PHYSICAL REVIEW A

VOLUME 44, NUMBER 7

1 OCTOBER 1991

States of a dynamically driven spin. I. Quantum-mechanical model

L. E. Ballentine
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V54 1S6
(Received 20 May 1991)

“Dynamical driving” means driving a system by another dynamical system, in contrast to driving by
an external force (which acts on the system but is not acted upon by the system). The model consists of a
localized spin driven by a polarized beam of spins. A remarkably complex variety of behaviors is possi-
ble as a result of the competition between the aligning effect of interaction with the beam and the preces-
sion due to the external magnetic field. The state of the localized spin can evolve from pure to mixed, or
from mixed to pure, and its motion is characterized by an attractor. The final state of the driven spin is
usually independent of its initial state, so the model provides an example of quantum-state preparation.
These effects cannot be produced by a prescribed external force.

PACS number(s): 03.65.—w, 05.45.+b

I. INTRODUCTION

The concept of dynamical driving is best defined by
contrasting it with driving by an external force. In the
latter case the Hamiltonian has the form H =H,+ V (¢),
where H, is the Hamiltonian of the undriven system, and
V(t) is the potential of a prescribed driving force. Al-
though the behavior of a system driven by an external
force can be very interesting (the periodically kicked ro-
tor being the most extensively studied example), it has
definite limitations. The motion of such a system can
have no attractors. In the case of a quantum system,
pure states can evolve only into pure states, and initially
nearby states must always remain nearby. That is to say,
if |4,(0)) and |9,(0)) are two initial states such that
|{1,(0)|4,(0))|=1—¢, then at any later time ¢ we will
also have |{4,(#)|4,(¢))| =1—e. These limitations occur
because the external force V' (¢) is not a dynamical sys-
tem; it acts on the object but is not acted upon by the ob-
ject.

However, dynamical driving, which is the driving of an
object by another dynamical system, is not subject to
such restrictions. The model considered in this series of
papers is shown schematically in Fig. 1. The object of in-
terest is a localized spin (of magnitude j,) driven by a po-
larized beam of spins (of magnitude j,). Both the object
(the localized spin) and the driver (the beam spins) are
dynamical systems. The object is now an open system,
whose motion can exhibit attractors. For the quantum
system, pure states may evolve into mixed states, and
mixed states may evolve into pure states. The classical
system (discussed in paper II of this series) can exhibit
stable attractors, limit cycles, basins of attraction, and
chaos. Unlike some theories of open systems, our model
involves no phenomenological dissipation [1] (friction or
viscosity terms), and no stochastic environment. The
complete system of object plus driver is a closed Hamil-
tonian system, and the great variety of behaviors that it
exhibits are all consequences of conservative dynamics.
The apparently irreversible motion of the state of the ob-
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ject towards an attractor is due to the chosen initial state
of the polarized beam.

II. MODEL

The model, shown in Fig. 1, consists of a localized spin
J1» a beam of spins j,, polarized in the y direction, and a
magnetic field B in the z direction. The beam can affect
the localized spin only by transferring angular momen-
tum to it, so the interaction tends to polarize the local-
ized spin in the y direction. The magnetic field rotates
any such polarization about the z axis. The competition
between these two effects is responsible for the rich
variety of behaviors exhibited by the model.

The beam particles interact, one at a time, with the lo-
calized spin. While the beam particle is in the interaction
region, for a duration 7, the Hamiltonian of the two in-
teracting spins is

H:a(sl'82)+B‘(S1+Sz) . (1)

It would be more realistic for the interaction strength to
depend on the separation between the particles, and
hence on time. For simplicity we take it to be constant,
a, when the beam particle is in the interaction region, and
zero outside of it. We also assume for simplicity that the

FIG. 1. The system: a localized spin j, is driven by a beam of
spins j,, polarized in the y direction, with an external magnetic
field in the z direction.
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arrival times of the beam particle are separated by exact-
ly 7, one particle leaving the interaction region when the
next one enters. The relaxation of these idealizations in
order to describe a realistic experiment would not present
much difficulty, but for the purposes of this paper it
would only be an unnecessary complication.

