. INTRODUCTION

Since the observation of highly mixed 'I" channels in
doubly excited helium (He**) by Madden and Codling in
1963 [1,2], there has been a great deal of interest in elec-
tron correlation in two-electron atoms. Much of this in-
terest has focused on theoretical models and physical in-
terpretations of that correlation; some attention has been
paid to observable manifestations but perhaps not as
much as modern experimental methods permit. Here, we
discuss one property, the atomic quadrupole moment,
which can be treated as both an observable and as a cri-
terion for the relative validity of competitive models. %'e
present values of the quadrupole moments of a number of
states of helium and of the alkaline-earth elements calcu-
lated from three kinds of wave functions: a set believed
to be well converged and therefore reliable enough to
guide or even predict results of experiments; a set based
on the Hartree-Fock wave functions appropriate to an
independent-particle model of the valence electrons; and
a set of highly correlated, moleculelike wave function ap-
propriate to a collective model of the valence electrons.
The comparisons of values obtained from the extreme
models with the values from the well-converged functions
serve as tentative tests of the relative validity of those
models as interpretive tools. The values based on the
well-converged functions will, we hope, stimulate experi-
ments to measure atomic quadrupole moments whose
comparisons with all three kinds of computed values will
test the "accurate" values and put the validating tests of
the conceptual models on a firm footing.

Two approaches, the adiabatic hyperspherical model
[3] and the molecular model [4,5], have been used to

represent the dynamics of these highly correlated two-
electron and pseudo-two-electron systems. Here, we
focus on the molecular model that has recently been re-
viewed by Berry [6] and by Berry and Krause [7]. Atten-
tion first centered on the doubly excited states of helium
[8—10] but was later extended to the more experimentally
tractable ground and low-lying excited states of alkaline-
earth-metal atoms [11,12] and the alkali-metal negative
ions [13]. This model, while based on well-converged
variational wave functions, interprets the two-electron,
three-body, e-nucleus-e system as a "linear triatomic mol-
ecule" which undergoes rotational and vibrational
motion and that can be described by the rotational and
vibrational quantum numbers used to characterize mole-
cules. This molecular interpretation was first suggested
by Kellman and Herrick [4,5] when they showed that the
phenomenological classification they found that best
reproduces the observed the energy-level spacings in
He** can be made isomorphic to that of a linear triatom-
ic molecule.

Evidence in support of the molecular model has come
in several forms. One consists of the spatial probability
distributions calculated in the internal e-core-e coordi-
nate system from well-converged configuration-
interaction (CI) wave functions derived using frozen-core
pseudopotentials [12]. Graphic representations based on
reduced probability distributions revealed that two-
electron, three-body systems have "shapes, " i.e., spatial
distributions of conditional probability density, similar to
those of a floppy, linear triatomic molecule in its charac-
teristic rotational and vibrational modes. This earlier
evidence was chiefly qualitative; the evaluation of the
molecular model was then put on a quantitative footing
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by the calculation of the overlaps between the CI wave
functions and simple, optimized molecular rotor-vibrator
(RV) wave functions developed explicitly for the two-
electron atoms [14]. The squares of these overlaps were
generally greater than 90%%uo and gave a measure of the
varying degree of collective, molecular motion in states of
various symmetries of the different two-electron atoms.
For example, overlaps were generally very high for the
e'S' "ground rotor" state and the P' "bending" state,
but tended to be a little lower for 'S' and S' intershell
"symmetric and antisyrnmetric stretching" states and for
the 'P' "bending" state. More recently, oscillator
strengths for helium and the alkaline-earth-metal ele-
ments were calculated with the CI wave functions
developed earlier [15]. These were found to be in good
agreement with experimental oscillator strengths, and
thus confirmed that the pseudopotential-based CI wave
functions were of reliable accuracy. Furthermore, for the
purpose of comparison, oscillator strengths were also cal-
culated using the single-term molecular RV wave func-
tions developed for the two-electron atoms to test the va-
lidity of a collective model. These were compared with
calculated values based on all-electron Hartree-Fock
(HF) wave functions, which measured the validity of the
independent-particle model, as well as with values on the
CI wave functions. For most but by no means all of the
transitions, the RV oscillator strengths were in better
agreement with accurately calculated oscillator strengths
reported in the literature than were the HF oscillator
strengths.

