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We demonstrate that the generating functionals for two-dimensional models with two real scalar
fields, one interacting with an external electromagnetic field and the other with coupling terms but
without external fields, can be reduced to the case of the free-particle propagator when quasistatic solu-
tions for this theory are used.
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I. INTRODUCTION

Recently Bonato, Thomas, and Malbouisson [1] have
established a connection between a two-dimensional
scalar-field theory and a harmonic oscillator with "time-
dependent" frequency. For this, they used quasistatic
classical solutions for the field in the generating function-
al.

The motivation for this type of calculation is in the
study of quantization around a nontrivial vacuum, which
appears when we have nonlinear interaction terms of the
fields, originating in the soliton solutions for the classical
fields. This is thoroughly investigated by Rajaraman [2].

In the present work we intend to broaden the class of
two-dimensional field theories that can be connected with
nonrelativistic quantum problems. For this, we treat the
case of real scalar fields in two situations. In the first,
they interact with an external electromagnetic field and,
in the second one, they are coupled to each other without
any external field.

In the course of the demonstration we will see that,
analogous to Ref. [1], when the classical solution of the
scalar fields are static or depend only on one of the coor-
dinates we can formally reduce the problem to that of a
two-dimensional anisotropic harmonic oscillator with
"time-dependent" frequencies. On the other hand, if the
classical configuration is an approximate one, the
equivalence will be with a two-dimensional forced anis-
tropic harmonic oscillator with "time-dependent" fre-
quencies, the external force being a measure of the "de-
gree of exactness" of the solution. In fact, we show that
they can be reduced to the free-particle case.

II. THE MODELS

The first case that we treat here corresponds to the La-
grangian density
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where A is an external electromagnetic field that de-

pends only on the spatial coordinate. This imposition is
necessary in order to guarantee that there will exist static
configurations for the scalar fields, as can be seen from
the Euler-Lagrange equations.

Performing the semiclassical expansion of the scalar
fields around their classic static configuration Pi(x) and

Pz(x),
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only changed by a sign, which can be absorbed in the
normalization. Substituting the transformation (7) in the
Lagrangian (3) and after straightforward calculations, we
obtain
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where
As we can see from equations (4c) and (4d) and the

Euler-Lagrange equations for the Lagrangian (1), e;(x)
can be thought of as being the "degree of exactness" of
the static solutions P, (x). Besides, the higher-order terms
in the expansion fields X, (x) were dropped because we
suppose that only first-order quantum Auctuations are
important.

The generating functional of this theory in two-
dimensional Euclidean space is given by

Z=N 'exp( —S[gi, $2,A„])
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In the second example, the Lagrangian density is given

X fDX,DX,exp —f dx dt X[X»X2,A„]

+J, (x)x, +J2(x )x2

Note that now V(gi, i))2) has cross terms, but the restric-
tion on the frequencies is maintained.

In this case we see that the fields y,. stay coupled. If we
make a rotation of ri. /4 in these fields as given below,

where the normalization X, different from that used in
Ref. [1],will be one that is usually used in quantum field
theories. .X2.

1 1

1 —1 712
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N= fDhoti, Did~exp
—f dx dt&[X»X A2„]

and the source terms J; will depend only on one coordi-
nate.

If we consider the simpler case in which co, =co&=co,
we can achieve the goal of reducing the generating func-
tional to free-particle propagators, by making a position
dependent rotation in the scalar fields y;:

[xi

.X2.

the Lagrangian (15) decouples as
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where co+(x)=co (x)+A,(x). Thus, as in the previous ex-
ample, we have reduced the problem to that of two free
scalar fields.

sina(x) cosa(x)
cosa(x) —sina(x )

(7) III. THE EQUIVALENCE WITH THE FREE PARTICLE

where

a(x)=e f A„(y)dy" .

Under this transformation the functional measure is

In this section we will show that the harmonic-
oscillator propagator can be formally reduced to that of a
free particle by the use of a suitable transformation.