The effect of interaction with one beam particle is
given by the unitary time-development operator
U(r)=e H". (We set #=1.) The eigenvectors of H, and
of U(r), are the total-angular-momentum eigenvectors,
which are constructed from the single-particle spin eigen-
vectors by means of the familiar Clebsch-Gordan
coeflicients,

’J;M): 2 (j],jzamlym2|J’M)|j1’m1>®|j2’m2)‘

mpmy
(2)
The corresponding eigenvalues are given by
H|J,M)=E; \|J,M) , 3)
E;p=LalJ(J+1)—j (i +1)—j,(,+1]+BM . @4

The time-development operator is computed directly
from its eigenvalues and eigenvectors,

Ulr)= 3 exp(—itE ;) |J,M){J,M]| . (5)

ml,mz

The effect of one step of the process (a beam particle in at
time ¢, and out at time ¢ +7) on the state operator p is

pt +7)=U(r)p()U'(7) (6)
with
p(t)=p,()®p, . @)

Here p(t) is the initial state of the localized spin, and p,
is the initial state of the beam particle just before interac-
tion.

If we are interested only in the localized spin, discard-
ing the beam particle after interaction, it is sufficient to
consider only the partial state of the localized spin (also
called the reduced state),

pi(t+7)=Tr'%p(t +71) , ®)

obtained by taking a trace over the coordinates of the
beam particle. Using a matrix representation, we have

(alp(t+Dlb) =3 3 3 (aalUley Yclpy(1)ld)
a,Bey d,8
X{ylp,18)<ds|UbB)S, 4
=2Mab;cd(c|P1(t)|d) , 9)
c,d

where this equation implicitly defines M.

The effect of the beam on the partial state operator for
the localized spin is given by iteration of a linear mapping
of the form

pi(t+71)=Mp,(t), (10)

where the matrix M is a four-dimensional array and the
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vector p; is a two-dimensional array. The dynamics are
determined by the eigenvalues of M,

Mp,=Ap, . (11)

An eigenvector p, with A=1 describes a steady state.
An eigenvector with |A|<1 describes a decaying tran-
sient. (|A|>1 is impossible, since exponential growth
would lead to violation of Trp><1.) An oscillatory limit
cycle would occur if |A|=1, A¥1. This case has not
been observed, but there is as yet no proof whether it is
possible or impossible for the model. In all generic cases
(that is, excepting certain degenerate situations, to be de-
scribed shortly) it has been found that there is exactly one
eigenvalue A=1, all others satisfying |A| <1, so the sys-
tem goes to a unique final steady state.

Since the two terms of the Hamiltonian (1) are commu-
tative, it is permissible to treat effects of the interaction
and the magnetic field separately, even though they really
act simultaneously. This does not affect the mathemati-
cal analysis, but it can facilitate qualitative reasoning
about the model. The effect of the magnetic field during
one interaction period is to rotate all spins about the z
axis through an angle Br. The separation between ener-
gy eigenvalues (4) corresponding to different values of to-
tal angular momentum J is

E;pm—E;_\y=al . (12)

If the state is represented in terms of the total-angular-
momentum basis vectors, the effect of the interaction will
be to introduce a relative phase shift of magnitude aJr
between the J and J —1 components. If one of these
phase shifts is a multiple of 27, then two parts of the vec-
tor space might not be coupled by the interaction. This
degenerate situation can give rise to a nonunique final
state.

Because the effect of the interaction scales with J, it is
convenient to introduce the parameter

A'=a(j,+]j,) . (13)

This is the largest of the spacings (12); it is the only spac-
ing if the beam spin j, is +. When comparing models
having different values of j, it is appropriate to consider
equal values of A’, rather than equal values of a. If we
choose units such that r=1 (and #=1), then B, a, and 4’

will all be measured in radians.

III. RESULTS

The state p,(¢) of the localized spin has always been
found to converge to a steady state after interaction with
sufficiently many beam particles, that is, after sufficiently
many interactions of the form (10). It is neither practical
nor informative to present the full steady-state density
matrix, so two more useful quantities have been comput-
ed: the normalized polarization, p=(S,) /j; and a purity
index for the state, Tr(p;)%. A normalized state operator
satisfies the conditions Trp=1 and Trp* < 1, with Trp*=
if and only if p is a pure state. Thus the quantity Trp?
can be regarded as a measure of the degree of purity or
mixedness of the state. The normalized polarization vec-
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tor p lies inside or on the surface of the unit sphere. One
can have |p|=1 only for a pure state, but for j, >1 the
state is not fully determined by p and there are pure
states that do not satisfy |p|=1.

The results are invariant under each of the following
discrete symmetries:

(i) B>—B, S,—>—S8,,S5,——85,;
(ii) a—>—a, S,——S, .