In the present work, we calculate electric quadrupole
moments for doubly excited helium and the alkaline-
earth elements in their ground and low-lying excited
states. This calculation is analogous to the oscillator
strength calculation described above except that here we
compare our CI quadrupole moments to those calculated
with frozen-core, pseud opotential-based Hartree-Fock
wave functions while the CI oscillator strengths were
compared to those calculated with all-electron Hartree-
Fock wave functions. The quadrupole moment of a two-
electron system may well be expected to be a more sensi-
tive measure of the effects of correlation than the
predominantly one-electron property of oscillator
strength. Quadrupole moments have been used for many
years as probes of nuclear "shapes" [16] and have been
used to some extent to study spatial distributions of
charge in atoms and molecules, as described below.

Once again an observable that can be written as a
spherical tensor is calculated using well-converged CI
wave functions and, for the purpose of comparison, both
molecular RV wave functions and atomic HF wave func-
tions. Except in the case of the 2s2p P2 and P

&
states of

beryllium [17], there seem to be no previously computed
quadrupole moments for two-electron atoms calculated
using HF wave functions, and thus, we present our own
here. Once again, can compare an observable accurately
calculated with CI wave functions, to that calculated us-
ing two zeroth-order models, the independent-particle
model represented by HF quadrupole moments and the
molecular, collective model represented by RV quadru-
pole moments.

To estimate the accuracy of the CI quadrupole mo-
ments, we have developed CI wave functions for He
1s4p 4 P and 1s5p 5 P states and used them to calculate
quadrupole moments for these states. The large
difFerence in the two electrons' principal quantum num-
bers in these singly excited states leads to the expectation
that they should not be highly correlated, indeed, they
should be exemplars of independent particle motion.
However, these are, to our knowledge, the only excited
atomic states for which quadrupole moments have been
measured [18,19], and they thus allow us to compare two
of our CI quadrupole moments, which are calculated in
the same manner as all the others, with experimental re-
sults. Furthermore, to test the accuracy of the newly de-
rived CI wave functions for these singly excited helium
states, we have calculated oscillator strengths for the He
1s2s S'—+1s4p P' and 1s2s S'~1sSp P' transitions.
As Hunter and Berry did with oscillator strengths for
transitions between highly correlated states of two-
electron atoms, we compare our CI oscillator strengths
for these transitions to the accurately calculated oscilla-
tor strengths for them that are available in the literature
[20]. Thus, we are able to obtain an independent estimate
of the reliability of these two new CI wave functions
which, in this case, represent predominantly independent
particle motion.

Although we are not aware of any measurements of the
electric quadrupole moments of the highly correlated
states of helium and the alkaline-earth atoms, direct mea-
surements of electric quadrupole moments of similar sys-
tems have been made for some time. The first direct mea-
surement of a molecular, electric quadrupole moment
was reported in 1964 when the quadrupole moment of
CO2 was measured by Buckingham and Disch using opti-
cal birefringence [21]. Direct measurements of atomic
electric quadrupole moments began in 1967 when Angel,
Sandars, and %'oodgate measured the quadrupole mo-
ment of the P3/2 ground state of aluminum using atomic
beam magnetic resonance [22]. Miller and Freund made
the first direct measurement of the electric quadrupole
moment of an atom in an excited state in 1971 when they
determined the quadrupole moment of the 1s4p 4 P state
of helium using the diamagnetic Zeeman effect [18,19] as
earlier mentioned. The latter two experimental methods,
which were used on atoms, appear to be the most promis-
ing for measurement of the quadrupole moments calcu-
lated here and will be discussed further in Sec. III of this
paper.