The above examples in fact were simplified to the treat-
ment of a generating functional of the type

Z[J]=N ' f2)/exp —f dx dt —,'(B„g) —[co (x)/2]g' +[e(x)+J(x)]g' (14)

where N=Z (J=O).
Since there is a formal equivalence between the above equation and expression (2) of Ref. [1],we shall avoid unneces-

sary mathematical labor by using their final result:
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This expression was obtained through an expansion of
g(x, t) in terms of eigenfunctions of the operator
8 +co (x) with L/2—x +L/2 and —T/2& t + T/2.
On the other hand, q (x) is defined by

q(x) = T 'i' f g(x, t )dt .

E,„and E2 are the eigenvalues of the Schrodinger equa-
tion in the variables t and x, respectively.

At this point we are able to reach our aim. In the
numerator, we have the propagator of an oscillator with
"time-dependent" frequency with external driving force.

Now, if we want to map this problem into that of the
free particle we can use the same method applied by de
Souza Dutra [3].

First we make the transformation

u(x) =q(x)+v(x),

2
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With this we have achieved our goal. However some ob-
servation must be made.

If we use the usual normalization given by Eq. (6) and
apply the same procedure as for the numerator, we obtain
the ratio between Eq. (18) and

2
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where
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Then this ratio permits us to cancel the exponentials that
contains oscillators with time-dependent frequencies in
the variables u (x), that appear in the numerator as well
as in the denominator. In other words, we have

Making use of the transformation [4]
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seep(x ), s = tan)u, (x),

where p(x) is constrained by the relation
r 2

e'=1,
8X
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Now we do not need to make the transformation (20)
that leads us to the free-particle propagator. That will be
necessary only if we use the same normalization of Bona-
to, Thomaz, and Malbouisson. In this case we have
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it is easy to show that the exponent of Eq. (15) reduces to
where e,„=(2mn/T) and e2 =(2vrm/L); m, n HZ, be-
ing e,„=E,„nd aez„AE1„. Therefore we keep
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The factor K arises due to the change in the functional
measure when we make the transformation (20) and it is
given by

Br
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Br
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IV. CONCLUSIONS

In this work we have formally reduced the problem of
a complex scalar field interacting with an external elec-
tromagnetic field and another one with self-interaction
but without an electromagnetic field, to that of a
quantum-mechanical one. In order to apply this ap-
proach in a particular case, one has to pay the price of
obtaining the classical quasistatic configurations exactly
and to solve the equation of a driven harmonic oscillator

with time-dependent frequency.
The first model that we have considered here is special,

in the sense that the form of the potential is restricted by
the imposition co, =~&=co . However, the general case
remains to be solved.

In general„ the equations that we must solve are not
easy, but there are solutions for some particular cases.
For example, we can quote that treated by Bonato,
Thomaz, and Malbouisson [5] that has appeared recently
in the literature. In this paper they work with the poten-
tial V(P)=g(P —a ) in the presence of a constant
source J, obtaining the static bounce solution.

Finally, it is necessary to say that the generating func-
tional that appears in this work is not the usual one. The
generating functional presented here is for the time-
averaged correlation functions, in contrast to that used in
Ref. [1] which is a generating functional for the time- and
space-averaged correlation functions.

*Permanent address.
[1]C. A. Bonato, M. T. Thomaz, and A. P. C. Malbouisson,

Phys. Rev. A 39, 2225 (1989).
[2] R. Rajaraman, Solitons and Instantons An Introduction -to

Solitons and Instantons in Quantum Field Theory (North-
Holland, Amsterdam, 1982) and references therein.

[3] A. de Souza Dutra, Phys. Lett. A 145, 391 (1990).
[4] A. de Souza Dutra and B. K. Cheng, Phys. Rev. A 39,

5897 (1989).
[5] C. A. Bonato, M. T. Thomaz, and A. P. C. Malbouisson,

Phys. Rev. D 41, 1939 (1990).