The former follows from the fact that (i) leaves invari-
ant the Hamiltonian, the spin commutation relations, and
the initial state of the beam. The transformation (ii)
changes H into —H. This is equivalent to a time inver-
sion, t — —t, which does not affect the steady states. If
the initial state of the localized spin is chosen to be in-
variant under one of these symmetries, then the entire
evolution of the state will be invariant. The final steady
state will be invariant, regardless of the initial state, so
only results for positive values of @ and B need be
presented.

A. j2=%

In this case there are only two values of total angular
momentum, J=j,+1 and J=j,—1, and the spacing
(12) between the corresponding energy eigenvalues is A'.
Hence the results are periodic in A’, with period 27
(using units 7i=1, 7=1).

Figure 2 shows the normalized polarization p in the
final steady state for a localized spin j; =3, as a function
of A’ and B. For B =0 the spin becomes fully polarized
along the positive Y axis, regardless of the interaction
strength. As one increases B for fixed A4’, the fixed point
moves along a planar arc, ending somewhere on the nega-
tive Y axis for B =m. [The natural range of B is from
— to +, but only positive values are shown because of
the symmetry (i).] For A4'=1, the vector p lies in the
plane Z =0, and the locus of fixed points is a semicircle

A'=1/2

A'=311/4
B=0
'\
0.57] ™
7 0 ™
A'=1 /0'5— ™~
1 )>
5 *

A'=311/2

=1

3
Along each curve of constant A’, B varies from O to 7 in steps
of 0.27.

FIG. 2. Loci of the fixed-point polarization for j, =1, j,
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of unit radius. The curve for 4A'=37/2 is a mirror im-
age in the Z =0 plane of the curve for 4’=m/2. This is
so because of the symmetry (ii) and the fact that
A'=37/2is equivalent to 4'=—/2.

Figure 3 shows p at the fixed points for a localized spin
Jj1=1. For this and larger values of j; the curves of con-
stant 4’ do not lie in a plane, as can be seen from their
shadows on the sides of the box. The exception is the
curve for A'=s, which lies in the plane Z =0 for all
values of j;, provided j, =1.

It is apparent from the kink in the curve 4'=, that
something peculiar happens at the larger values of B,
near the negative Y axis. Figure 4 shows this also for
Jj1=% and 2, and it persists for larger values of j;. The
phenomenon can be seen more clearly in Figs. 5-38,
where the magnitude of the polarization p =|p| and the
purity index Tr(p,)? are plotted as functions of B. In all
cases we see that the state remains highly polarized and
nearly pure for small values of B, but the polarization de-
clines drastically for larger B values. This decline be-
comes more abrupt as j; increases. But for j,>1, the
state becomes partially repolarized as B-—#. For half
odd-integer values of j, it returns at B =1 to a pure state
corresponding to the eigenvector lSy =—1 ).

This unexpected return to a pure state has a simple ex-
planation. The total-angular-momentum states |J,M )
have the following form for M =0:

|Jl+%)0):(|][7%>® l%’ _%>+|‘11’_%
=40y =(j, DelL,—L)—|j,—+L
(Here we use eigenvectors of the y component of angular
momentum.) At the fixed point, the state of the localized
spin and a newly arrived beam particle will be

The effect of the interaction is to shift the relative phase
of these two terms by A’'r=m, changing the state into

FIG. 3. Loci of the fixed-point polarization for j, =1, j,= %
The curves, from highest to lowest, correspond to A'=w/4,
7/2, and 7. From right to left along each curve, B varies from
0 to 7 in steps of 0.17r. (Shadows on the sides of the box help to
visualize the three-dimensional shapes of the curves.)
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FIG. 5. Magnitude of the normalized polarization p and state
purity index Trp? as functions of B, for j, =1, j,=1, A'=m.
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FIG. 6. Similar to Fig. 5 for j, =3.
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FIG. 8. Similar to Fig. 5 for j, =3.
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li;,4)®]L,—1). The magnetic field then rotates the
spin through the angle Br=1, so that the localized spin
state returns to the fixed point, |j, -1 ). No such pure-
state fixed point is available if j, is an integer, but the nu-
merical results show that the system makes its “best
effort” to achieve a similar polarization.

B. j1=j2=1

In this case the interaction Hamiltonian has three ener-
gy levels (corresponding to J =0, 1,2), with separations of
a and 2a = A’'. Figure 9 shows loci of the fixed-point po-
larization as a function of B for fixed A'. The results in
the upper figure are qualitatively similar to those in Fig.
3, except that now A’=m has no special symmetry. The
loci in the lower figure are somewhat different, in that
they cross from the half space X <0to X >0.