In addition to serving as an observable that can test the
validity of the molecular model, the quadrupole moments
calculated using CI wave functions reveal previously una-
vailable quantitative and qualitative information about
the electronic structure of the atoms. The quadrupole
moment is a second rank tensor most commonly defined
by the equation

Q k
=

—,
' g q,.(3j,k, —r, 5,k) (j,k =x,y, z),

where the sum is over all the charges of the system and
the indices j and k denote the nine Cartesian components
of the tensor. [The quadrupole moment is sometimes



QUADRUPOLE MOMENTS AS MEASURES OF ELECTRON. . . 4147

defined by a slightly different equation that differs from
Eq. (1) by a factor of 2 or —2.] If the system of charges is
cylindrically symmetric, as is the case in a two-electron
atom, all off-diagonal components of the quadrupole mo-
ment tensor vanish in the principal-axis representation.
When combined with the fact that the quadrupole mo-
ment matrix is traceless, this means that there is only one
independent component of the quadrupole moment ten-
sor in a cylindrically symm'etric system. If the axis of cy-
lindrical symmetry is taken as the z axis as is the usual
convention, then the diagonal components of the quadru-
pole moment tensor are related: Q„=—2Q „=—2Q
In such cases, Q„ is usually referred to as the quadrupole
moment. Adaptation of Eq. (1) to a cylindrically sym-
metric quantum mechanical two-electron atom yields

2

(Q„)= —
—,'e g (3z,' —r,') . (2)

Equation (2) reveals that a negative atomic quadrupole
moment indicates a prolate electronic charge distribu-
tion, and a positive quadrupole moment indicates an ob-
late electronic charge distribution. Similarly, Eq. (2)
shows that the quadrupole moment of a spherically sym-
metric charge distribution must vanish.

Atomic quadrupole moments are characterized by the
total angular momentum J and by its projection on the
space-fixed z axis which is represented by the magnetic
quantum number MJ, i.e., the quadrupole moment is usu-
ally [22] given by

the quadrupole moments for MJ =2 and MJ = 1 are relat-
ed'

QJ=2, MJ=2

QJ =2,MJ =1

3[M~/&J(J +1)] —1

3[MJ/&J(J+ I)] —1

= —2.3[2/&2( 3 ) ] —1

3[1/&2(3) ] —1
(4)

The space-quantized angle above is not the same as the
expectation value of the polar angles that are arguments
of the spherical harmonics and that are discussed later in
this paper, for example in Eq. (17). The expectation
values of the cosines of the polar angles of any two
different MJ states are in the same ratio as the fixed an-
gles between the space-fixed z axis and the directions of
the total angular momenta for the same MJ states. The
above three constraints taken together yield the interest-
ing result that for any atomic state with J 2, within any
J state the quadrupole moments of all the M& states may
be written in terms of the quadrupole moment of any sin-
gle MJ state.

The organization of this paper is as follows. In Sec. II
we discuss the forms of the wave functions employed
here. In Sec. III we present the calculated quadrupole
moments together with the squares of the overlaps be-
tween the three sets of wave functions used, and then we
discuss the significance of these results as well as the most
promising experimental methods that might be used to
verify them.

2

(Q )= ——'e g (JMJ=J~3z, r, ~J&—MJ=J) . (3) II. WAVE FUNCTIONS FOR TWO-EI.ECTRON ATOMS

The mean quadrupole moment for any given state, that is
the sum of the quadrupole moments of states with
different magnetic quantum numbers divided by 2J+1,
must vanish. This is because the spherical average of any
tensor for J &0 must be zero, corresponding to an aver-
age spherically symmetric charge distribution. In addi-
tion, well-known symmetry rules dictate that only states
with J ~ 1 can have a nonvanishing quadrupole moment.
The nsn 'S' ground "rotor" states of the alkaline earths
and the ns(n +1)s 'S' excited "symmetric stretch" states
that have J=0 therefore must have zero quadrupole mo-
ments.

