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Zniinence of noise on the mean lifetime of chaotic transients
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Chaotic transients resulting after a boundary crisis are examined in the presence of external, additive
noise. Depending on its amplitude, the mean duration of chaotic evolution may be elongated or shor-
tened.

Chaotic transients have been found in many dissipative
dynamical systems in which a boundary crisis has taken
place [1—3]. In contrast to permanent chaos, transient
behavior occurs only on a long, but finite, time scale, and
is related to the existence of a nontrivial fractal repeller
in phase space. Starting from different initial points scat-
tered uniformly inside a neighborhood of the repeller, one
can observe an ensemble of different trajectories. Their
durations are distributed exponentially according to

M(n)=Moe

where M(n) is the number of trajectories that have not
yet escaped from the given neighborhood of the repeller
after n iterations, and Mo is the number of initial points.
Coe%cient sc is called the escape rate and is connected
with the mean lifetime (n ) as rc=(n ) '. This quantity
is related to other dynamical characteristics such as the
generalized dimensions, entropies, or Lyapunov ex-
ponents. The above invariants, however, are not easily
extracted from noisy experimental time series.

Contrary to this, the mean lifetime (n ) can easily be
determined in real experiments by means of the ensemble
method, introduced in Ref. [3]. Investigating an ensem-
ble of transient trajectories started from many initial
points distributed uniformly in the region containing a
repeller, one can simply check the duration of every sin-
gle trajectory and make sufFicient statistics, satisfying Eq.
(1).

Since every real experiment is performed in the pres-
ence of random noise, one should be aware of its
influence on the measured quantity. Therefore, in this
paper we study the problem in computer simulations in
which the level of noise can be kept under strict control.

Two systems are investigated: The one-dimensional
(1D) logistic map

a*=4 and transient trajectories escape to —00, which
can be viewed as an attracting single point. In the Henon
map there are different boundary crises. We choose a
particular one in which a four-piece chaotic attractor is
destroyed and its basin attached to the basin of a six-
piece chaotic attractor. Both attractors coexist before
the crisis, which takes place for a*=1.080744879. . . ,
b*=0.3. Beyond the crisis, transients lead to a six-piece
chaotic attractor on which the system stays forever [2].

As a condition for interrupting the iteration process a
geometrical criterion is used: for the 1D case iterations
are stopped if x (—0.2, while for the 2D case we check
every sixth iteration, and if both points (x, 6,y; 6) and
(x, ,y, ) are within the strip of width 3o around the same
piece of attractor, the iterations are stopped. The control
parameter a in both maps is chosen close to its critical
value a *, where ( n ) is long, in order to ensure the ex-
istence of relatively large and clearly visible noise-
induced changes of ( n ).

Figure 1 shows the results obtained for the logistic map
with fixed parameter a and three distinct values of o. .
The middle line with dots corresponds to the noiseless
case o. =0; the slope of this line is equal to the escape rate
rc(0). Two facts should be noted: (i) the exponential dis-
tribution of lifetimes, Eq. (1), is excellently fulfilled for a
purely deterministic as well as a noisy repeller; (ii) ac-

11.2—
x„+,=ax„(1—x„)+crri„,

and the two-dimensional (2D) Henon map

x„+,= 1 —ax„+y„+o g„, y„+,=by„+ o.g„,

(2)
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where o stands for amplitude of noise and ri„,g„,g„are
numbers from a pseudorandom generator of homogene-
ous distribution on the interval ( ——,', —,

' ). Parameters a, b

are taken slightly above their critical values a', b* for
which a boundary crisis takes place. For the logistic map

FIG. 1. Distribution of lifetimes lnM(n) vs iteration number
n for the logistic map at fixed control parameter a =4.0001;
number of initial points MD=10 . The slope is equal to the es-
cape rate ~. Values of noise amplitude o. are as follows (from
top to bottoIH): 10,0, 5 X 10
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FIG. 2. Dependence of escape rate v on noise amplitude o. for the logistic map with fixed control parameter: (a) a =4.0001; (b)

a =4.0005. The difference sc(o. ) —~(0) is plotted on the vertical axis, where ~(0) is the escape rate in the absence of noise. Notice the
shift in the position of the minimum with change of parameter a.