For A'=2m, B=0 we find the first example of a
nonunique final state, with the eigenvalue A=1 in Eq.
(11) being fourfold degenerate. This can be understood in
terms of angular momentum coupling. The usual fixed
point for B =0 is the pure state that is fully polarized in
the y direction, which we denote as |1)®]|1). (The fac-
tors are eigenvectors of the y component of spin for the
localized and beam particles, respectively.) This is an
eigenvector of total angular momentum, and so is a sta-
tionary state. Suppose now that the localized spin was in-
itially in a state corresponding to the zero eigenvalue of

Sy,

! LT ™
_Q |

0.5 7&
70 =< T
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FIG. 9. Loci of the fixed-point polarization for j, =1, j,=1.
The curves, from highest to lowest, correspond to A’ =u/2, m,
37 /2 (top figure), and A’'=2w, 1.97 (bottom figure), with B in-
creasing from O to 7 along each.
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0Ye[1)=(]2,1)—]1,1))/V2 . (15)

The right-hand side is its expansion in terms of total-
angular-momentum vectors, using the y basis. The effect
of the interaction is to shift the relative phase of the two
terms on the right by A’ (that is, by 4’7, with 7=1). But
for A’=2m there is no effect. Thus the S, eigenvectors
[1) and |0) for the localized spin both correspond to
fixed points in this case. The four linearly independent
components of the density matrix p; that correspond to
A=11in Eq. (11), and so can be steady states, are the pure
states: [1)(1], [0)(0[, 1(|1)+]|0))((1]+(0[), and
(1) —=10))({1]—(0]). Of course any mixture of these
four is also a steady state.

In the case shown in Fig. 9, the initial density matrix of
the localized spin was a multiple of the unit matrix. The
final state for B =0 is p;=21(]1)(1]+]0)(0l), yielding
(§,)=0.5. But (S,) could take any value between O
and 1, depending on the initial state.

The degeneracy of the eigenvalue A=1 in Eq. (11) is
broken by taking either B0 or 4’ not equal to a multi-
ple of 2. The lower part of Fig. 9 compares 4'=2m
with A4’=1.97. The curves are close for all but the
lowest values of B, for which they differ very greatly.
This indicates the instability of the results that arise from
the degeneracy at 4'=2m, B =0.

For B =, A'=2m the unique final state is pure. But,
unlike the results for j, =1, it is unpolarized and corre-
sponds to the spin eigenvector ISy =0).

Instead of the fully polarized beam state, |S,=1), one
can alternatively prepare the beam particles in the spin
eigenstate |[S,=0). In this case the polarization lies en-
tirely along the z axis (direction of B), and its variation
with B is shown in Fig. 10 for 4'=. This beam state
does not replicate itself on the localized spin when B =0,
unlike the polarized beam state. Although the polariza-
tion is zero for B =0, 7 /2 and 7, the final state is not ro-
tationally symmetric in these cases. (See Ref. [2] for a
classification of the pure and mixed states of a spin-1 par-
ticle.) It is a mixed state for B =0 and 7. For B =7m/2 it
is an eigenvector of the x component of spin, |S, =0).

0.4

03 | o
0.2
- 01 /
~ 0.0
-0.1 \

_03 f—.

T

]

(S.)/

0.0 0.2 0.4 0.6 0.8 1.0
B/

FIG. 10. Normalized polarization vs B, for A'=m, j;=1,
j»=1, but beam particle state |S, =0).
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C. jl=j2=%

In this case the interaction Hamiltonian has four ener-
gy levels (with J =0,1,2,3), the spacings between them
being a, 2a, and 3a= A’'. For 3a =2 the final state is
not unique, with the A=1 eigenvalue in Eq. (11) being
fourfold degenerate, for reasons essentially the same as in
the previous case. For 2a =21 the final state is, never-
theless, unique. Thus the vanishing (mod2) of a phase
shift between two J eigenvectors is not a sufficient condi-
tion for degeneracy of A=1, although it seems to be a
necessary condition. Of course if a =27 then all phase
shifts would be multiples of 27, and this case would be
equivalent to no interaction at all.

D. B=w

We have already seen that interesting effects occur in
the neighborhood of B =1, making this case worthy of
more detailed study. For B =7 the final state polariza-
tion lies on the y axis. Figure 11 shows the value of (S, )
produced by a j, =1 beam for three different interaction
strengths and several values of j,. It is apparent that, for
fixed A’, (S,) rapidly approaches a constant limit as
ji— . This fact has a simple explanation for A'=m
and half odd-integer values of j, (see Sec. IIT A), but this
more general result was not anticipated. A similar
Jj1— oo limit seems to exist for other values of j,, but it is
approached more slowly than for j, =1. The relation of
these limits to the classical limit will be considered in pa-
per II.