Two other constraints, based on the space quantization
inherent in the atom, relate the quadrupole moments of
the MJ states with the same total angular momentum Jof
a given atom to each other. The first such constraint is
that the quadrupole moments must be symmetric about
MJ =0 since it is the absolute value of the magnetic quan-
tum number that dictates the "shape" of the charge dis-
tribution. The second such constraint on quadrupole mo-
ments in the laboratory frame is that values for different
MJ states must be in the same ratio as the corresponding
values of 3 cos 0—1 where 0 is the space-quantized angle
between the space-fixed z axis and the direction of the to-
tal angular momentum. For a state in which both J and
M& are known, it is elementary to evaluate this quantity.
For example, for two states of an atom in which J =2,

A. Configuration-interaction (CI) wave functions

We use the CI wave functions of Ezra and Berry [9] for
helium and those of Krause and Berry [12] for alkaline-
earth-metal atoms. The alkaline-earth wave functions
were constructed by using the pseudopotentials of Bache-
let, Hamann, and Schliiter [23] for the electronic cores
which were assumed to be non-polarizable. The CI wave
functions are of the form

l, , n, , 12, n2

! I 0 1(rl)0 1(r2)+11( 1 2)

(5)

where the radial basis functions are Sturmian functions of
the form

Q„ I(r)=JVr" 'e &", n ) I

and the angular basis functions are coupled spherical har-
monics,

P& I (r„r21= g (l, m, 12m2lLM )
m&, m2

X Y11~1(81$1)YI2~2(82, $2) .

Here, A is an antisymmetrization operator, C is an ex-
pansion coefficient, and A is a normalization constant.
The quantum numbers have their usual meanings.
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B. Unrestricted Hartree-Fock (UHF) wave functions

The unrestricted Hartree-Fock wave functions used
here were derived by Batka and Berry [24] using unre-
stricted unrestricted Hartree-Pock open-shell theory. In
this theory, electrons are not restricted to being in pairs
in closed shells. This method generates less involved spa-
tial equations and tends to give a better variational ener-
gy than does the restricted open-shell Hartree-Fock
theory. The pseudopotentials of Bachelet, Hamann, and
Schliiter, which were used to generate CI wave functions
for the alkaline earths, were also used to generate the
UHF wave functions. The form of the UHF wave func-
tions is given by

+UHF ~ g C 0 I ( 1)0 1 (r2)+I 1 (rl r2)

brational frequency. The subscripts n and m are the
number of vibrational quanta in the two equivalent
"bonds. " J is the total angular momentum exclusive of
spin (equivalent to the atomic L) and M is its projection
on the space-fixed z axis; k is the vibrational angular
momentum about the body-fixed z' axis. 2)~k(aPy) is a
rotation matrix (in the convention of Brink and Satchler
[25]) whose arguments are the Euler angles which effect
the transformation from the space-fixed frame to the
body-fixed frame, m, is the mass of an electron, and r, is
the equilibrium electron-nucleus separation. A, is an an-
tisymmetrization operator, and L„(x) is an associated
Laguerre polynomial in the convention of Gradshteyn
and Ryzhik [26]. The A's are normalization constants.
As explained in Ref. [14], r„co 2and the Morse parame-
ters ~ and a were varied to maximize the overlap with the
atomic CI wave functions.

The quantities here are similar to those in Eq. (5) except
that the radial basis functions are Slater-type orbitals
(STD's) of the form

(2$/ao)
(b 1(r)= r" 'e

[(2 )1]in

The angular functions are again coupled spherical har-
monics. An important difference between the CI and
UHF wave functions is that the UHF wave functions
contain only one angular function.

C. Molecular rotor-vibrator (RV) wave functions

Quadrupole moments are also calculated using Morse
local-mode molecular wave functions [14] that were ex-
plicitly derived for helium and the alkaline earth atoms.
They are the wave functions that were found by Hunter
and Berry to maximize the overlap with the atomic CI
wave functions. They are of the form

III. RKSUI.TS AND DISCUSSION

The expectation value (z, ) is given by

&.,') =&JM, =J~r,2cos2e, ~~M, =J) . (17)