cording to its amplitude, noise modifies the mean lifetime
in such a way that one can observe both longer and short-
er mean durations of transients. Thus, for fixed system
parameters one can expect a nonmonotonic dependence
of the escape rate ~ on noise amplitude o.. Indeed, sys-
tematic investigations confirm this, as shown in Fig. 2(a).
On the vertical axis the difference ~(o. ) —~(0) is plotted,
and therefore all points below zero correspond to the
elongated Incan lifetime while those above zero refer to
shorter transients. The longest mean duration (minimum
on the plot) is about 20% greater than the noiseless one.
The plot I~(o. )

—x(0) has a similar shape for other values
of the control parameter a [see Fig. 2(b)]. Again the
longest transients are about 20% longer than the noise-
less ones for a given value of a. Runs with other values of
a seem to suggest that the critical value of the noise am-
plitude o.*, for which the longest transient occurs, de-
pends on the a parameter of the map roughly as
cr *= (a —a * ). The same investigations were also per-
formed for a 2D system. As an example, we demonstrate
the dependence v(o ) —v(0) vs o for fixed a in Fig. 3.
Again, in some range of o. , noise has a tendency to
elongate chaotic transients, and the longest (n ) is about
18% longer than the noiseless one. It is a little surprising
that the maximum relative elongation
[ ( n ( o *

) ) —( n (0) ) ]I( n (0) ) is oscillating in a narrow
range around the same constant value ( =0.2) in both 1D
and 2D systems and for different values of the control pa-

rameter a. It should be added that for amplitudes o.

larger than those shown in the figures, there is already a
monotonic decrease of mean lifetime ( n ) for both maps.

The above results suggest a general tendency for small
noise amplitude to stabilize chaotic transients, and just
the opposite effect for large noise amplitude. Here, the
term "small" or "large" has its sense for fixed parameters
of the system and one should be aware that at other
values of the system parameters the same noise may have
a different influence on the same physical system. In oth-
er words, instead of a pair of independent parameters a
and o one can use a single dimensionless parameter
p =o /(a —a*). Its value indicates whether the observed
mean lifetime is longer or shorter in comparison with the
noiseless one. In the systems investigated here, we found
a critical value po above which x(o )

—v(0) is always posi-
tive. It equals about 2.5 and is roughly the same for both
the 1D and 2D cases.

It should be stressed that we investigated the effect of
external noise on the mean lifetime (n ), which is the
averaged, statistical quantity. Of course, a single tran-
sient trajectory can behave in exactly the opposite way
but similar investigations performed with very small
statistics for other dynamical systems give qualitatively
the same results [4].

Finally, let us make one more general comment. The
escape rate ~ is related to other dynamical characteris-
tics. For the simplest 1D case [3] we have

~=(1 D)A, — (4)
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FIG. 3. The same dependence as in Fig. 2 but for the Henon
map with fixed parameters a =1.080750 and b =0.3.

where A is the Lyapunov exponent and D stands for the
information dimension with respect to the natural invari-
ant measure on the repeller. From the study of per-
manent chaos it is well known that noise destroys details
of fractal geometry below a length scale comparable with
the amplitude o [5]. The same also holds for repellers.
Thus, the hierarchical structure survives for a length
scale greater than o. and in this range of length one can
estimate dimension D correctly. On the other hand,
there is no such possibility in determining the value of
the escape rate. As illustrated, Eq. (1) is excellently
fulfilled for the noisy repeller in a reasonable range of n
but with the value of v being noise dependent. The calcu-
lation of A from experimental time series is probably the
most problematic and least confidential procedure [6],
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but some authors [7] found numerically a sensitivity of
the greatest Lyapunov exponent on the level of external
noise. Analytic investigations of fully developed chaotic
maps [8] reveal nonmonotonic dependence of A(o ) that
appears to have a shape just opposite that of a(rr), i.e.,
the Lyapunov exponent A increases for small o. and de-
creases for larger ~. One can also expect a similar depen-
dence of A(cr ) for slightly larger values of the control pa-
rameter where transient chaos exists. Changes of the
Lyapunov exponent due to noise may thus be compensat-
ed by changes of the escape rate lr. Consequently, Eq. (5)
may also be correct in the case of noisy repellers.

Summarizing, we can conclude once again that exter-
nal noise can either stabilize or damage transient chaos.

The particular kind of reaction depends on neither the
value of the noise amplitude o. nor the system parameter
a independently, but on the dimensionless parameter
p=crf(a —a*). For p(po noise always makes transient
chaos more persistent, while for p&po the e6'ect is just
the opposite. The critical value po found in numerical in-
vestigations is nearly the same for 10 and 20 systems.
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