We saw in Figs. 6-8, for j, =1, that the polarization
and the purity index of the localized spin state increase as
we approach the parameter values B =m, A'=w. As j,
increases, this peak in the (B, 4’) parameter space shar-
pens as a function of B, as can be seen from a comparison
of Figs. 6-8 and 12. However, it is not nearly so sharp as
a function of A4’ as is shown in Fig. 13 for j, =5. A simi-
lar peak occurs for j, =1, its dependence on B and A’ be-
ing shown in Figs. 14 and 15. (For j, > 1 there is no sym-
metry about 4’'=1, and the peak occurs at 4’ = 1. 17 for
j»=1) As j,; increases this peak becomes localized
within a diminishing range of B, but it is quite robust as a
function of the interaction strength A’.

0.0

-0.1 F

—0.2 |

0.3 | b AT = 31174
> r 9 o ¢ o o o o

-0.4

(S

T
»

-0.5

_0.6 C 1 L 1 Il L 1
0 1 2 3 4 5 6

FIG. 11. Showing the limiting behavior of (S, ) at large j,
values, for B =1 and j, = 1.
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FIG. 12. Magnitude of the normalized polarization p and
state purity index Trp} as functions of B, for j, =5, j,=1,
A'=m.
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FIG. 13. Magnitude of the normalized polarization p and
state purity index Trpi, as functions of 4’, for j, =5, j,=1,
B=q.
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FIG. 14. Magnitude of the normalized polarization p and
state purity index Trp% as functions of B, for j, =5, j,=1,
A'=1.1m.
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FIG. 15. Magnitude of the normalized polarization p and
state purity index Trp? as functions of A4’, for j, =S5, j,=1,
B =.

IV. DISCUSSION AND CONCLUSIONS

We have seen that a very simple model can give rise to
an interesting and complex variety of behaviors, which
derive from competition between the aligning effect of in-
teraction with the polarized beam and the rotating effect
of the external magnetic field. Depending upon the
values of the parameters, the final state of the driven spin
may be either a pure state or a mixed state. The transi-
tion between these two cases can be quite abrupt, al-
though it is always continuous. In most cases the final
state is independent of the initial state of the driven spin,
and so the model provides an example of a quantum-state
preparation procedure.

The driven spin being an open system, it may evolve
dynamically from a pure state to a mixed state, or from a
mixed state to a pure state. There is no undirectionality
about the pure-to-mixed or mixed-to-pure evolution. For
example, if there is no magnetic field, the effect of the
beam is to drive the localized spin into a pure state, po-
larized in the beam direction. If the localized spin were
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initially polarized, but in a different direction, the evolu-
tion of its state would be from pure to mixed to pure.
These phenomena are possible because of dynamic driv-
ing, that is, driving by another dynamical system, rather
than by a prescribed external force.

Slosser, Meystre, and Braunstein [3] have treated
another example of a dynamically driven quantum sys-
tem. Their model consists of a harmonic oscillator
driven by a beam of two-level atoms. There is consider-
able similarity between their model and ours: the states of
a two-level atom are isomorphic to those of a spin-1 par-
ticle, and both a harmonic oscillator and a spin-j particle
in a magnetic field have uniformly spaced energy levels.
However, the interactions in the two models are different,
and there is no one-to-one correspondence between the
results of the two models. Slosser, Meystre, and Braun-
stein note that the dynamics of the model are governed
by the spectrum of eigenvalues A in an equation analo-
gous to our (11). They find that their eigenvalues tend to
cluster into two groups: one close to unity, and one close
to zero. This happens in our model for some parameter
values, but it is not a general, or even typical, behavior.
More commonly the eigenvalues for our model are distri-
buted more or less uniformly over a wide range. Slosser,
Meystre, and Braunstein have also found a case with an
eigenvalue A= —1, corresponding to an oscillatory limit
cycle. No such case has been discovered for our model.

A very useful feature of our model is that both its
quantum and classical versions can be treated with equal
ease, and hence the quantum-to-classical limit can be
studied. That will be done in paper II of this series.

Although we have not studied the problem of experi-
mentally realizing this model, two possibilities suggest
themselves. A polarized atomic beam could be used to
drive the spin of an atom held in a trap. Alternatively,
one could work in the rest frame of the beam by shooting
the “localized” particle parallel to the surface of a polar-
ized substance, which would serve as the “beam.”
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