For CI and UHF calculations in which the wave func-
tions are written in terms of the electrons' polar and az-
imuthal angles, the quadrupole moment may be con-
structed from this and (r ) or the quadrupole moment
may be calculated directly. The latter is, of course, com-
putationa11y more efficient but sacrifices some, however
slight, insight into the "geometric" structure of the atom.
To calculate the quadrupole moment with the RV wave
functions, we wrote the operator first in terms of body-
fixed coordinates since the molecular wave functions are
written in terms of these and as a spherical tensor opera-
tor. Then, in the usual way [27], we summed over all the
projections of the spherical tensor to rotate from body-
fixed frame to space-fixed frame. Thus,

1 + k 2J+1
+Rv ~ + (rl r2) (~12)

P'i I'p 8~

X&M'k(~A'» (10)

where

R„—(ri, r2) =
—,'(2 —5„)' [g„(ri )g (r2)

+g (ri)g„(r2)],

g (r)=JVe ' z L (z),
—a(r —r, )

z =Ke

(12)

(13)

b =~—2n —1,
2/p

(~12) ~P2 e L(
2
—~k~)/2(P2)

1/2

(14)

me Q)2
(vr 9,2)r, . —

Here, vz is the number of quanta in the doubly degen-
erate bending mode, p2 is the corresponding dimension-
less normal coordinate, and ~2 is the corresponding vi-

Q =o= g& *=o, (& P r)Q (ri r2 ~12)
q

Table I lists calculated values for ( Q„), (z, ), and (r, )
in the space-fixed frame using CI, UHF, and RV wave
functions. The squared overlaps between the accurate CI
and the UHF wave functions, Sc, UH„= ~(CI~UHF) ~2,

the squared overlaps between the accurate CI and the RV
wave functions, SRv c, =~(CI~RV)

~
(taken from Ref.

[14]),and the squared overlaps between the RV and UHF
wave functions, SRv UH„= ( (RV~UHF) ~

are also listed.
As discussed in Sec. I, the quadrupole moments of all
states having J =0 vanish in the space-fixed frame.

Figures 1 —4 are scatter plots of quadrupole moments
for the four I' and D series which have nonvanishing
quadrupole moments. Note that Ba configurations do
not fit the npnp description due to mixing with the 6s5d
configuration. In Fig. 1, the quadrupole moments appear
to increase, generally, with increasing atomic mass. How-
ever this could be serendipitous since no such pattern is
apparent in Figs. 2 —4.

On the basis of the values in Table I, what can be said
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TABLE I. Space-fixed quadrupole moments (g„), and their components as calculated with CI, UHF, and RV wave functions.
All calculations are for J=J,„,MJ =J states; see discussion in text regarding quadrupole moments of other states.

State

&g„)

(r', )

&g„)
(z')

CI

2.622
3.233

12.32

5.015
2.498

12.51

UHF

He ZsZp P2

He 2p2p 'Dz

3.026
3.308

12.95

3.871
2.973

12.79

State

(g., )
(z')
&ri)

&g„&
(z', &

(r', )

CI

6.121
5.233

21.82

1.727
3.744

12.96

UHF

Ca 4s4p 'P2
6.630
5.210

22.26

Ca 4s3d 'D2

5.324
5.375

21.45

5.676
2.565

13.37

&g„&
He 2s2p P~

0.6929
4.456

14.06

1.656
4.275

14.48

(g„&

(r', &

4.919
6.710

25.05

Ca 4s4p 'P;
6.630
6.003

24.64

1.988
7.254

23.75

&g„&
&z')
&r', )

—2.357
4.716

11.79

He 2p2p 'P2
—2.365

4.732
11.83

&g„)
(z'&

Ca 4p4p P2—5.215 —5.642
10.43 11.28
26.07 28.21

—5.236
10.47
26.18

&g„)

(ri &

&g„&

(r', )

2.140
2.137
8.551

5.795
2.458

13.17

2.783
3.149

12.23

Be Zs2p 'P2

Be 2p2p 'D,

Be Zs2p 'P;

1.833
2.168
8.336

1.919
2.280
8.759

4.219
2.704

12.33

1.538
3.231

11.23

(g„&

&r', )

&g„)

&g„&
&z', )

6.419
5.647

23.36

4.617
5.081

19.86

2.873
6.949

23.72

Sr 5s5p P2
6.080
6.400

25.28

Sr 5s4d 'Dz

Sr 5s5p 'P;

6.008
5.791

23.38

8.749
5.791

23.85

1.366
7.498

23.86

&g„&

(r', )

Be Zp2p'P;
—2.073 —2.042

4.144 4.084
10.36 10.21

—2.076
4.152

10.38

&g„&
(zi )
(r', )

—4.744
9.488

23.72

Sr 5p5p'P, —4.879
9.756

24.39

(g„&
(z', &

(ri)

&g„)
(z', )
(r', )

&g„&
(z')
(r', )

3.972
3.423

14.24

14.74
5.200

30.34

5.174
4.812

19.61

Mg 3s3p 'P2

Mg 3s3d 'Dz

Mg 3s3p 'P;

3.212
3.523

13.78

9.194
4.545

22.83

2.199
5.080

17.44

&g„)

(g„)
(zi&
&ri)

(g„)
(r', &

8.792
7.216

30.44

2.015
6.658

21.99

2.860
9.197

30.45

Ba 6s6p 'P~

Ba 6s5d 'D2

Ba 6s6p 'P)

8.636
7.161

30.12

9.537
4.561

23.22

0.4626
9.862

30.05

&g„)

(r'i &

Mg 3p3p'P2—3.622 —3.428
8.451 6.856

18.11 17.14

—3.616
8.437

18.08

(g„)
(zi )

Ba 5d5d P'
—4.136

8.272
20.68

—4.332
8.664

21.66
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FIG. I. Quadrupole moments of He** and the alkaline-earth
atoms for the nsnp P2 series based on well-converged CI wave
functions. Quadrupole moments are in units of ea 20.

FIG. 3. Quadrupole moments of He and the alkaline-earth
atoms for the nsnp 'P& series based on well-converged CI wave
functions. Quadrupole moments are in units of ea 0.

about the relative validity of the UHF and RV approxi-
mate representations of atomic quadrupoles7 Statistical-
ly, there is not a great deal to favor one approximation
over the other. The coefficient of correlation (R value) is
0.833 for the RV and 0.918 for the UHF treatments of
the alkaline-earth atoms. The corresponding standard er-
rors of the estimates are 2.707 and 2.657, respectively.
The UHF approximation is consistently better in
representing the quadrupole moments of D states than is
the RV but the RV tends to do better with the P states.
Both models represent the P' quadrupoles, the only
states with negative values, quite well, but it was previ-
ously known that these states are well described by both
models. The RV approximation does consistently
represent the expectation values of (z; ) better than does

the UHF for S states, but quadrupole moments will not
show this of course; some other measure of the spatial
distribution of the electron probability density will be re-
quired to probe this property. The UHF, except in the
case of Be, overestimates the quadrupole moment of the
'P' resonance levels and the RV underestimates them.
On balance, the implication is that the RV model is a
better zeroth approximation for the S and P states but
the UHF is better for the D states. From this, we might
make the tentative supposition that correlation is
significantly more important in determining the spatial
distribution of the electron probability in S and P states
than in D states. However, our sample of D states is
small, and our comparisons here are with theoretical
rather than experimental values. We may hope that some
of the predictions based on our CI calculations will soon

1 5.0 '
I

'
I

' '
T -2. 0 I I I

/

1 I I ~ I

~ ~0.0
O

5 ' 0

-2. 5

p -3.0
Q

-3.5

O
-4. 0

C5

U"

0.0
He Be Mg Ca Sr Ba

atom

-5.5 I I I I I

He Be
I I I l. I I I L I I I I

Mg Ca Sr
atom

I I I I I I I I

Ba

FIG. 2. Quadrupole moments of He** and the alkaline-earth
atoms for the npnp 'D2 series based on well-converged CI wave
functions. Quadrupole moments are in units of eao.

FIG. 4. Quadrupole moments of He" and the alkaline-earth
atoms for the npnp 'P2 series based on well-converged CI wave
functions. Quadrupole moments are in units of ea 0.



QUADRUPOLE MOMENTS AS MEASURES OF ELECTRON. . . 4151

be tested against measured quadrupole moments.
To our knowledge, of all the quadrupole moments

given in Table I, the literature contains calculated coun-
terparts for only the P2 and P& states of beryllium [17].
Sinanoglu and Beck [17]calculated a quadrupole moment
of 2.045 ea 0 for the P z state using non-closed-shell
Hartree-Fock or restricted Hartree-Fock (RHF) wave
functions. The same authors calculated a quadrupole
moment of 2.296 eao for the same state with wave func-
tions derived using the non-closed-shell many-electron
theory of atoms and molecules (NCMET) of Sinanoglu.
In the latter method, the wave function includes all of the
specifically non-closed-shell-type electron correlation
effects and is thought to be more accurate than the RHF
wave function. As seen in Table I, the CI wave functions
yield a quadrupole moment of 2.140 eao for the same
state which differs from the NCMET quadrupole mo-
ment by 7%. The RV wave function yields a quadrupole
moment of 1.919 ea~ which differs from the NCMET
quadrupole moment by 16%. The quadrupole moments
calculated using our pseudopotential-based UHF wave
function and using the all-electron RHF wave function of
Sinanoglu and Beck are 1.833 and 2.045 ea0, respectively,
which is a difference of 10%. Since we know of no mea-
sured values with which to compare any of the quadru-
pole moments in Table I and since the quadrupole mo-
ment is extremely sensitive to the wave function, we take
the above statistics as an indication that our calculational
procedure is indeed sound.

As discussed earlier, to estimate the accuracy of our re-
sults, we have also calculated CI quadrupole moments for
two very independent-particle-like, singly excited states
of helium since these are, to our knowledge, the only ex-
cited two-electron atomic states that have been character-
ized by measured quadrupole moments. These are the He
1s4p and 1s5p P' states. Additionally, we have calculat-
ed oscillator strengths for the He 1s2s S'—+1s4p P' and
He 1s2s S'—+1s5p P' transitions. As discussed earlier,
our purpose in doing this was to use the oscillator
strengths as a test of the wave functions, particularly for
the two P' singly excited helium states.

The parameters and energies characterizing the
relevant wave functions are listed in Table II. The exper-
imental energies are taken from Ref. [28]. In each of
these three cases, the difference between the experimental
energies and the calculated energies is less than 1 mRY.
The CI oscillator strengths for these transitions as well as

literature values for these oscillator strengths are given in
Table III. The literature values for these oscillator
strengths were calculated by Schiff; Pekeris, and Accad
[20] using wave functions having up to 364 terms. The
authors estimate that their S~ P oscillator strengths
are "accurate to within an error of not more than one, or
occasionally two, in the last digit quoted. " The CI quad-
rupole moments and measured quadrupole moments for
the He 1s4p and 1s5p P' are given in Table IV.

The strong agreement, greater than 99%, between the
CI oscillator strengths and the accurately calculated os-
cillator strengths of Schiff; Pekeris, and Accad [20] seems
to indicate that the singly excited helium wave functions
are of reliable accuracy. The difference between the ex-
perimental and calculated CI quadrupole moments of
roughly 14% for the 1s4p 4 P is consistent with the ran-
doin error reported by Miller and Freund [19]. The
larger discrepancy of 38% for the lsd 5 P state is well

outside their random error. However, in their paper on
the topic, Miller and Freund warn that a possible source
of error might lie in the existence of an electric field, ei-
ther static or microwave, in the interaction zone. In par-
ticular, stray electric fields would make the apparent
quadrupole moments too large, which is the direction in
which our quadrupole moments differ from theirs [29].

Extensions of the two earlier-mentioned experimental
techniques that have been used to measure quadrupole
moments of atoms in their ground and excited states may
make possible the measurement of many of the quadru-
pole moments given in Table I. First, Miller and
Freund's aforementioned measurement of quadrupole
moments of helium using the diamagnetic Zeeman effect
is given in Table IV. The transition frequencies between
Zeeman levels of n P, where n =4 or 5, of fine-structure
states are induced using microwave radiation and are
detected through the resulting change in polarization of
the n P~2 S fluorescence. A'd, the effective Hamiltoni-
an for the diamagnetic Zeeman interaction within a given
electronic state, can be written in terms of two parts, one
that is dependent on the isotropic diamagnetic suscepti-
bility yI, and one that is dependent on the anisotropic di-
amagnetic susceptibility y~. The contribution to &d
from the anisotropic part gives zero when averaged over
all projections whereas the contribution to &d from the
isotropic part is independent of the projection of the an-
gular momentum along the magnetic field. The aniso-
tropic diamagnetic susceptibility is related to the quadru-

TABLE II. Energies and parameters characterizing CI wave functions for helium singly excited P
states that have measured quadrupole moments and for the He 182s S' state. For these states, one ex-
ponent was used for the l =0 angular basis functions and another was used for all the others. All ener-
gies are given in rydbergs.

State

He 1s4p P'
He 1s5p P'
He 1s2s 5'

Number of
basis functions

76
76
41

kl =0

1.47
1.47
0.880

ki)0

0.341
0.244
1.00

—E (calc.)

—4.064 08
—4.040 12
—4.349 87

—E (expt. )

—4.064 07
—4.040 53
—4.349 90



4152 SANDRA C. CERAUI 0 AND R. STEPHEN BERRY

Transition fik, CI

TABLE III. Oscillator strengths calculated using CI wave

functions and those accurately calculated in Ref. [19].
TABLE IV. Quadrupole moments calculated using CI wave

functions and those measured in Ref. [18]. All quadrupole mo-

ments are given in atomic units of eao.

He 1s2s S'~ls4p I"
He 1s2s S'~1s5p I"

0.025 78
0.012 6

0.025 77
0.012 5

State

He 1s4p I"
He ls5p 'I"

Q„,ci
—210
—473

Qzz, Ref. [18]

—289+45
—705+45

pole moment as defined by Eq. (1) by

«,M, =Llg., IL,M, =L &

= [ —8mc L (2L —1)]Pi/e)y„, (19)

where y„ is expressed in Hz/G . From Eq. (19) it is ob-
vious that knowledge of g„ leads directly to Q„.

The second experimental method that has been used to
measure atomic quadrupole moments is atomic beam
magnetic resonance. Angel, Sandars, and Pierce used
this method to measure the quadrupole moment of the

P3/2 ground state of aluminum in 1967; this was the first
experimentally determined atomic quadrupole moment.
Later, Sandars and Stewart [30] used the same method to
measure the quadrupole moments of the metastable I'z
states of the rare gases Ne, Ar, Kr, and Xe. In these ex-
periments, an atomic beam apparatus was set to observe a
specific Zeeman transition in a magnetic field that was
large enough to form the axis of quantization. Under this
condition, the energy of a Zeeman sublevel is given by

3MJ —J (J+1)
2J(J —1)

3M' —J(J+1)
4J(2J —1)

(3E, F. ) g~poM—J(v X—E), .

(20)

The first term is the magnetic interaction, with gJ being
the g factor and po the Bohr magneton. The second is
the quadrupole interaction containing the quadrupole
moment, the third is the quadratic Stark splitting, and
the fourth is the interaction between the magnetic mo-
ment of the atom and the magnetic field it experiences as
it moves with velocity v through the electric field E.

The basic difficulty in the experiment is that the quad-
rupole interaction must be separated from the larger
quadratic Stark eAect and the v XE eAect. The quadru-
pole interaction can be distinguished from the quadratic
Stark eII'ect because, upon reversing the direction of the
electric field, the sign of the quadrupole interaction
changes but that of the quadratic Stark term remains un-
changed. The quadrupole term can be distinguished from
the v XE term by reversing the direction of the magnetic
field which changes the sign of the v XE term but leaves
the quadrupole interaction term unchanged.

Whatever the physical methods used, the point is clear:
it is now possible to learn a great deal about atoms by
measuring or calculating for them a physical constant
characteristic of molecules and nucleii.
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